maialib 1.6.1__cp310-cp310-musllinux_1_2_i686.whl → 1.7.0__cp310-cp310-musllinux_1_2_i686.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of maialib might be problematic. Click here for more details.
- maialib/maiacore/maiacore.cpython-310-i386-linux-gnu.so +0 -0
- maialib/maiacore/maiacore.pyi +29 -1
- maialib/maiapy/other.pyi +71 -12
- maialib/maiapy/plots.pyi +98 -5
- maialib/maiapy/sethares_dissonance.pyi +64 -4
- {maialib-1.6.1.dist-info → maialib-1.7.0.dist-info}/METADATA +1 -1
- {maialib-1.6.1.dist-info → maialib-1.7.0.dist-info}/RECORD +24 -24
- {maialib-1.6.1.dist-info → maialib-1.7.0.dist-info}/WHEEL +1 -1
- {maialib-1.6.1.dist-info → maialib-1.7.0.dist-info}/LICENSE.txt +0 -0
- {maialib-1.6.1.dist-info → maialib-1.7.0.dist-info}/top_level.txt +0 -0
|
Binary file
|
maialib/maiacore/maiacore.pyi
CHANGED
|
@@ -385,6 +385,22 @@ class HeapData:
|
|
|
385
385
|
pass
|
|
386
386
|
class Helper:
|
|
387
387
|
@staticmethod
|
|
388
|
+
@typing.overload
|
|
389
|
+
def calculateMelodyEuclideanSimilarity(melodyPattern: list[Note], otherMelody: list[Note]) -> float:
|
|
390
|
+
...
|
|
391
|
+
@staticmethod
|
|
392
|
+
@typing.overload
|
|
393
|
+
def calculateMelodyEuclideanSimilarity(semitonesDifference: list[float]) -> float:
|
|
394
|
+
...
|
|
395
|
+
@staticmethod
|
|
396
|
+
@typing.overload
|
|
397
|
+
def calculateRhythmicEuclideanSimilarity(rhythmPattern: list[Note], otherRhythm: list[Note]) -> float:
|
|
398
|
+
...
|
|
399
|
+
@staticmethod
|
|
400
|
+
@typing.overload
|
|
401
|
+
def calculateRhythmicEuclideanSimilarity(durationDifferences: list[float]) -> float:
|
|
402
|
+
...
|
|
403
|
+
@staticmethod
|
|
388
404
|
def durationRatio(duration_A: float, duration_B: float) -> float:
|
|
389
405
|
...
|
|
390
406
|
@staticmethod
|
|
@@ -400,9 +416,15 @@ class Helper:
|
|
|
400
416
|
def frequencies2cents(freq_A: float, freq_B: float) -> int:
|
|
401
417
|
...
|
|
402
418
|
@staticmethod
|
|
419
|
+
def getDurationDifferenceBetweenRhythms(referenceRhythm: list[Note], otherRhythm: list[Note]) -> list[float]:
|
|
420
|
+
...
|
|
421
|
+
@staticmethod
|
|
403
422
|
def getPercentiles(arg0: typing.Any, arg1: list[float]) -> typing.Any:
|
|
404
423
|
...
|
|
405
424
|
@staticmethod
|
|
425
|
+
def getSemitonesDifferenceBetweenMelodies(referenceMelody: list[Note], otherMelody: list[Note]) -> list[float]:
|
|
426
|
+
...
|
|
427
|
+
@staticmethod
|
|
406
428
|
def isEnharmonic(arg0: str, arg1: str) -> bool:
|
|
407
429
|
...
|
|
408
430
|
@staticmethod
|
|
@@ -475,6 +497,8 @@ class Interval:
|
|
|
475
497
|
...
|
|
476
498
|
def getDiatonicSteps(self, useSingleOctave: bool = True, absoluteValue: bool = False) -> int:
|
|
477
499
|
...
|
|
500
|
+
def getDirection(self) -> str:
|
|
501
|
+
...
|
|
478
502
|
def getName(self) -> str:
|
|
479
503
|
...
