maidr 1.3.0__py3-none-any.whl → 1.4.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- maidr/__init__.py +2 -1
- maidr/core/maidr.py +74 -7
- maidr/core/plot/candlestick.py +112 -204
- maidr/core/plot/maidr_plot.py +7 -2
- maidr/core/plot/maidr_plot_factory.py +12 -11
- maidr/core/plot/mplfinance_barplot.py +139 -0
- maidr/core/plot/mplfinance_lineplot.py +273 -0
- maidr/patch/__init__.py +15 -0
- maidr/patch/mplfinance.py +215 -0
- maidr/util/__init__.py +3 -0
- maidr/util/mplfinance_utils.py +409 -0
- maidr/util/plot_detection.py +136 -0
- {maidr-1.3.0.dist-info → maidr-1.4.1.dist-info}/METADATA +1 -1
- {maidr-1.3.0.dist-info → maidr-1.4.1.dist-info}/RECORD +16 -11
- {maidr-1.3.0.dist-info → maidr-1.4.1.dist-info}/LICENSE +0 -0
- {maidr-1.3.0.dist-info → maidr-1.4.1.dist-info}/WHEEL +0 -0
maidr/__init__.py
CHANGED
maidr/core/maidr.py
CHANGED
|
@@ -1,6 +1,9 @@
|
|
|
1
1
|
from __future__ import annotations
|
|
2
2
|
|
|
3
3
|
from datetime import datetime
|
|
4
|
+
import urllib.request
|
|
5
|
+
import urllib.error
|
|
6
|
+
import json
|
|
4
7
|
|
|
5
8
|
import io
|
|
6
9
|
import json
|
|
@@ -22,6 +25,11 @@ from maidr.core.plot import MaidrPlot
|
|
|
22
25
|
from maidr.util.environment import Environment
|
|
23
26
|
from maidr.util.dedup_utils import deduplicate_smooth_and_line
|
|
24
27
|
|
|
28
|
+
# Module-level cache for version to avoid repeated API calls
|
|
29
|
+
_MAIDR_VERSION_CACHE: str | None = None
|
|
30
|
+
_MAIDR_VERSION_CACHE_TIME: float = 0.0
|
|
31
|
+
_MAIDR_CACHE_DURATION = 3600 # Cache for 1 hour
|
|
32
|
+
|
|
25
33
|
|
|
26
34
|
class Maidr:
|
|
27
35
|
"""
|
|
@@ -34,6 +42,8 @@ class Maidr:
|
|
|
34
42
|
The matplotlib figure associated with this instance.
|
|
35
43
|
_plots : list[MaidrPlot]
|
|
36
44
|
A list of MaidrPlot objects which hold additional plot-specific configurations.
|
|
45
|
+
_cached_version : str | None
|
|
46
|
+
Cached version of maidr from npm registry to avoid repeated API calls.
|
|
37
47
|
|
|
38
48
|
Methods
|
|
39
49
|
-------
|
|
@@ -271,20 +281,77 @@ class Maidr:
|
|
|
271
281
|
"""Generate a unique identifier string using UUID4."""
|
|
272
282
|
return str(uuid.uuid4())
|
|
273
283
|
|
|
284
|
+
@staticmethod
|
|
285
|
+
def _get_latest_maidr_version() -> str:
|
|
286
|
+
"""
|
|
287
|
+
Query the npm registry API to get the latest version of maidr with caching.
|
|
288
|
+
|
|
289
|
+
Returns
|
|
290
|
+
-------
|
|
291
|
+
str
|
|
292
|
+
The latest version of maidr from npm registry, or 'latest' as fallback.
