magic-pdf 1.2.1__py3-none-any.whl → 1.3.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- magic_pdf/data/batch_build_dataset.py +156 -0
- magic_pdf/data/dataset.py +44 -24
- magic_pdf/data/utils.py +108 -9
- magic_pdf/dict2md/ocr_mkcontent.py +4 -3
- magic_pdf/libs/pdf_image_tools.py +11 -6
- magic_pdf/libs/performance_stats.py +12 -1
- magic_pdf/libs/version.py +1 -1
- magic_pdf/model/batch_analyze.py +175 -201
- magic_pdf/model/doc_analyze_by_custom_model.py +137 -92
- magic_pdf/model/pdf_extract_kit.py +5 -38
- magic_pdf/model/sub_modules/language_detection/utils.py +2 -4
- magic_pdf/model/sub_modules/language_detection/yolov11/YOLOv11.py +24 -19
- magic_pdf/model/sub_modules/layout/doclayout_yolo/DocLayoutYOLO.py +3 -1
- magic_pdf/model/sub_modules/mfd/yolov8/YOLOv8.py +3 -1
- magic_pdf/model/sub_modules/mfr/unimernet/Unimernet.py +31 -102
- magic_pdf/model/sub_modules/mfr/unimernet/unimernet_hf/__init__.py +13 -0
- magic_pdf/model/sub_modules/mfr/unimernet/unimernet_hf/modeling_unimernet.py +189 -0
- magic_pdf/model/sub_modules/mfr/unimernet/unimernet_hf/unimer_mbart/__init__.py +8 -0
- magic_pdf/model/sub_modules/mfr/unimernet/unimernet_hf/unimer_mbart/configuration_unimer_mbart.py +163 -0
- magic_pdf/model/sub_modules/mfr/unimernet/unimernet_hf/unimer_mbart/modeling_unimer_mbart.py +2351 -0
- magic_pdf/model/sub_modules/mfr/unimernet/unimernet_hf/unimer_swin/__init__.py +9 -0
- magic_pdf/model/sub_modules/mfr/unimernet/unimernet_hf/unimer_swin/configuration_unimer_swin.py +132 -0
- magic_pdf/model/sub_modules/mfr/unimernet/unimernet_hf/unimer_swin/image_processing_unimer_swin.py +132 -0
- magic_pdf/model/sub_modules/mfr/unimernet/unimernet_hf/unimer_swin/modeling_unimer_swin.py +1084 -0
- magic_pdf/model/sub_modules/model_init.py +50 -37
- magic_pdf/model/sub_modules/model_utils.py +17 -11
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/__init__.py +1 -0
- magic_pdf/model/sub_modules/ocr/{paddleocr → paddleocr2pytorch}/ocr_utils.py +102 -97
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/pytorch_paddle.py +193 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/pytorchocr/base_ocr_v20.py +39 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/pytorchocr/data/__init__.py +8 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/pytorchocr/data/imaug/__init__.py +48 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/pytorchocr/data/imaug/operators.py +418 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/pytorchocr/modeling/architectures/__init__.py +25 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/pytorchocr/modeling/architectures/base_model.py +105 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/pytorchocr/modeling/backbones/__init__.py +62 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/pytorchocr/modeling/backbones/det_mobilenet_v3.py +269 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/pytorchocr/modeling/backbones/rec_hgnet.py +290 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/pytorchocr/modeling/backbones/rec_lcnetv3.py +516 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/pytorchocr/modeling/backbones/rec_mobilenet_v3.py +136 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/pytorchocr/modeling/backbones/rec_mv1_enhance.py +234 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/pytorchocr/modeling/backbones/rec_svtrnet.py +638 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/pytorchocr/modeling/common.py +76 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/pytorchocr/modeling/heads/__init__.py +43 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/pytorchocr/modeling/heads/cls_head.py +23 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/pytorchocr/modeling/heads/det_db_head.py +109 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/pytorchocr/modeling/heads/rec_ctc_head.py +54 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/pytorchocr/modeling/heads/rec_multi_head.py +58 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/pytorchocr/modeling/necks/__init__.py +29 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/pytorchocr/modeling/necks/db_fpn.py +456 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/pytorchocr/modeling/necks/intracl.py +117 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/pytorchocr/modeling/necks/rnn.py +228 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/pytorchocr/postprocess/__init__.py +33 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/pytorchocr/postprocess/cls_postprocess.py +20 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/pytorchocr/postprocess/db_postprocess.py +179 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/pytorchocr/postprocess/rec_postprocess.py +690 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/pytorchocr/utils/__init__.py +0 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/pytorchocr/utils/resources/arch_config.yaml +383 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/pytorchocr/utils/resources/dict/arabic_dict.txt +162 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/pytorchocr/utils/resources/dict/chinese_cht_dict.txt +8421 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/pytorchocr/utils/resources/dict/cyrillic_dict.txt +163 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/pytorchocr/utils/resources/dict/devanagari_dict.txt +167 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/pytorchocr/utils/resources/dict/en_dict.txt +95 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/pytorchocr/utils/resources/dict/japan_dict.txt +4399 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/pytorchocr/utils/resources/dict/ka_dict.txt +153 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/pytorchocr/utils/resources/dict/korean_dict.txt +3688 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/pytorchocr/utils/resources/dict/latin_dict.txt +185 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/pytorchocr/utils/resources/dict/ppocr_keys_v1.txt +6623 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/pytorchocr/utils/resources/dict/ta_dict.txt +128 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/pytorchocr/utils/resources/dict/te_dict.txt +151 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/pytorchocr/utils/resources/models_config.yml +49 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/tools/__init__.py +1 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/tools/infer/__init__.py +1 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/tools/infer/predict_cls.py +106 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/tools/infer/predict_det.py +217 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/tools/infer/predict_rec.py +440 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/tools/infer/predict_system.py +104 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/tools/infer/pytorchocr_utility.py +227 -0
- magic_pdf/model/sub_modules/table/rapidtable/rapid_table.py +10 -18
- magic_pdf/pdf_parse_union_core_v2.py +112 -74
- magic_pdf/post_proc/para_split_v3.py +16 -13
- magic_pdf/pre_proc/ocr_dict_merge.py +9 -1
- magic_pdf/pre_proc/ocr_span_list_modify.py +51 -0
- magic_pdf/resources/model_config/model_configs.yaml +1 -1
- magic_pdf/tools/cli.py +30 -12
- magic_pdf/tools/common.py +90 -12
- {magic_pdf-1.2.1.dist-info → magic_pdf-1.3.0.dist-info}/METADATA +51 -41
- magic_pdf-1.3.0.dist-info/RECORD +202 -0
- magic_pdf/model/sub_modules/ocr/paddleocr/ppocr_273_mod.py +0 -204
- magic_pdf/model/sub_modules/ocr/paddleocr/ppocr_291_mod.py +0 -213
- magic_pdf/model/sub_modules/table/structeqtable/struct_eqtable.py +0 -37
- magic_pdf/model/sub_modules/table/tablemaster/tablemaster_paddle.py +0 -71
- magic_pdf/resources/model_config/UniMERNet/demo.yaml +0 -46
- magic_pdf/resources/model_config/layoutlmv3/layoutlmv3_base_inference.yaml +0 -351
- magic_pdf-1.2.1.dist-info/RECORD +0 -147
- /magic_pdf/model/sub_modules/{ocr/paddleocr/__init__.py → mfr/unimernet/unimernet_hf/unimer_mbart/tokenization_unimer_mbart.py} +0 -0
- /magic_pdf/model/sub_modules/{table/structeqtable → ocr/paddleocr2pytorch/pytorchocr}/__init__.py +0 -0
- /magic_pdf/model/sub_modules/{table/tablemaster → ocr/paddleocr2pytorch/pytorchocr/modeling}/__init__.py +0 -0
- {magic_pdf-1.2.1.dist-info → magic_pdf-1.3.0.dist-info}/LICENSE.md +0 -0
- {magic_pdf-1.2.1.dist-info → magic_pdf-1.3.0.dist-info}/WHEEL +0 -0
- {magic_pdf-1.2.1.dist-info → magic_pdf-1.3.0.dist-info}/entry_points.txt +0 -0
- {magic_pdf-1.2.1.dist-info → magic_pdf-1.3.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,1084 @@
|
|
1
|
+
# coding=utf-8
|
2
|
+
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
|
3
|
+
#
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5
|
+
# you may not use this file except in compliance with the License.
|
6
|
+
# You may obtain a copy of the License at
|
7
|
+
#
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9
|
+
#
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13
|
+
# See the License for the specific language governing permissions and
|
14
|
+
# limitations under the License.
|
15
|
+
"""PyTorch UnimerSwin Transformer model.
|
16
|
+
|
17
|
+
This implementation is identical to a regular Swin Transformer, without final layer norm on top of the final hidden
|
18
|
+
states."""
|
19
|
+
|
20
|
+
import collections.abc
|
21
|
+
import math
|
22
|
+
from dataclasses import dataclass
|
23
|
+
from typing import Optional, Tuple, Union
|
24
|
+
|
25
|
+
import torch
|
26
|
+
import torch.utils.checkpoint
|
27
|
+
from torch import nn
|
28
|
+
|
29
|
+
from transformers.activations import ACT2FN
|
30
|
+
from transformers.modeling_utils import PreTrainedModel
|
31
|
+
from transformers.pytorch_utils import find_pruneable_heads_and_indices, meshgrid, prune_linear_layer
|
32
|
+
from transformers.utils import (
|
33
|
+
ModelOutput,
|
34
|
+
add_code_sample_docstrings,
|
35
|
+
add_start_docstrings,
|
36
|
+
add_start_docstrings_to_model_forward,
|
37
|
+
logging,
|
38
|
+
torch_int,
|
39
|
+
)
|
40
|
+
from .configuration_unimer_swin import UnimerSwinConfig
|
41
|
+
|
42
|
+
|
43
|
+
logger = logging.get_logger(__name__)
|
44
|
+
|
45
|
+
# General docstring
|
46
|
+
_CONFIG_FOR_DOC = "UnimerSwinConfig"
|
47
|
+
|
48
|
+
# Base docstring
|
49
|
+
_CHECKPOINT_FOR_DOC = "https://huggingface.co/naver-clova-ix/donut-base"
|
50
|
+
_EXPECTED_OUTPUT_SHAPE = [1, 49, 768]
|
51
|
+
|
52
|
+
|
53
|
+
@dataclass
|
54
|
+
# Copied from transformers.models.swin.modeling_swin.SwinEncoderOutput with Swin->UnimerSwin
|
55
|
+
class UnimerSwinEncoderOutput(ModelOutput):
|
56
|
+
"""
|
57
|
+
UnimerSwin encoder's outputs, with potential hidden states and attentions.