|
|
480
504
|
def getNotes(self) -> list[Note]:
|
|
@@ -1052,6 +1076,8 @@ class Part:
|
|
|
1052
1076
|
@typing.overload
|
|
1053
1077
|
def getMeasure(self, measureId: int) -> Measure:
|
|
1054
1078
|
...
|
|
1079
|
+
def getMeasures(self) -> list[Measure]:
|
|
1080
|
+
...
|
|
1055
1081
|
def getMidiUnpitched(self) -> list[int]:
|
|
1056
1082
|
...
|
|
1057
1083
|
def getName(self) -> str:
|
|
@@ -1184,6 +1210,8 @@ class Score:
|
|
|
1184
1210
|
...
|
|
1185
1211
|
def clear(self) -> None:
|
|
1186
1212
|
...
|
|
1213
|
+
def findMelodyPatternDataFrame(self, melodyPattern: list[Note], totalIntervalsSimilarityThreshold: float = 0.5, totalRhythmSimilarityThreshold: float = 0.5, intervalsSimilarityCallback: typing.Callable[[list[Note], list[Note]], list[float]] = None, rhythmSimilarityCallback: typing.Callable[[list[Note], list[Note]], list[float]] = None, totalIntervalSimilarityCallback: typing.Callable[[list[float]], float] = None, totalRhythmSimilarityCallback: typing.Callable[[list[float]], float] = None, totalSimilarityCallback: typing.Callable[[float, float], float] = None) -> typing.Any:
|
|
1214
|
+
...
|
|
1187
1215
|
def forEachNote(self, callback: typing.Callable[[Part, Measure, int, Note], None], measureStart: int = 0, measureEnd: int = -1, partNames: list[str] = []) -> None:
|
|
1188
1216
|
...
|
|
1189
1217
|
def getChords(self, config: json = None) -> list[tuple[int, float, Key, Chord, bool]]:
|
|
@@ -1317,4 +1345,4 @@ C: ClefSign # value = <ClefSign.C: 2>
|
|
|
1317
1345
|
F: ClefSign # value = <ClefSign.F: 1>
|
|
1318
1346
|
G: ClefSign # value = <ClefSign.G: 0>
|
|
1319
1347
|
P: ClefSign # value = <ClefSign.P: 3>
|
|
1320
|
-
__version__: str = '"1.
|
|
1348
|
+
__version__: str = '"1.7.0"'
|
maialib/maiapy/other.pyi
CHANGED
|
@@ -1,20 +1,79 @@
|
|
|
1
1
|
import maialib.maiacore as mc
|
|
2
2
|
from enum import Enum
|
|
3
3
|
|
|
4
|
-
|
|
4
|
+
def setScoreEditorApp(executableFullPath: str) -> None:
|
|
5
|
+
'''Set the full path to the installed score editor app
|
|
5
6
|
|
|
6
|
-
|
|
7
|
+
Args:
|
|
8
|
+
executableFullPath (str): Score editor full path
|
|
9
|
+
Example 01: "C:/path/to/MuseScore"
|
|
10
|
+
Example 02: "/Applications/MuseScore 4.app/Contents/MacOS/mscore"
|
|
11
|
+
|
|
12
|
+
Examples of use:
|
|
13
|
+
|
|
14
|
+
>>> import maialib as ml
|
|
15
|
+
>>> # Example for Windows:
|
|
16
|
+
>>> ml.setScoreEditorApp("C:/path/to/MuseScore.exe")
|
|
17
|
+
>>> # Example for Mac OSX:
|
|
18
|
+
>>> ml.setScoreEditorApp("/Applications/MuseScore 4.app/Contents/MacOS/mscore")
|
|
19
|
+
'''
|
|
7
20
|
def getScoreEditorApp() -> str: ...
|
|
8
21
|
def openScore(score: mc.Score) -> None: ...