|
|
293
|
+
"""
|
|
294
|
+
import time
|
|
295
|
+
|
|
296
|
+
global _MAIDR_VERSION_CACHE, _MAIDR_VERSION_CACHE_TIME
|
|
297
|
+
|
|
298
|
+
# Check if version fetching is disabled via environment variable
|
|
299
|
+
if os.getenv("MAIDR_DISABLE_VERSION_FETCH", "").lower() in ("true", "1", "yes"):
|
|
300
|
+
return "latest"
|
|
301
|
+
|
|
302
|
+
current_time = time.time()
|
|
303
|
+
|
|
304
|
+
# Check if we have a valid cached version
|
|
305
|
+
if (
|
|
306
|
+
_MAIDR_VERSION_CACHE is not None
|
|
307
|
+
and current_time - _MAIDR_VERSION_CACHE_TIME < _MAIDR_CACHE_DURATION
|
|
308
|
+
):
|
|
309
|
+
return _MAIDR_VERSION_CACHE
|
|
310
|
+
|
|
311
|
+
try:
|
|
312
|
+
# Query npm registry API for maidr package
|
|
313
|
+
with urllib.request.urlopen(
|
|
314
|
+
"https://registry.npmjs.org/maidr/latest", timeout=5 # 5 second timeout
|
|
315
|
+
) as response:
|
|
316
|
+
if response.status == 200:
|
|
317
|
+
data = json.loads(response.read().decode("utf-8"))
|
|
318
|
+
version = data.get("version", "latest")
|
|
319
|
+
|
|
320
|
+
# Cache the successful result
|
|
321
|
+
_MAIDR_VERSION_CACHE = version
|
|
322
|
+
_MAIDR_VERSION_CACHE_TIME = current_time
|
|
323
|
+
|
|
324
|
+
return version
|
|
325
|
+
|
|
326
|
+
except Exception:
|
|
327
|
+
# Any error - just use latest
|
|
328
|
+
pass
|
|
329
|
+
|
|
330
|
+
# Fallback to 'latest' if API call fails
|
|
331
|
+
return "latest"
|
|
332
|
+
|
|
333
|
+
@staticmethod
|
|
334
|
+
def clear_version_cache() -> None:
|
|
335
|
+
"""Clear the cached version to force a fresh API call on next request."""
|
|
336
|
+
global _MAIDR_VERSION_CACHE, _MAIDR_VERSION_CACHE_TIME
|
|
337
|
+
_MAIDR_VERSION_CACHE = None
|
|
338
|
+
_MAIDR_VERSION_CACHE_TIME = 0.0
|
|
339
|
+
|
|
274
340
|
@staticmethod
|
|
275
341
|
def _inject_plot(plot: HTML, maidr: str, maidr_id, use_iframe: bool = True) -> Tag:
|
|
276
342
|
"""Embed the plot and associated MAIDR scripts into the HTML structure."""
|
|
277
|
-
#
|
|
278
|
-
|
|
279
|
-
|
|
280
|
-
|
|
343
|
+
# Get the latest version from npm registry
|
|
344
|
+
latest_version = Maidr._get_latest_maidr_version()
|
|
345
|
+
MAIDR_TS_CDN_URL = (
|
|
346
|
+
f"https://cdn.jsdelivr.net/npm/maidr@{latest_version}/dist/maidr.js"
|
|
347
|
+
)
|
|
281
348
|
|
|
282
349
|
script = f"""
|
|
283
|
-
if (!document.querySelector('script[src="{MAIDR_TS_CDN_URL}
|
|
350
|
+
if (!document.querySelector('script[src="{MAIDR_TS_CDN_URL}"]'))
|
|
284
351
|
{{
|
|
285
352
|
var script = document.createElement('script');
|
|
286
353
|
script.type = 'module';
|
|
287
|
-
script.src = '{MAIDR_TS_CDN_URL}
|
|
354
|
+
script.src = '{MAIDR_TS_CDN_URL}';
|
|
288
355
|
script.addEventListener('load', function() {{
|
|
289
356
|
window.main();
|
|
290
357
|
}});
|
|