|
58
|
+
|
59
|
+
Args:
|
60
|
+
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
61
|
+
Sequence of hidden-states at the output of the last layer of the model.
|
62
|
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
63
|
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
|
64
|
+
shape `(batch_size, sequence_length, hidden_size)`.
|
65
|
+
|
66
|
+
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
67
|
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
68
|
+
Tuple of `torch.FloatTensor` (one for each stage) of shape `(batch_size, num_heads, sequence_length,
|
69
|
+
sequence_length)`.
|
70
|
+
|
71
|
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
72
|
+
heads.
|
73
|
+
reshaped_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
74
|
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
|
75
|
+
shape `(batch_size, hidden_size, height, width)`.
|
76
|
+
|
77
|
+
Hidden-states of the model at the output of each layer plus the initial embedding outputs reshaped to
|
78
|
+
include the spatial dimensions.
|
79
|
+
"""
|
80
|
+
|
81
|
+
last_hidden_state: torch.FloatTensor = None
|
82
|
+
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
|
83
|
+
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
|
84
|
+
reshaped_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
|
85
|
+
|
86
|
+
|
87
|
+
@dataclass
|
88
|
+
# Copied from transformers.models.swin.modeling_swin.SwinModelOutput with Swin->UnimerSwin
|
89
|
+
class UnimerSwinModelOutput(ModelOutput):
|
90
|
+
"""
|
91
|
+
UnimerSwin model's outputs that also contains a pooling of the last hidden states.
|
92
|
+
|
93
|
+
Args:
|
94
|
+
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
95
|
+
Sequence of hidden-states at the output of the last layer of the model.
|
96
|
+
pooler_output (`torch.FloatTensor` of shape `(batch_size, hidden_size)`, *optional*, returned when `add_pooling_layer=True` is passed):
|
97
|
+
Average pooling of the last layer hidden-state.
|
98
|
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
99
|
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
|
100
|
+
shape `(batch_size, sequence_length, hidden_size)`.
|
101
|
+
|
102
|
+
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
103
|
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
104
|
+
Tuple of `torch.FloatTensor` (one for each stage) of shape `(batch_size, num_heads, sequence_length,
|
105
|
+
sequence_length)`.
|
106
|
+
|
107
|
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
108
|
+
heads.
|
109
|
+
reshaped_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
110
|
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
|
111
|
+
shape `(batch_size, hidden_size, height, width)`.
|
112
|
+
|
113
|
+
Hidden-states of the model at the output of each layer plus the initial embedding outputs reshaped to
|
114
|
+
include the spatial dimensions.
|
115
|
+
"""
|
116
|
+
|
117
|
+
last_hidden_state: torch.FloatTensor = None
|
118
|
+
pooler_output: Optional[torch.FloatTensor] = None
|
119
|
+
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
|
120
|
+
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
|
121
|
+
reshaped_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
|
122
|
+
|
123
|
+
|
124
|
+
# Copied from transformers.models.swin.modeling_swin.window_partition
|
125
|
+
def window_partition(input_feature, window_size):
|
126
|
+
"""
|
127
|
+
Partitions the given input into windows.
|
128
|
+
"""
|
129
|
+
batch_size, height, width, num_channels = input_feature.shape
|
130
|
+
input_feature = input_feature.view(
|
131
|
+
batch_size, height // window_size, window_size, width // window_size, window_size, num_channels
|
132
|
+
)
|
133
|
+
windows = input_feature.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, num_channels)
|
134
|
+
return windows
|
135
|
+
|
136
|
+
|
137
|
+
# Copied from transformers.models.swin.modeling_swin.window_reverse
|
138
|
+
def window_reverse(windows, window_size, height, width):
|
139
|
+
"""
|
140
|
+
Merges windows to produce higher resolution features.
|
141
|
+
"""
|
142
|
+
num_channels = windows.shape[-1]
|
143
|
+
windows = windows.view(-1, height // window_size, width // window_size, window_size, window_size, num_channels)
|
144
|
+
windows = windows.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, height, width, num_channels)
|
145
|
+
return windows
|
146
|
+
|
147
|
+
|
148
|
+
# Copied from transformers.models.swin.modeling_swin.SwinEmbeddings with Swin->UnimerSwin
|
149
|
+
class UnimerSwinEmbeddings(nn.Module):
|
150
|
+
"""
|
151
|
+
Construct the patch and position embeddings. Optionally, also the mask token.