|
|
9
22
|
|
|
10
23
|
class SampleScore(Enum):
|
|
11
|
-
Bach_Cello_Suite_1
|
|
12
|
-
Beethoven_Symphony_5th
|
|
13
|
-
Chopin_Fantasie_Impromptu
|
|
14
|
-
Dvorak_Symphony_9_mov_4
|
|
15
|
-
Mahler_Symphony_8_Finale
|
|
16
|
-
Mozart_Requiem_Introitus
|
|
17
|
-
Strauss_Also_Sprach_Zarathustra
|
|
18
|
-
|
|
19
|
-
def getSampleScorePath(sampleEnum: SampleScore) -> str:
|
|
20
|
-
|
|
24
|
+
Bach_Cello_Suite_1: str
|
|
25
|
+
Beethoven_Symphony_5th: str
|
|
26
|
+
Chopin_Fantasie_Impromptu: str
|
|
27
|
+
Dvorak_Symphony_9_mov_4: str
|
|
28
|
+
Mahler_Symphony_8_Finale: str
|
|
29
|
+
Mozart_Requiem_Introitus: str
|
|
30
|
+
Strauss_Also_Sprach_Zarathustra: str
|
|
31
|
+
|
|
32
|
+
def getSampleScorePath(sampleEnum: SampleScore) -> str:
|
|
33
|
+
"""Get a maialib internal XML sample file
|
|
34
|
+
|
|
35
|
+
Args:
|
|
36
|
+
sampleEnum (SampleScore): Maialib SampleScore enum value
|
|
37
|
+
- Bach_Cello_Suite_1
|
|
38
|
+
- Beethoven_Symphony_5th
|
|
39
|
+
- Chopin_Fantasie_Impromptu
|
|
40
|
+
- Dvorak_Symphony_9_mov_4
|
|
41
|
+
- Mahler_Symphony_8_Finale
|
|
42
|
+
- Mozart_Requiem_Introitus
|
|
43
|
+
- Strauss_Also_Sprach_Zarathustra
|
|
44
|
+
|
|
45
|
+
Kwargs:
|
|
46
|
+
None
|
|
47
|
+
|
|
48
|
+
Returns:
|
|
49
|
+
A full file path (str) to the XML maialib internal sample score
|
|
50
|
+
|
|
51
|
+
Raises:
|
|
52
|
+
RuntimeError
|
|
53
|
+
|
|
54
|
+
Examples of use:
|
|
55
|
+
|
|
56
|
+
>>> import maialib as ml
|
|
57
|
+
>>> filePath = ml.getSampleScorePath(ml.SampleScore.Bach_Cello_Suite_1)
|
|
58
|
+
>>> score = ml.Score(filePath)
|
|
59
|
+
>>> score.info()
|
|
60
|
+
"""
|
|
61
|
+
def getXmlSamplesDirPath() -> str:
|
|
62
|
+
'''Get the maialib XML samples directory path
|
|
63
|
+
|
|
64
|
+
Kwargs:
|
|
65
|
+
None
|
|
66
|
+
|
|
67
|
+
Returns:
|
|
68
|
+
A full dir path (str) to the XML maialib internal samples score directory
|
|
69
|
+
|
|
70
|
+
Raises:
|
|
71
|
+
RuntimeError
|
|
72
|
+
|
|
73
|
+
Examples of use:
|
|
74
|
+
|
|
75
|
+
>>> import maialib as ml
|
|
76
|
+
>>> xmlDir = ml.getXmlSamplesDirPath()
|
|
77
|
+
>>> score = ml.Score(xmlDir + "Bach/cello_suite_1_violin.xml")
|
|
78
|
+
>>> score.info()
|
|
79
|
+
'''
|
maialib/maiapy/plots.pyi
CHANGED
|
@@ -2,9 +2,102 @@ import maialib.maiacore as mc
|
|
|
2
2
|
import pandas as pd
|
|
3
3
|
import plotly
|
|
4
4
|
|
|
5
|
-
|
|
5
|
+
def plotPartsActivity(score: mc.Score, **kwargs) -> tuple[plotly.graph_objs._figure.Figure, pd.DataFrame]:
|
|
6
|
+
'''Plots a timeline graph showing the musical activity of each score instrument
|
|
6
7
|
|
|
7
|
-
|
|
8
|
-
|
|
9
|
-
|
|
10
|
-
|
|
8
|
+
Args:
|
|
9
|
+
score (maialib.Score): A maialib Score object loaded with a valid MusicXML file