@@ -299,7 +366,7 @@ class Maidr:
|
|
|
299
366
|
base_html = tags.div(
|
|
300
367
|
tags.link(
|
|
301
368
|
rel="stylesheet",
|
|
302
|
-
href="https://cdn.jsdelivr.net/npm/maidr/dist/maidr_style.css",
|
|
369
|
+
href=f"https://cdn.jsdelivr.net/npm/maidr@{latest_version}/dist/maidr_style.css",
|
|
303
370
|
),
|
|
304
371
|
tags.script(script, type="text/javascript"),
|
|
305
372
|
tags.div(plot),
|
maidr/core/plot/candlestick.py
CHANGED
|
@@ -1,14 +1,24 @@
|
|
|
1
|
+
from __future__ import annotations
|
|
2
|
+
|
|
1
3
|
import matplotlib.dates as mdates
|
|
2
4
|
import numpy as np
|
|
3
5
|
from matplotlib.axes import Axes
|
|
4
|
-
from matplotlib.collections import LineCollection, PatchCollection
|
|
5
6
|
from matplotlib.patches import Rectangle
|
|
6
7
|
|
|
7
|
-
from maidr.core.enum
|
|
8
|
-
from maidr.core.plot
|
|
8
|
+
from maidr.core.enum import PlotType
|
|
9
|
+
from maidr.core.plot import MaidrPlot
|
|
10
|
+
from maidr.core.enum.maidr_key import MaidrKey
|
|
11
|
+
from maidr.util.mplfinance_utils import MplfinanceDataExtractor
|
|
9
12
|
|
|
10
13
|
|
|
11
14
|
class CandlestickPlot(MaidrPlot):
|
|
15
|
+
"""
|
|
16
|
+
Specialized candlestick plot class for mplfinance OHLC data.
|
|
17
|
+
|
|
18
|
+
This class handles the extraction and processing of candlestick data from mplfinance
|
|
19
|
+
plots, including proper date conversion and data validation.
|
|
20
|
+
"""
|
|
21
|
+
|
|
12
22
|
def __init__(self, axes: list[Axes], **kwargs) -> None:
|
|
13
23
|
"""
|
|
14
24
|
Initialize the CandlestickPlot.
|
|
@@ -27,213 +37,111 @@ class CandlestickPlot(MaidrPlot):
|
|
|
27
37
|
raise ValueError("Axes list cannot be empty.")
|
|
28
38
|
super().__init__(axes[0], PlotType.CANDLESTICK)
|
|
29
39
|
|
|
40
|
+
# Store custom collections passed from mplfinance patch
|
|
41
|
+
self._maidr_wick_collection = kwargs.get("_maidr_wick_collection", None)
|
|
42
|
+
self._maidr_body_collection = kwargs.get("_maidr_body_collection", None)
|
|
43
|
+
self._maidr_date_nums = kwargs.get("_maidr_date_nums", None)
|
|
44
|
+
|
|
45
|
+
# Store the GID for proper selector generation
|
|
46
|
+
self._maidr_gid = None
|
|
47
|
+
if self._maidr_body_collection:
|
|
48
|
+
self._maidr_gid = self._maidr_body_collection.get_gid()
|
|
49
|
+
elif self._maidr_wick_collection:
|
|
50
|
+
self._maidr_gid = self._maidr_wick_collection.get_gid()
|
|
51
|
+
|
|
30
52
|
def _extract_plot_data(self) -> list[dict]:
|
|
31
|
-
"""
|
|
32
|
-
Extracts candlestick (OHLC) and volume data from the plot axes.
|
|
53
|
+
"""Extract candlestick data from the plot."""
|
|
33
54
|
|
|
34
|
-
|
|
35
|
-
|
|
36
|
-
|
|
37
|
-
PatchCollection of Rectangles on the second axis (self.axes[1]), if present.
|
|
38
|
-
Open and close prices are inferred from the body rectangle's color.