|
152
|
+
"""
|
153
|
+
|
154
|
+
def __init__(self, config, use_mask_token=False):
|
155
|
+
super().__init__()
|
156
|
+
|
157
|
+
self.patch_embeddings = UnimerSwinPatchEmbeddings(config)
|
158
|
+
num_patches = self.patch_embeddings.num_patches
|
159
|
+
self.patch_grid = self.patch_embeddings.grid_size
|
160
|
+
self.mask_token = nn.Parameter(torch.zeros(1, 1, config.embed_dim)) if use_mask_token else None
|
161
|
+
|
162
|
+
if config.use_absolute_embeddings:
|
163
|
+
self.position_embeddings = nn.Parameter(torch.zeros(1, num_patches + 1, config.embed_dim))
|
164
|
+
else:
|
165
|
+
self.position_embeddings = None
|
166
|
+
|
167
|
+
### code added. ###
|
168
|
+
if config.use_2d_embeddings:
|
169
|
+
self.row_embeddings = nn.Parameter(torch.zeros(1, self.patch_grid[0] + 1, config.embed_dim))
|
170
|
+
self.column_embeddings = nn.Parameter(torch.zeros(1, self.patch_grid[1] + 1, config.embed_dim))
|
171
|
+
else:
|
172
|
+
self.row_embeddings = None
|
173
|
+
self.column_embeddings = None
|
174
|
+
######
|
175
|
+
|
176
|
+
self.norm = nn.LayerNorm(config.embed_dim)
|
177
|
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
178
|
+
|
179
|
+
def interpolate_pos_encoding(self, embeddings: torch.Tensor, height: int, width: int) -> torch.Tensor:
|
180
|
+
"""
|
181
|
+
This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher
|
182
|
+
resolution images.
|
183
|
+
|
184
|
+
Source:
|
185
|
+
https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174
|
186
|
+
"""
|
187
|
+
|
188
|
+
num_patches = embeddings.shape[1] - 1
|
189
|
+
num_positions = self.position_embeddings.shape[1] - 1
|
190
|
+
if num_patches == num_positions and height == width:
|
191
|
+
return self.position_embeddings
|
192
|
+
class_pos_embed = self.position_embeddings[:, 0]
|
193
|
+
patch_pos_embed = self.position_embeddings[:, 1:]
|
194
|
+
dim = embeddings.shape[-1]
|
195
|
+
h0 = height // self.config.patch_size
|
196
|
+
w0 = width // self.config.patch_size
|
197
|
+
# we add a small number to avoid floating point error in the interpolation
|
198
|
+
# see discussion at https://github.com/facebookresearch/dino/issues/8
|
199
|
+
h0, w0 = h0 + 0.1, w0 + 0.1
|
200
|
+
patch_pos_embed = patch_pos_embed.reshape(1, int(math.sqrt(num_positions)), int(math.sqrt(num_positions)), dim)
|
201
|
+
patch_pos_embed = patch_pos_embed.permute(0, 3, 1, 2)
|
202
|
+
patch_pos_embed = nn.functional.interpolate(
|
203
|
+
patch_pos_embed,
|
204
|
+
scale_factor=(h0 / math.sqrt(num_positions), w0 / math.sqrt(num_positions)),
|
205
|
+
mode="bicubic",
|
206
|
+
align_corners=False,
|
207
|
+
)
|
208
|
+
patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
|
209
|
+
return torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1)
|
210
|
+
|
211
|
+
def forward(
|
212
|
+
self,
|
213
|
+
pixel_values: Optional[torch.FloatTensor],
|
214
|
+
bool_masked_pos: Optional[torch.BoolTensor] = None,
|
215
|
+
interpolate_pos_encoding: bool = False,
|
216
|
+
) -> Tuple[torch.Tensor]:
|
217
|
+
_, num_channels, height, width = pixel_values.shape
|
218
|
+
embeddings, output_dimensions = self.patch_embeddings(pixel_values)
|
219
|
+
embeddings = self.norm(embeddings)
|
220
|
+
batch_size, seq_len, _ = embeddings.size()
|
221
|
+
|
222
|
+
if bool_masked_pos is not None:
|
223
|
+
mask_tokens = self.mask_token.expand(batch_size, seq_len, -1)
|
224
|
+
# replace the masked visual tokens by mask_tokens
|
225
|
+
mask = bool_masked_pos.unsqueeze(-1).type_as(mask_tokens)
|
226
|
+
embeddings = embeddings * (1.0 - mask) + mask_tokens * mask
|
227
|
+
|
228
|
+
if self.position_embeddings is not None:
|
229
|
+
# if interpolate_pos_encoding:
|
230
|
+
# embeddings = embeddings + self.interpolate_pos_encoding(embeddings, height, width)
|
231
|
+
# else:
|
232
|
+
# embeddings = embeddings + self.position_embeddings
|
233
|
+
embeddings = embeddings + self.position_embeddings[:, :seq_len, :] # code edited.
|
234
|
+
|
235
|
+
### code added. ###
|
236
|
+
if self.row_embeddings is not None and self.column_embeddings is not None:
|
237
|
+
# Repeat the x position embeddings across the y axis like 0, 1, 2, 3, 0, 1, 2, 3, ...
|
238
|
+
row_embeddings = self.row_embeddings[:, :output_dimensions[0], :].repeat_interleave(output_dimensions[1], dim=1)
|
239
|
+
column_embeddings = self.column_embeddings[:, :output_dimensions[1], :].repeat(1, output_dimensions[0], 1)
|
240
|
+
embeddings = embeddings + row_embeddings + column_embeddings
|
241
|
+
######
|
242
|
+
|
243
|
+
embeddings = self.dropout(embeddings)
|
244
|
+
|
245
|
+
return embeddings, output_dimensions
|
246
|
+
|
247
|
+
class StemLayer(nn.Module):
|
248
|
+
r""" Stem layer of InternImage
|
249
|
+
Args:
|
250
|
+
in_chans (int): number of input channels
|
251
|
+
out_chans (int): number of output channels
|
252
|
+
act_layer (str): activation layer
|
253
|
+
norm_layer (str): normalization layer
|
254
|
+
"""
|
255
|
+
|
256
|
+
def __init__(self, in_chans=3, out_chans=96, act_layer=nn.GELU, norm_layer='BN'):
|
257
|
+
super().__init__()
|
258
|
+
self.conv1 = nn.Conv2d(in_chans, out_chans // 2, kernel_size=3, stride=2, padding=1)
|
259
|
+
self.norm1 = self.build_norm_layer(out_chans // 2, norm_layer)
|
260
|
+
self.act = act_layer()
|
261
|
+
self.conv2 = nn.Conv2d(out_chans // 2, out_chans, kernel_size=3, stride=2, padding=1)
|
262
|
+
|
263
|
+
def build_norm_layer(self, dim, norm_layer):
|
264
|
+
layers = []
|
265
|
+
if norm_layer == 'BN':
|
266
|
+
layers.append(nn.BatchNorm2d(dim))
|
267
|
+
else:
|
268
|
+
raise NotImplementedError(f'build_norm_layer does not support {norm_layer}')
|
269
|
+
return nn.Sequential(*layers)
|
270
|
+
|
271
|
+
def forward(self, x):
|
272
|
+
x = self.conv1(x)
|
273
|
+
x = self.norm1(x)
|
274
|
+
x = self.act(x)
|
275
|
+
x = self.conv2(x)
|
276
|
+
return x
|
277
|
+
|
278
|
+
# Copied from transformers.models.swin.modeling_swin.SwinPatchEmbeddings with Swin->UnimerSwin
|
279
|
+
class UnimerSwinPatchEmbeddings(nn.Module):
|
280
|
+
"""
|
281
|
+
This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial
|
282
|
+
`hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a
|
283
|
+
Transformer.
|
284
|
+
"""
|
285
|
+
|
286
|
+
def __init__(self, config):
|
287
|
+
super().__init__()
|
288
|
+
image_size, patch_size = config.image_size, config.patch_size
|
289
|
+
num_channels, hidden_size = config.num_channels, config.embed_dim
|
290
|
+
image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size)
|
291
|
+
patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size)
|
292
|
+
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
|
293
|
+
self.image_size = image_size
|
294
|
+
self.patch_size = patch_size
|
295
|
+
self.num_channels = num_channels
|
296
|
+
self.num_patches = num_patches
|
297
|
+
self.grid_size = (image_size[0] // patch_size[0], image_size[1] // patch_size[1])
|
298
|
+
|
299
|
+
### code edited. ###
|
300
|
+
# self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=patch_size, stride=patch_size)
|
301
|
+
self.projection = StemLayer(in_chans=num_channels, out_chans=hidden_size)
|
302
|
+
###
|
303
|
+
|
304
|
+
def maybe_pad(self, pixel_values, height, width):
|
305
|
+
if width % self.patch_size[1] != 0:
|
306
|
+
pad_values = (0, self.patch_size[1] - width % self.patch_size[1])
|
307
|
+
pixel_values = nn.functional.pad(pixel_values, pad_values)
|
308
|
+
if height % self.patch_size[0] != 0:
|
309
|
+
pad_values = (0, 0, 0, self.patch_size[0] - height % self.patch_size[0])
|
310
|
+
pixel_values = nn.functional.pad(pixel_values, pad_values)
|
311
|
+
return pixel_values
|
312
|
+
|
313
|
+
def forward(self, pixel_values: Optional[torch.FloatTensor]) -> Tuple[torch.Tensor, Tuple[int]]:
|
314
|
+
_, num_channels, height, width = pixel_values.shape
|
315
|
+
# pad the input to be divisible by self.patch_size, if needed
|
316
|
+
pixel_values = self.maybe_pad(pixel_values, height, width)
|
317
|
+
embeddings = self.projection(pixel_values)
|
318
|
+
_, _, height, width = embeddings.shape
|
319
|
+
output_dimensions = (height, width)
|
320
|
+
embeddings = embeddings.flatten(2).transpose(1, 2)
|
321
|
+
|
322
|
+
return embeddings, output_dimensions
|
323
|
+
|
324
|
+
|
325
|
+
# Copied from transformers.models.swin.modeling_swin.SwinPatchMerging
|
326
|
+
class UnimerSwinPatchMerging(nn.Module):
|
327
|
+
"""
|
328
|
+
Patch Merging Layer.
|
329
|
+
|
330
|
+
Args:
|
331
|
+
input_resolution (`Tuple[int]`):
|
332
|
+
Resolution of input feature.
|
333
|
+
dim (`int`):
|
334
|
+
Number of input channels.
|
335
|
+
norm_layer (`nn.Module`, *optional*, defaults to `nn.LayerNorm`):
|
336
|
+
Normalization layer class.