|
|
10
|
+
|
|
11
|
+
Kwargs:
|
|
12
|
+
measureStart (int): Start measure to plot
|
|
13
|
+
measureEnd (int): End measure to plot
|
|
14
|
+
partNames (list): A str list that contains the filtered desired score parts to plot
|
|
15
|
+
|
|
16
|
+
Returns:
|
|
17
|
+
A list: [Plotly Figure, The plot data as a Pandas Dataframe]
|
|
18
|
+
|
|
19
|
+
Raises:
|
|
20
|
+
RuntimeError, KeyError
|
|
21
|
+
|
|
22
|
+
Examples of use:
|
|
23
|
+
|
|
24
|
+
>>> plotPartsActivity(myScore)
|
|
25
|
+
>>> plotPartsActivity(myScore, measureStart=50)
|
|
26
|
+
>>> plotPartsActivity(myScore, measureStart=50, measureEnd=100)
|
|
27
|
+
>>> plotPartsActivity(myScore, measureStart=50, measureEnd=100, partNames=["Violin 1", "Cello"])
|
|
28
|
+
'''
|
|
29
|
+
def plotPianoRoll(score: mc.Score, **kwargs) -> tuple[plotly.graph_objs._figure.Figure, pd.DataFrame]:
|
|
30
|
+
'''Plots a piano roll graph showing the musical activity of each score instrument
|
|
31
|
+
|
|
32
|
+
Args:
|
|
33
|
+
score (maialib.Score): A maialib Score object loaded with a valid MusicXML file
|
|
34
|
+
|
|
35
|
+
Kwargs:
|
|
36
|
+
measureStart (int): Start measure to plot
|
|
37
|
+
measureEnd (int): End measure to plot
|
|
38
|
+
partNames (list): A str list that contains the filtered desired score parts to plot
|
|
39
|
+
|
|
40
|
+
Returns:
|
|
41
|
+
A list: [Plotly Figure, The plot data as a Pandas Dataframe]
|
|
42
|
+
|
|
43
|
+
Raises:
|
|
44
|
+
RuntimeError, KeyError
|
|
45
|
+
|
|
46
|
+
Examples of use:
|
|
47
|
+
|
|
48
|
+
>>> plotPianoRoll(myScore)
|
|
49
|
+
>>> plotPianoRoll(myScore, measureStart=50)
|
|
50
|
+
>>> plotPianoRoll(myScore, measureStart=50, measureEnd=100)
|
|
51
|
+
>>> plotPianoRoll(myScore, measureStart=50, measureEnd=100, partNames=["Violin 1", "Cello"])
|
|
52
|
+
'''
|
|
53
|
+
def plotScorePitchEnvelope(score: mc.Score, **kwargs) -> tuple[plotly.graph_objs._figure.Figure, pd.DataFrame]:
|
|
54
|
+
'''Plot a score pitch envelope
|
|
55
|
+
|
|
56
|
+
Args:
|
|
57
|
+
score (maialib.Score): A maialib Score object loaded with a valid MusicXML file
|
|
58
|
+
|
|
59
|
+
Kwargs:
|
|
60
|
+
numPoints: (int): Number of interpolated points
|
|
61
|
+
showHigher (bool): Plot the envelop upper limit
|
|
62
|
+
showLower (bool): Plot the envelop lower limit
|
|
63
|
+
showMean (bool): Plot the envelop mean curve
|
|
64
|
+
showMeanOfExtremes (bool): Plot the envelop mean of extremes curve
|
|
65
|
+
|
|
66
|
+
Returns:
|
|
67
|
+
A list: [Plotly Figure, The plot data as a Pandas Dataframe]
|
|
68
|
+
|
|
69
|
+
Raises:
|
|
70
|
+
RuntimeError, KeyError
|
|
71
|
+
|
|
72
|
+
Examples of use:
|
|
73
|
+
|
|
74
|
+
>>> myScore = ml.Score("/path/to/score.xml")