|
|
55
|
+
# Get the custom collections from kwargs
|
|
56
|
+
body_collection = self._maidr_body_collection
|
|
57
|
+
wick_collection = self._maidr_wick_collection
|
|
39
58
|
|
|
40
|
-
|
|
41
|
-
|
|
42
|
-
|
|
43
|
-
|
|
44
|
-
|
|
45
|
-
|
|
46
|
-
|
|
47
|
-
|
|
48
|
-
|
|
49
|
-
|
|
50
|
-
|
|
51
|
-
|
|
52
|
-
|
|
53
|
-
'value': '2021-01-01',
|
|
54
|
-
'open': 100.0,
|
|
55
|
-
'high': 100.9,
|
|
56
|
-
'low': 99.27,
|
|
57
|
-
'close': 100.75,
|
|
58
|
-
'volume': 171914,
|
|
59
|
-
}
|
|
60
|
-
"""
|
|
59
|
+
if body_collection and wick_collection:
|
|
60
|
+
# Store the GID from the body collection for highlighting
|
|
61
|
+
self._maidr_gid = body_collection.get_gid()
|
|
62
|
+
|
|
63
|
+
# Use the original collections for highlighting
|
|
64
|
+
self._elements = [body_collection, wick_collection]
|
|
65
|
+
|
|
66
|
+
# Use the utility class to extract data
|
|
67
|
+
return MplfinanceDataExtractor.extract_candlestick_data(
|
|
68
|
+
body_collection, wick_collection, self._maidr_date_nums
|
|
69
|
+
)
|
|
70
|
+
|
|
71
|
+
# Fallback to original detection method
|
|
61
72
|
if not self.axes:
|
|
62
73
|
return []
|
|
63
74
|
|
|
64
|
-
|
|
65
|
-
|
|
66
|
-
|
|
67
|
-
|
|
68
|
-
|
|
69
|
-
|
|
70
|
-
|
|
71
|
-
|
|
72
|
-
|
|
73
|
-
|
|
74
|
-
|
|
75
|
-
|
|
76
|
-
|
|
77
|
-
|
|
78
|
-
|
|
79
|
-
|
|
80
|
-
|
|
81
|
-
|
|
82
|
-
|
|
83
|
-
|
|
84
|
-
|
|
85
|
-
|
|
86
|
-
|
|
87
|
-
|
|
88
|
-
|
|
89
|
-
body_rectangles
|
|
90
|
-
): # If we found rectangles this way, assume this is the primary body collection
|
|
91
|
-
break
|
|
92
|
-
except Exception:
|
|
93
|
-
# Could fail if collection is not iterable in the expected way or patches are not Rectangles
|
|
94
|
-
pass
|
|
95
|
-
|
|
96
|
-
if not body_rectangles:
|
|
97
|
-
for patch in ax_ohlc.patches:
|
|
98
|
-
if isinstance(patch, Rectangle):
|
|
99
|
-
body_rectangles.append(patch)
|
|
100
|
-
|
|
101
|
-
if not body_rectangles:
|
|
102
|
-
pass
|
|
103
|
-
|
|
104
|
-
ax_for_wicks: Axes | None = None
|
|
105
|
-
if len(self.axes) > 1:
|
|
106
|
-
ax_for_wicks = self.axes[1]
|
|
107
|
-
|
|
108
|
-
if ax_for_wicks:
|
|
109
|
-
# Attempt 1: Find wicks in ax_for_wicks.collections (as a LineCollection)
|
|
110
|
-
for collection in ax_for_wicks.collections:
|
|
111
|
-
if isinstance(collection, LineCollection):
|
|
112
|
-
segments = collection.get_segments()
|
|
113
|
-
# Check if the collection contains segments and the first segment looks like a vertical line
|
|
114
|
-
if segments is not None and len(segments) > 0:
|
|
115
|
-
first_segment = segments[0]
|
|
116
|
-
if (
|
|
117
|
-
len(first_segment) == 2 # Segment consists of two points
|
|
118
|
-
and len(first_segment[0]) == 2 # First point has (x, y)
|
|
119
|
-
and len(first_segment[1]) == 2 # Second point has (x, y)
|
|
120
|
-
and np.isclose(
|
|
121
|
-
first_segment[0][0], first_segment[1][0]
|
|
122
|
-
) # X-coordinates are close (vertical)
|
|
123
|
-
):
|
|
124
|
-
wick_collection = collection
|
|
125
|
-
break # Found a suitable LineCollection
|
|
126
|
-
|
|
127
|
-
# Attempt 2: If no LineCollection found, try to find wicks from individual Line2D objects in ax_for_wicks.get_lines()
|
|
128
|
-
if not wick_collection and hasattr(ax_for_wicks, "get_lines"):
|
|
129
|
-
potential_wick_segments = []
|
|
130
|
-
for line in ax_for_wicks.get_lines(): # Iterate over Line2D objects
|
|
131
|
-
x_data, y_data = line.get_data()