|
337
|
+
"""
|
338
|
+
|
339
|
+
def __init__(self, input_resolution: Tuple[int], dim: int, norm_layer: nn.Module = nn.LayerNorm) -> None:
|
340
|
+
super().__init__()
|
341
|
+
self.input_resolution = input_resolution
|
342
|
+
self.dim = dim
|
343
|
+
self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
|
344
|
+
self.norm = norm_layer(4 * dim)
|
345
|
+
|
346
|
+
def maybe_pad(self, input_feature, height, width):
|
347
|
+
should_pad = (height % 2 == 1) or (width % 2 == 1)
|
348
|
+
if should_pad:
|
349
|
+
pad_values = (0, 0, 0, width % 2, 0, height % 2)
|
350
|
+
input_feature = nn.functional.pad(input_feature, pad_values)
|
351
|
+
|
352
|
+
return input_feature
|
353
|
+
|
354
|
+
def forward(self, input_feature: torch.Tensor, input_dimensions: Tuple[int, int]) -> torch.Tensor:
|
355
|
+
height, width = input_dimensions
|
356
|
+
# `dim` is height * width
|
357
|
+
batch_size, dim, num_channels = input_feature.shape
|
358
|
+
|
359
|
+
input_feature = input_feature.view(batch_size, height, width, num_channels)
|
360
|
+
# pad input to be disible by width and height, if needed
|
361
|
+
input_feature = self.maybe_pad(input_feature, height, width)
|
362
|
+
# [batch_size, height/2, width/2, num_channels]
|
363
|
+
input_feature_0 = input_feature[:, 0::2, 0::2, :]
|
364
|
+
# [batch_size, height/2, width/2, num_channels]
|
365
|
+
input_feature_1 = input_feature[:, 1::2, 0::2, :]
|
366
|
+
# [batch_size, height/2, width/2, num_channels]
|
367
|
+
input_feature_2 = input_feature[:, 0::2, 1::2, :]
|
368
|
+
# [batch_size, height/2, width/2, num_channels]
|
369
|
+
input_feature_3 = input_feature[:, 1::2, 1::2, :]
|
370
|
+
# batch_size height/2 width/2 4*num_channels
|
371
|
+
input_feature = torch.cat([input_feature_0, input_feature_1, input_feature_2, input_feature_3], -1)
|
372
|
+
input_feature = input_feature.view(batch_size, -1, 4 * num_channels) # batch_size height/2*width/2 4*C
|
373
|
+
|
374
|
+
input_feature = self.norm(input_feature)
|
375
|
+
input_feature = self.reduction(input_feature)
|
376
|
+
|
377
|
+
return input_feature
|
378
|
+
|
379
|
+
|
380
|
+
# Copied from transformers.models.beit.modeling_beit.drop_path
|
381
|
+
def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor:
|
382
|
+
"""
|
383
|
+
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
384
|
+
|
385
|
+
Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks,
|
386
|
+
however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
|
387
|
+
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the
|
388
|
+
layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the
|
389
|
+
argument.
|
390
|
+
"""
|
391
|
+
if drop_prob == 0.0 or not training:
|
392
|
+
return input
|
393
|
+
keep_prob = 1 - drop_prob
|
394
|
+
shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
|
395
|
+
random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device)
|
396
|
+
random_tensor.floor_() # binarize
|
397
|
+
output = input.div(keep_prob) * random_tensor
|
398
|
+
return output
|
399
|
+
|
400
|
+
|
401
|
+
# Copied from transformers.models.swin.modeling_swin.SwinDropPath
|
402
|
+
class UnimerSwinDropPath(nn.Module):
|
403
|
+
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
|
404
|
+
|
405
|
+
def __init__(self, drop_prob: Optional[float] = None) -> None:
|
406
|
+
super().__init__()
|
407
|
+
self.drop_prob = drop_prob
|
408
|
+
|
409
|
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
410
|
+
return drop_path(hidden_states, self.drop_prob, self.training)
|
411
|
+
|
412
|
+
def extra_repr(self) -> str:
|
413
|
+
return "p={}".format(self.drop_prob)
|
414
|
+
|
415
|
+
|
416
|
+
# Copied from transformers.models.swin.modeling_swin.SwinSelfAttention with Swin->UnimerSwin
|
417
|
+
class UnimerSwinSelfAttention(nn.Module):
|
418
|
+
def __init__(self, config, dim, num_heads, window_size):
|
419
|
+
super().__init__()
|
420
|
+
if dim % num_heads != 0:
|
421
|
+
raise ValueError(
|
422
|
+
f"The hidden size ({dim}) is not a multiple of the number of attention heads ({num_heads})"
|
423
|
+
)
|
424
|
+
|
425
|
+
self.num_attention_heads = num_heads
|
426
|
+
self.attention_head_size = int(dim / num_heads)
|
427
|
+
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
428
|
+
self.window_size = (
|
429
|
+
window_size if isinstance(window_size, collections.abc.Iterable) else (window_size, window_size)
|
430
|
+
)
|
431
|
+
|
432
|
+
self.relative_position_bias_table = nn.Parameter(
|
433
|
+
torch.zeros((2 * self.window_size[0] - 1) * (2 * self.window_size[1] - 1), num_heads)
|
434
|
+
)
|
435
|
+
|
436
|
+
# get pair-wise relative position index for each token inside the window
|
437
|
+
coords_h = torch.arange(self.window_size[0])
|
438
|
+
coords_w = torch.arange(self.window_size[1])
|
439
|
+
coords = torch.stack(meshgrid([coords_h, coords_w], indexing="ij"))
|
440
|
+
coords_flatten = torch.flatten(coords, 1)
|
441
|
+
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]
|
442
|
+
relative_coords = relative_coords.permute(1, 2, 0).contiguous()
|
443
|
+
relative_coords[:, :, 0] += self.window_size[0] - 1
|
444
|
+
relative_coords[:, :, 1] += self.window_size[1] - 1
|
445
|
+
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
|
446
|
+
relative_position_index = relative_coords.sum(-1)
|
447
|
+
self.register_buffer("relative_position_index", relative_position_index)
|
448
|
+
|
449
|
+
self.query = nn.Linear(self.all_head_size, self.all_head_size, bias=config.qkv_bias)
|
450
|
+
self.key = nn.Linear(self.all_head_size, self.all_head_size, bias=config.qkv_bias)
|
451
|
+
self.value = nn.Linear(self.all_head_size, self.all_head_size, bias=config.qkv_bias)
|
452
|
+
|
453
|
+
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
454
|
+
|
455
|
+
def transpose_for_scores(self, x):
|
456
|
+
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
|
457
|
+
x = x.view(new_x_shape)
|
458
|
+
return x.permute(0, 2, 1, 3)
|
459
|
+
|
460
|
+
def forward(
|
461
|
+
self,
|
462
|
+
hidden_states: torch.Tensor,
|
463
|
+
attention_mask: Optional[torch.FloatTensor] = None,
|
464
|
+
head_mask: Optional[torch.FloatTensor] = None,
|
465
|
+
output_attentions: Optional[bool] = False,
|
466
|
+
) -> Tuple[torch.Tensor]:
|
467
|
+
batch_size, dim, num_channels = hidden_states.shape
|
468
|
+
mixed_query_layer = self.query(hidden_states)
|
469
|
+
|
470
|
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
471
|
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
472
|
+
query_layer = self.transpose_for_scores(mixed_query_layer)