|
|
75
|
+
>>> plotScorePitchEnvelope(myScore)
|
|
76
|
+
>>> plotScorePitchEnvelope(myScore, numPoints=10)
|
|
77
|
+
>>> plotScorePitchEnvelope(myScore, showLower=False)
|
|
78
|
+
>>> plotScorePitchEnvelope(myScore, showMean=False, showMean=True)
|
|
79
|
+
'''
|
|
80
|
+
def plotChordsNumberOfNotes(score: mc.Score, **kwargs) -> tuple[plotly.graph_objs._figure.Figure, pd.DataFrame]:
|
|
81
|
+
'''Plot chord number of notes varying in time
|
|
82
|
+
|
|
83
|
+
Args:
|
|
84
|
+
score (maialib.Score): A maialib Score object loaded with a valid MusicXML file
|
|
85
|
+
|
|
86
|
+
Kwargs:
|
|
87
|
+
measureStart (int): Start measure to plot
|
|
88
|
+
measureEnd (int): End measure to plot
|
|
89
|
+
numPoints (int): Number of interpolated points
|
|
90
|
+
|
|
91
|
+
Returns:
|
|
92
|
+
A list: [Plotly Figure, The plot data as a Pandas Dataframe]
|
|
93
|
+
|
|
94
|
+
Raises:
|
|
95
|
+
RuntimeError, KeyError
|
|
96
|
+
|
|
97
|
+
Examples of use:
|
|
98
|
+
|
|
99
|
+
>>> myScore = ml.Score("/path/to/score.xml")
|
|
100
|
+
>>> plotChordsNumberOfNotes(myScore)
|
|
101
|
+
>>> plotChordsNumberOfNotes(myScore, numPoints=15)
|
|
102
|
+
>>> plotChordsNumberOfNotes(myScore, measureStart=10, measureEnd=20)
|
|
103
|
+
'''
|
|
@@ -4,8 +4,68 @@ import plotly.graph_objects as go
|
|
|
4
4
|
from maialib import maiacore as mc
|
|
5
5
|
from typing import Callable
|
|
6
6
|
|
|
7
|
-
|
|
7
|
+
def plotSetharesDissonanceCurve(fundamentalFreq: float = 440, numPartials: int = 6, ratioLowLimit: float = 1.0, ratioHighLimit: float = 2.3, ratioStepIncrement: float = 0.001, amplCallback: Callable[[list[float]], list[float]] | None = None) -> tuple[go.Figure, pd.DataFrame]:
|
|
8
|
+
"""
|
|
9
|
+
Compute the Sethares Dissonance Curve of a given base frequency
|
|
8
10
|
|
|
9
|
-
|
|
10
|
-
|
|
11
|
-
|
|
11
|
+
Return
|
|
12
|
+
A tuple that contains a Plotly figure, and the pair 'ratios' and 'dissonance' lists
|
|
13
|
+
"""
|
|
14
|
+
def plotScoreSetharesDissonance(score: mc.Score, plotType: str = 'line', lineShape: str = 'linear', numPartialsPerNote: int = 6, useMinModel: bool = True, amplCallback: Callable[[list[float]], list[float]] | None = None, dissCallback: Callable[[list[float]], float] | None = None, **kwargs) -> tuple[go.Figure, pd.DataFrame]:
|
|
15
|
+
'''Plot 2D line graph of the Sethares Dissonance over time
|
|
16
|
+
|
|
17
|
+
Args:
|
|
18
|
+
score (maialib.Score): A maialib Score object loaded with a valid MusicXML file
|
|
19
|
+
plotType (str): Can be \'line\' or \'scatter\'
|
|
20
|
+
lineShape (str): Can be \'linear\' or \'spline\'
|
|
21
|
+
numPartialsPerNote (int): Amount of spectral partials for each note
|
|
22
|
+