|
|
132
|
-
# A wick is typically a vertical line defined by two points.
|
|
133
|
-
if len(x_data) == 2 and len(y_data) == 2:
|
|
134
|
-
if np.isclose(x_data[0], x_data[1]): # Check for verticality
|
|
135
|
-
# Create a segment in the format [[x1, y1], [x2, y2]]
|
|
136
|
-
segment = [
|
|
137
|
-
[x_data[0], y_data[0]],
|
|
138
|
-
[x_data[1], y_data[1]],
|
|
139
|
-
]
|
|
140
|
-
potential_wick_segments.append(segment)
|
|
141
|
-
|
|
142
|
-
if potential_wick_segments:
|
|
143
|
-
# If wick segments were found from individual lines,
|
|
144
|
-
# create a new LineCollection to hold them.
|
|
145
|
-
# This allows the downstream processing logic
|
|
146
|
-
# for wicks to remain consistent.
|
|
147
|
-
# Basic properties are set; color/linestyle
|
|
148
|
-
# are defaults and may not match
|
|
149
|
-
# the original plot's styling if that
|
|
150
|
-
# were relevant for segment extraction.
|
|
151
|
-
wick_collection = LineCollection(
|
|
152
|
-
potential_wick_segments,
|
|
153
|
-
colors="k", # Default color for the temporary collection
|
|
154
|
-
linestyles="solid", # Default linestyle
|
|
155
|
-
)
|
|
156
|
-
|
|
157
|
-
# Process wicks into a map: x_coordinate -> (low_price, high_price)
|
|
158
|
-
wick_segments_map: dict[float, tuple[float, float]] = {}
|
|
159
|
-
if wick_collection:
|
|
160
|
-
for seg in wick_collection.get_segments():
|
|
161
|
-
if len(seg) == 2 and len(seg[0]) == 2 and len(seg[1]) == 2:
|
|
162
|
-
# Ensure x-coordinates are (nearly) identical for a vertical wick line
|
|
163
|
-
if np.isclose(seg[0][0], seg[1][0]):
|
|
164
|
-
x_coord = seg[0][0] # Matplotlib date number
|
|
165
|
-
low_price = min(seg[0][1], seg[1][1])
|
|
166
|
-
high_price = max(seg[0][1], seg[1][1])
|
|
167
|
-
wick_segments_map[x_coord] = (low_price, high_price)
|
|
168
|
-
|
|
169
|
-
body_rectangles.sort(key=lambda r: r.get_x())
|
|
170
|
-
|
|
171
|
-
for rect in body_rectangles:
|
|
172
|
-
x_left = rect.get_x()
|
|
173
|
-
width = rect.get_width()
|
|
174
|
-
x_center_num = x_left + width / 2.0
|
|
175
|
-
|
|
176
|
-
try:
|
|
177
|
-
date_dt = mdates.num2date(x_center_num)
|
|
178
|
-
date_str = date_dt.strftime("%Y-%m-%d")
|
|
179
|
-
except ValueError:
|
|
180
|
-
date_str = f"raw_date_{x_center_num:.2f}"
|
|
181
|
-
|
|
182
|
-
y_bottom = rect.get_y()
|
|
183
|
-
height = rect.get_height()