|
473
|
+
|
474
|
+
# Take the dot product between "query" and "key" to get the raw attention scores.
|
475
|
+
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
|
476
|
+
|
477
|
+
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
|
478
|
+
|
479
|
+
relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)]
|
480
|
+
relative_position_bias = relative_position_bias.view(
|
481
|
+
self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1
|
482
|
+
)
|
483
|
+
|
484
|
+
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous()
|
485
|
+
attention_scores = attention_scores + relative_position_bias.unsqueeze(0)
|
486
|
+
|
487
|
+
if attention_mask is not None:
|
488
|
+
# Apply the attention mask is (precomputed for all layers in UnimerSwinModel forward() function)
|
489
|
+
mask_shape = attention_mask.shape[0]
|
490
|
+
attention_scores = attention_scores.view(
|
491
|
+
batch_size // mask_shape, mask_shape, self.num_attention_heads, dim, dim
|
492
|
+
)
|
493
|
+
attention_scores = attention_scores + attention_mask.unsqueeze(1).unsqueeze(0)
|
494
|
+
attention_scores = attention_scores.view(-1, self.num_attention_heads, dim, dim)
|
495
|
+
|
496
|
+
# Normalize the attention scores to probabilities.
|
497
|
+
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
|
498
|
+
|
499
|
+
# This is actually dropping out entire tokens to attend to, which might
|
500
|
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
501
|
+
attention_probs = self.dropout(attention_probs)
|
502
|
+
|
503
|
+
# Mask heads if we want to
|
504
|
+
if head_mask is not None:
|
505
|
+
attention_probs = attention_probs * head_mask
|
506
|
+
|
507
|
+
context_layer = torch.matmul(attention_probs, value_layer)
|
508
|
+
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
509
|
+
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
|
510
|
+
context_layer = context_layer.view(new_context_layer_shape)
|
511
|
+
|
512
|
+
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
|
513
|
+
|
514
|
+
return outputs
|
515
|
+
|
516
|
+
|
517
|
+
# Copied from transformers.models.swin.modeling_swin.SwinSelfOutput
|
518
|
+
class UnimerSwinSelfOutput(nn.Module):
|
519
|
+
def __init__(self, config, dim):
|
520
|
+
super().__init__()
|
521
|
+
self.dense = nn.Linear(dim, dim)
|
522
|
+
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
523
|
+
|
524
|
+
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
|
525
|
+
hidden_states = self.dense(hidden_states)
|
526
|
+
hidden_states = self.dropout(hidden_states)
|
527
|
+
|
528
|
+
return hidden_states
|
529
|
+
|
530
|
+
|
531
|
+
# Copied from transformers.models.swin.modeling_swin.SwinAttention with Swin->UnimerSwin
|
532
|
+
class UnimerSwinAttention(nn.Module):
|
533
|
+
def __init__(self, config, dim, num_heads, window_size):
|
534
|
+
super().__init__()
|
535
|
+
self.self = UnimerSwinSelfAttention(config, dim, num_heads, window_size)
|
536
|
+
self.output = UnimerSwinSelfOutput(config, dim)
|
537
|
+
self.pruned_heads = set()
|
538
|
+
|
539
|
+
def prune_heads(self, heads):
|
540
|
+
if len(heads) == 0:
|
541
|
+
return
|
542
|
+
heads, index = find_pruneable_heads_and_indices(
|
543
|
+
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
|
544
|
+
)
|
545
|
+
|
546
|
+
# Prune linear layers
|
547
|
+
self.self.query = prune_linear_layer(self.self.query, index)
|
548
|
+
self.self.key = prune_linear_layer(self.self.key, index)
|
549
|
+
self.self.value = prune_linear_layer(self.self.value, index)
|
550
|
+
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
|
551
|
+
|
552
|
+
# Update hyper params and store pruned heads
|
553
|
+
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
|
554
|
+
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
|
555
|
+
self.pruned_heads = self.pruned_heads.union(heads)
|
556
|
+
|
557
|
+
def forward(
|
558
|
+
self,
|
559
|
+
hidden_states: torch.Tensor,
|
560
|
+
attention_mask: Optional[torch.FloatTensor] = None,
|
561
|
+
head_mask: Optional[torch.FloatTensor] = None,
|
562
|
+