useMinModel (bool): Sethares dissonance values can be computed using the \'minimal amplitude\' model
|
|
23
|
+
or the \'product amplitudes\' model. The \'min\' model is a more recent approach
|
|
24
|
+
amplCallback: Custom user function callback to generate the amplitude of each spectrum partial
|
|
25
|
+
dissCallback: Custom user function callback to receive all paired partial dissonances and computes
|
|
26
|
+
a single total dissonance value output
|
|
27
|
+
Kwargs:
|
|
28
|
+
measureStart (int): Start measure to plot
|
|
29
|
+
measureEnd (int): End measure to plot
|
|
30
|
+
numPoints (int): Number of interpolated points
|
|
31
|
+
|
|
32
|
+
Returns:
|
|
33
|
+
A list: [Plotly Figure, The plot data as a Pandas Dataframe]
|
|
34
|
+
|
|
35
|
+
Raises:
|
|
36
|
+
RuntimeError, KeyError
|
|
37
|
+
|
|
38
|
+
Examples of use:
|
|
39
|
+
|
|
40
|
+
>>> myScore = ml.Score("/path/to/score.xml")
|
|
41
|
+
>>> ml.plotScoreSetharesDissonance(myScore)
|
|
42
|
+
>>> ml.plotScoreSetharesDissonance(myScore, numPoints=15)
|
|
43
|
+
>>> ml.plotScoreSetharesDissonance(myScore, measureStart=10, measureEnd=20)
|
|
44
|
+
'''
|
|
45
|
+
def plotChordDyadsSetharesDissonanceHeatmap(chord: mc.Chord, numPartialsPerNote: int = 6, useMinModel: bool = True, amplCallback: Callable[[list[float]], list[float]] | None = None, dissonanceThreshold: float = 0.1, dissonanceDecimalPoint: int = 2) -> tuple[plotly.graph_objs._figure.Figure, pd.DataFrame]:
|
|
46
|
+
'''Plot chord dyads Sethares dissonance heatmap
|
|
47
|
+
|
|
48
|
+
Args:
|
|
49
|
+
chord (maialib.Chord): A maialib Chord
|
|
50
|
+
|
|
51
|
+
Kwargs:
|
|
52
|
+
numPartialsPerNote (int): Amount of spectral partials for each note
|
|
53
|
+
useMinModel (bool): Sethares dissonance values can be computed using the \'minimal amplitude\' model
|
|
54
|
+
or the \'product amplitudes\' model. The \'min\' model is a more recent approach
|
|
55
|
+
amplCallback: Custom user function callback to generate the amplitude of each spectrum partial
|
|
56
|
+
dissonanceThreshold (float): Dissonance threshold to skip small dissonance values
|
|
57
|
+
dissonanceDecimalPoint (int): Round chord dissonance value in the plot title
|
|
58
|
+
|
|
59
|
+
Returns:
|
|
60
|
+
A list: [Plotly Figure, The plot data as a Pandas Dataframe]
|
|
61
|
+
|
|
62
|
+
Raises:
|
|
63
|
+
RuntimeError, KeyError
|
|
64
|
+
|
|
65
|
+
Examples of use:
|
|
66
|
+
|
|
67
|
+
>>> import maialib as ml
|
|
68
|
+
>>> myChord = ml.Chord(["C3", "E3", "G3"])
|
|
69
|
+
>>> fig, df = plotChordDyadsSetharesDissonanceHeatmap(myChord)
|
|
70
|
+
>>> fig.show()
|
|
71
|
+
'''
|
|
@@ -1,28 +1,28 @@
|
|
|
1
|
-
maialib.
|
|
2
|
-
maialib
|
|
3
|
-
maialib-1.
|
|
4
|
-
maialib-1.
|
|
5
|
-
maialib-1.