|
|
184
|
-
face_color = rect.get_facecolor() # RGBA tuple
|
|
185
|
-
|
|
186
|
-
# Infer open and close prices
|
|
187
|
-
# Heuristic: Green component > Red component for an "up" candle (close > open)
|
|
188
|
-
# This assumes standard green for up, red for down.
|
|
189
|
-
# A more robust method would involve knowing the exact up/down colors used.
|
|
190
|
-
is_up_candle = (
|
|
191
|
-
face_color[1] > face_color[0]
|
|
192
|
-
) # Compare Green and Red components
|
|
193
|
-
|
|
194
|
-
if is_up_candle: # Typically green: price went up
|
|
195
|
-
open_price = y_bottom
|
|
196
|
-
close_price = y_bottom + height
|
|
197
|
-
else: # Typically red: price went down (or other color)
|
|
198
|
-
close_price = y_bottom
|
|
199
|
-
open_price = y_bottom + height
|
|
200
|
-
|
|
201
|
-
matched_wick_data = None
|
|
202
|
-
closest_wick_x = None
|
|
203
|
-
min_diff = float("inf")
|
|
204
|
-
|
|
205
|
-
for wick_x, prices in wick_segments_map.items():
|
|
206
|
-
diff = abs(wick_x - x_center_num)
|
|
207
|
-
if diff < min_diff:
|
|
208
|
-
min_diff = diff
|
|
209
|
-
closest_wick_x = wick_x
|
|
210
|
-
|
|
211
|
-
# Tolerance for matching wick x-coordinate (e.g., 10% of candle width)
|
|
212
|
-
if closest_wick_x is not None and min_diff < (width * 0.1):
|
|
213
|
-
matched_wick_data = wick_segments_map[closest_wick_x]
|
|
214
|
-
|
|
215
|
-
if matched_wick_data:
|
|
216
|
-
low_price, high_price = matched_wick_data
|
|
217
|
-
# Ensure high >= max(open,close) and low <= min(open,close)
|
|
218
|
-
high_price = max(high_price, open_price, close_price)
|
|
219
|
-
low_price = min(low_price, open_price, close_price)
|
|
220
|
-
else:
|
|
221
|
-
# Fallback if no wick found: high is max(open,close), low is min(open,close)
|
|
222
|
-
high_price = max(open_price, close_price)
|
|
223
|
-
low_price = min(open_price, close_price)
|
|
224
|
-
|
|
225
|
-
plot_data.append(
|
|
226
|
-
{
|
|
227
|
-
"value": date_str,
|
|
228
|
-
"open": open_price,
|
|
229
|
-
"high": high_price,
|
|
230
|
-
"low": low_price,
|
|
231
|
-
"close": close_price,
|
|
232
|
-
"volume": 0,
|
|
233
|
-
}
|
|
75
|
+
ax_ohlc = self.axes[0]
|
|
76
|
+
candles = []
|
|
77
|
+
|
|
78
|
+
# Look for Rectangle patches (original_flavor candlestick)
|
|
79
|
+
body_rectangles = []
|
|
80
|
+
for patch in ax_ohlc.patches:
|
|
81
|
+
if isinstance(patch, Rectangle):
|
|
82
|
+
body_rectangles.append(patch)
|
|
83
|
+
|
|
84
|
+
if body_rectangles:
|
|
85
|
+
# Set elements for highlighting
|
|
86
|
+
self._elements = body_rectangles
|
|
87
|
+
|
|
88
|
+
# Generate a GID for highlighting if none exists
|
|
89
|
+
if not self._maidr_gid:
|
|
90
|
+
import uuid
|
|
91
|
+
|
|
92
|
+
self._maidr_gid = f"maidr-{uuid.uuid4()}"
|
|
93
|
+
# Set GID on all rectangles
|
|
94
|
+
for rect in body_rectangles:
|
|
95
|
+
rect.set_gid(self._maidr_gid)
|
|
96
|
+
|
|
97
|
+
# Use the utility class to extract data
|
|
98
|
+
return MplfinanceDataExtractor.extract_rectangle_candlestick_data(
|
|
99
|
+
body_rectangles, self._maidr_date_nums
|
|
234
100
|
)
|
|
235
|
-
|
|
236
|
-
return
|
|
101
|
+
|
|
102
|
+
return []
|
|
237
103
|
|
|
238
104
|
def _extract_axes_data(self) -> dict:
|
|
239
|
-
|
|
105
|
+
"""
|
|
106
|
+
Extract the plot's axes data including labels.