|
|
6
|
-
maialib-1.6.1.dist-info/LICENSE.txt,sha256=ixuiBLtpoK3iv89l7ylKkg9rs2GzF9ukPH7ynZYzK5s,35148
|
|
7
|
-
maialib-1.6.1.dist-info/METADATA,sha256=dnJv1NuCDKbjtn4NrsOrV78tXnuqADoSHmHknU8tUr4,6926
|
|
8
|
-
maialib/__init__.py,sha256=qiIEL1ZDvpDK0bkGUdZRib3bG973EtKQDFYPFfvJKQA,122
|
|
1
|
+
maialib-1.7.0.dist-info/top_level.txt,sha256=sZWQaa-Up2ba00WpAxBhOLKM6qQYTpUKJMXgSE0Nc48,17
|
|
2
|
+
maialib-1.7.0.dist-info/RECORD,,
|
|
3
|
+
maialib-1.7.0.dist-info/LICENSE.txt,sha256=ixuiBLtpoK3iv89l7ylKkg9rs2GzF9ukPH7ynZYzK5s,35148
|
|
4
|
+
maialib-1.7.0.dist-info/METADATA,sha256=jPb7F1yOnWz2k9h003DCWUNgvtV5ojabZJiVL0VM-go,6926
|
|
5
|
+
maialib-1.7.0.dist-info/WHEEL,sha256=z9pRu9iuo6pg7rkRiXSjLaWIdpFOYscQWpXbJJogsTM,110
|
|
9
6
|
maialib/setup.py,sha256=1Cbv0DfEUNK1EQHb64-1B0rwbRrsTSnJBY8fVn8gtbU,2168
|
|
10
|
-
maialib/
|
|
11
|
-
maialib/
|
|
12
|
-
maialib/
|
|
13
|
-
maialib/
|
|
7
|
+
maialib/__init__.py,sha256=qiIEL1ZDvpDK0bkGUdZRib3bG973EtKQDFYPFfvJKQA,122
|
|
8
|
+
maialib/maiacore/maiacore.pyi,sha256=ilYSbYhYQI7Yi-x8h-VTlqLUIQNC1uV7y_NurK6jQLY,44977
|
|
9
|
+
maialib/maiacore/maiacore.cpython-310-i386-linux-gnu.so,sha256=_EyN96tWZFqbIxHB2-2PRIKzVYkYcUF8R-Dlr7K1j2E,5340173
|
|
10
|
+
maialib/maiacore/__init__.py,sha256=IW7E0LuzAttsn0b37SEthCA0LKuzSgkepSpq8DWExYQ,77
|
|
11
|
+
maialib/maiacore/__init__.pyi,sha256=cJfflEKHJ6BPUTlDQt95xZmi2N3zwHJkHEXy27fBd5c,1282
|
|
12
|
+
maialib/maiapy/sethares_dissonance.pyi,sha256=O8D_cYRPCE1K5Zw54ckg3I5frULcBGgs_di_bTOpuBU,3609
|
|
13
|
+
maialib/maiapy/plots.py,sha256=laAt68-IiZ4vNLFPKcGCf4IcMDIIZ1uavJpROrS8tqs,23153
|
|
14
|
+
maialib/maiapy/__init__.py,sha256=L8YtZYJMw_9TrdejcKs2c5xTbu5WMRwlHhKz6Qzulf8,77
|
|
15
|
+
maialib/maiapy/sethares_dissonance.py,sha256=uRQLTQN55dk74hIFpzu9RlTWP0ZhRpVT3yTLI-su1ww,12830
|
|
16
|
+
maialib/maiapy/other.py,sha256=5o2zXcm1quM-9jfUhzzzuKrj2qTBaNheA6Z05Ux9H_g,4042
|
|
17
|
+
maialib/maiapy/other.pyi,sha256=jEmAc-MDc3iMA2-5hp41RLgNrfBQRMvq-sF2_pexhbo,2163
|
|
18
|
+
maialib/maiapy/__init__.pyi,sha256=L8YtZYJMw_9TrdejcKs2c5xTbu5WMRwlHhKz6Qzulf8,77
|
|
19
|
+
maialib/maiapy/plots.pyi,sha256=nRNUQ9h9kjJHTdbQt4eXv933MOx7TIztIg-inThglB4,3620
|
|
14
20
|