|
|
107
|
+
|
|
108
|
+
Returns
|
|
109
|
+
-------
|
|
110
|
+
dict
|
|
111
|
+
Dictionary containing x and y axis labels.
|
|
112
|
+
"""
|
|
113
|
+
x_labels = self.ax.get_xlabel()
|
|
114
|
+
if not x_labels:
|
|
115
|
+
x_labels = self.extract_shared_xlabel(self.ax)
|
|
116
|
+
if not x_labels:
|
|
117
|
+
x_labels = "X"
|
|
118
|
+
return {MaidrKey.X: x_labels, MaidrKey.Y: self.ax.get_ylabel()}
|
|
119
|
+
|
|
120
|
+
def _get_selector(self) -> str:
|
|
121
|
+
"""Return the CSS selector for highlighting candlestick elements in the SVG output."""
|
|
122
|
+
# Use the stored GID if available, otherwise fall back to generic selector
|
|
123
|
+
if self._maidr_gid:
|
|
124
|
+
# Use the full GID as the id attribute (since that's what's in the SVG)
|
|
125
|
+
selector = (
|
|
126
|
+
f"g[id='{self._maidr_gid}'] > path, g[id='{self._maidr_gid}'] > rect"
|
|
127
|
+
)
|
|
128
|
+
else:
|
|
129
|
+
selector = "g[maidr='true'] > path, g[maidr='true'] > rect"
|
|
130
|
+
return selector
|
|
131
|
+
|
|
132
|
+
def render(self) -> dict:
|
|
133
|
+
"""Initialize the MAIDR schema dictionary with basic plot information."""
|
|
134
|
+
title = "Candlestick Chart"
|
|
135
|
+
|
|
136
|
+
maidr_schema = {
|
|
137
|
+
MaidrKey.TYPE: self.type,
|
|
138
|
+
MaidrKey.TITLE: title,
|
|
139
|
+
MaidrKey.AXES: self._extract_axes_data(),
|
|
140
|
+
MaidrKey.DATA: self._extract_plot_data(),
|
|
141
|
+
}
|
|
142
|
+
|
|
143
|
+
# Include selector only if the plot supports highlighting.
|
|
144
|
+
if self._support_highlighting:
|
|
145
|
+
maidr_schema[MaidrKey.SELECTOR] = self._get_selector()
|
|
146
|
+
|
|
147
|
+
return maidr_schema
|
maidr/core/plot/maidr_plot.py
CHANGED
|
@@ -42,8 +42,13 @@ class MaidrPlot(ABC):
|
|
|
42
42
|
self._support_highlighting = True
|
|
43
43
|
self._elements = []
|
|
44
44
|
ss = self.ax.get_subplotspec()
|
|
45
|
-
|
|
46
|
-
|
|
45
|
+
# Handle cases where subplotspec is None (dynamically created axes)
|
|
46
|
+
if ss is not None:
|
|
47
|
+
self.row_index = ss.rowspan.start
|
|
48
|
+
self.col_index = ss.colspan.start
|
|
49
|
+
else:
|
|
50
|
+
self.row_index = 0
|
|
51
|
+
self.col_index = 0
|
|
47
52
|
|
|
48
53
|
# MAIDR data
|
|
49
54
|
self.type = plot_type
|
|
@@ -1,7 +1,6 @@
|
|
|
1
1
|
from __future__ import annotations
|
|
2
2
|
|
|
3
3
|
from matplotlib.axes import Axes
|
|
4
|
-
|
|
5
4
|
from maidr.core.enum import PlotType
|
|
6
5
|
from maidr.core.plot.barplot import BarPlot
|
|
7
6
|
from maidr.core.plot.boxplot import BoxPlot
|
|
@@ -13,6 +12,9 @@ from maidr.core.plot.lineplot import MultiLinePlot
|
|
|
13
12
|
from maidr.core.plot.maidr_plot import MaidrPlot
|
|
14
13
|
from maidr.core.plot.scatterplot import ScatterPlot
|
|
15
14
|
from maidr.core.plot.regplot import SmoothPlot
|
|
15
|
+
from maidr.core.plot.mplfinance_barplot import MplfinanceBarPlot
|
|
16
|
+
from maidr.core.plot.mplfinance_lineplot import MplfinanceLinePlot
|
|
17
|
+
from maidr.util.plot_detection import PlotDetectionUtils
|
|
16
18
|
|
|
17
19
|
|
|
18
20
|
class MaidrPlotFactory:
|
|
@@ -38,17 +40,13 @@ class MaidrPlotFactory:
|
|
|
38
40
|
single_ax = ax
|
|
39
41
|
|
|
40
42
|
if plot_type == PlotType.CANDLESTICK:
|
|
41
|
-
|
|
42
|
-
# If ax is a list of lists, flatten it
|
|
43
|
-
if ax and isinstance(ax[0], list):
|
|
44
|
-
axes = ax[0] # Take the first inner list
|
|
45
|
-
else:
|
|
46
|
-
axes = ax # Use the list as-is
|
|
47
|
-
else:
|
|
48
|
-
axes = [ax] # Wrap single axes in list
|
|
43
|
+
axes = PlotDetectionUtils.get_candlestick_axes(ax)
|
|
49
44
|
return CandlestickPlot(axes, **kwargs)
|
|
50
45
|
elif PlotType.BAR == plot_type or PlotType.COUNT == plot_type:
|
|
51
|
-
|
|
46
|
+
if PlotDetectionUtils.is_mplfinance_bar_plot(**kwargs):
|
|
47
|
+
return MplfinanceBarPlot(single_ax, **kwargs)
|
|
48
|
+
else:
|
|
49
|
+
return BarPlot(single_ax)
|
|
52
50
|
elif PlotType.BOX == plot_type:
|
|
53
51
|
return BoxPlot(single_ax, **kwargs)
|
|
54
52
|
elif PlotType.HEAT == plot_type:
|
|
@@ -56,7 +54,10 @@ class MaidrPlotFactory:
|
|
|
56
54
|
elif PlotType.HIST == plot_type:
|
|
57
55
|
return HistPlot(single_ax)
|
|
58
56
|
elif PlotType.LINE == plot_type:
|
|
59
|
-
|
|
57
|
+
if PlotDetectionUtils.is_mplfinance_line_plot(single_ax, **kwargs):
|
|
58
|
+
return MplfinanceLinePlot(single_ax, **kwargs)
|
|
59
|
+
else:
|
|
60
|
+
return MultiLinePlot(single_ax, **kwargs)
|
|
60
61
|
elif PlotType.SCATTER == plot_type:
|
|
61
62
|
return ScatterPlot(single_ax)
|
|
62
63
|
elif PlotType.DODGED == plot_type or PlotType.STACKED == plot_type:
|