maialib/xml-scores-examples/Chopin_Fantasie_Impromptu.mxl,sha256=HkouQ_4bI6XDoGmzJITuU81CzQZE2lQjwl6WNlfZmJA,35727
|
|
21
|
+
maialib/xml-scores-examples/Bach_Cello_Suite_1.mxl,sha256=0XGNlcW8o0W7kkeG8j2V_M4eggdOnrxvvvCkpf6x_z4,29622
|
|
15
22
|
maialib/xml-scores-examples/Dvorak_Symphony_9_mov_4.mxl,sha256=s7FGUEmFmgcIdmkZ-bv4sOGGj5HYKc2nc760V79DMtM,261438
|
|
23
|
+
maialib/xml-scores-examples/Mahler_Symphony_8_Finale.mxl,sha256=F2-QBKNYjBv_sWT-z4LWi1rX84-P3msxtl-g6joA2FQ,229034
|
|
24
|
+
maialib/xml-scores-examples/Mozart_Requiem_Introitus.mxl,sha256=_wc4hMaPhtgocUoL94uVzfVN3TGb08z8Xa2BL4SHfgA,91112
|
|
25
|
+
maialib/xml-scores-examples/Strauss_Also_Sprach_Zarathustra.mxl,sha256=nOQra05RHHDe_dXFs5WBJG2l9R1KQk64urV7lWYC2vw,18863
|
|
16
26
|
maialib/xml-scores-examples/Beethoven_Symphony_5_mov_1.xml,sha256=iZ2uqqHWMkDtmQVKovT-H_-zZp1SixASi1R7L3TmuOI,4775525
|
|
17
|
-
maialib/
|
|
18
|
-
maialib/
|
|
19
|
-
maialib/maiapy/sethares_dissonance.pyi,sha256=DMZtrHTGSAaJwcBWX_G-sHF15_eETp1OeRr2L5vwdF0,1171
|
|
20
|
-
maialib/maiapy/other.py,sha256=5o2zXcm1quM-9jfUhzzzuKrj2qTBaNheA6Z05Ux9H_g,4042
|
|
21
|
-
maialib/maiapy/plots.py,sha256=laAt68-IiZ4vNLFPKcGCf4IcMDIIZ1uavJpROrS8tqs,23153
|
|
22
|
-
maialib/maiapy/plots.pyi,sha256=7zchTew8-uvIvo0TmJXRd_SRlIX9w1AyOSplbL5YGNM,619
|
|
23
|
-
maialib/maiapy/sethares_dissonance.py,sha256=uRQLTQN55dk74hIFpzu9RlTWP0ZhRpVT3yTLI-su1ww,12830
|
|
24
|
-
maialib/maiapy/__init__.py,sha256=L8YtZYJMw_9TrdejcKs2c5xTbu5WMRwlHhKz6Qzulf8,77
|
|
25
|
-
maialib/maiacore/__init__.pyi,sha256=cJfflEKHJ6BPUTlDQt95xZmi2N3zwHJkHEXy27fBd5c,1282
|
|
26
|
-
maialib/maiacore/__init__.py,sha256=IW7E0LuzAttsn0b37SEthCA0LKuzSgkepSpq8DWExYQ,77
|
|
27
|
-
maialib/maiacore/maiacore.pyi,sha256=IoVUJYogP4VGrxvj3RcCe-AXMQ2MHWhP0x-bPVQsMrY,43395
|
|
28
|
-
maialib/maiacore/maiacore.cpython-310-i386-linux-gnu.so,sha256=LpsL8T_O98giuN-S10zcdRtHQHJZTxBVbTY6tTywjlA,5282253
|
|
27
|
+
maialib.libs/libstdc++-d2a021ba.so.6.0.32,sha256=1zr_iwGwEBe95gyKdgiw7C4Y1RR9ijV40j66rk4elzg,3537349
|
|
28
|
+
maialib.libs/libgcc_s-f3fb5a36.so.1,sha256=SrjjCCuY7RHj-T9JLrY9XFMgCCpYD9Qmezr4uoJGVEQ,168321
|
|
File without changes
|
|
File without changes
|