output_attentions: Optional[bool] = False,
|
563
|
+
) -> Tuple[torch.Tensor]:
|
564
|
+
self_outputs = self.self(hidden_states, attention_mask, head_mask, output_attentions)
|
565
|
+
attention_output = self.output(self_outputs[0], hidden_states)
|
566
|
+
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
|
567
|
+
return outputs
|
568
|
+
|
569
|
+
|
570
|
+
# Copied from transformers.models.swin.modeling_swin.SwinIntermediate
|
571
|
+
class UnimerSwinIntermediate(nn.Module):
|
572
|
+
def __init__(self, config, dim):
|
573
|
+
super().__init__()
|
574
|
+
self.dense = nn.Linear(dim, int(config.mlp_ratio * dim))
|
575
|
+
if isinstance(config.hidden_act, str):
|
576
|
+
self.intermediate_act_fn = ACT2FN[config.hidden_act]
|
577
|
+
else:
|
578
|
+
self.intermediate_act_fn = config.hidden_act
|
579
|
+
|
580
|
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
581
|
+
hidden_states = self.dense(hidden_states)
|
582
|
+
hidden_states = self.intermediate_act_fn(hidden_states)
|
583
|
+
return hidden_states
|
584
|
+
|
585
|
+
|
586
|
+
# Copied from transformers.models.swin.modeling_swin.SwinOutput
|
587
|
+
class UnimerSwinOutput(nn.Module):
|
588
|
+
def __init__(self, config, dim):
|
589
|
+
super().__init__()
|
590
|
+
self.dense = nn.Linear(int(config.mlp_ratio * dim), dim)
|
591
|
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
592
|
+
|
593
|
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
594
|
+
hidden_states = self.dense(hidden_states)
|
595
|
+
hidden_states = self.dropout(hidden_states)
|
596
|
+
return hidden_states
|
597
|
+
|
598
|
+
|
599
|
+
class ConvEnhance(nn.Module):
|
600
|
+
"""Depth-wise convolution to get the positional information.
|
601
|
+
"""
|
602
|
+
def __init__(self, config, dim, k=3):
|
603
|
+
super(ConvEnhance, self).__init__()
|
604
|
+
self.proj = nn.Conv2d(dim,
|
605
|
+
dim,
|
606
|
+
(k,k),
|
607
|
+
(1,1),
|
608
|
+
(k // 2,k // 2),
|
609
|
+
groups=dim)
|
610
|
+
self.act_fn = ACT2FN[config.hidden_act]
|
611
|
+
|
612
|
+
def forward(self, x, size: Tuple[int, int]):
|
613
|
+
B, N, C = x.shape
|
614
|
+
H, W = size
|
615
|
+
assert N == H * W
|
616
|
+
|
617
|
+
feat = x.transpose(1, 2).view(B, C, H, W)
|
618
|
+
feat = self.proj(feat)
|
619
|
+
feat = self.act_fn(feat)
|
620
|
+
feat = feat.flatten(2).transpose(1, 2)
|
621
|
+
|
622
|
+
x = x + feat
|
623
|
+
return x
|
624
|
+
|
625
|
+
|
626
|
+
# Copied from transformers.models.swin.modeling_swin.SwinLayer with Swin->UnimerSwin
|
627
|
+
class UnimerSwinLayer(nn.Module):
|
628
|
+
def __init__(self, config, dim, input_resolution, num_heads, shift_size=0):
|
629
|
+
super().__init__()
|
630
|
+
self.chunk_size_feed_forward = config.chunk_size_feed_forward
|
631
|
+
self.shift_size = shift_size
|
632
|
+
self.window_size = config.window_size
|
633
|
+
self.input_resolution = input_resolution
|
634
|
+
self.layernorm_before = nn.LayerNorm(dim, eps=config.layer_norm_eps)
|
635
|
+
|
636
|
+
self.ce = nn.ModuleList([ConvEnhance(config, dim=dim, k=3),
|
637
|
+
ConvEnhance(config, dim=dim, k=3)])
|
638
|
+
|
639
|
+
self.attention = UnimerSwinAttention(config, dim, num_heads, window_size=self.window_size)
|
640
|
+
self.drop_path = UnimerSwinDropPath(config.drop_path_rate) if config.drop_path_rate > 0.0 else nn.Identity()
|
641
|
+
self.layernorm_after = nn.LayerNorm(dim, eps=config.layer_norm_eps)
|
642
|
+
self.intermediate = UnimerSwinIntermediate(config, dim)
|
643
|
+
self.output = UnimerSwinOutput(config, dim)
|
644
|
+
|
645
|
+
def set_shift_and_window_size(self, input_resolution):
|
646
|
+
if min(input_resolution) <= self.window_size:
|
647
|
+
# if window size is larger than input resolution, we don't partition windows
|
648
|
+
self.shift_size = torch_int(0)
|
649
|
+
self.window_size = (
|
650
|
+
torch.min(torch.tensor(input_resolution)) if torch.jit.is_tracing() else min(input_resolution)
|
651
|
+
)
|
652
|
+
|
653
|
+
def get_attn_mask(self, height, width, dtype, device):
|
654
|
+
if self.shift_size > 0:
|
655
|
+
# calculate attention mask for SW-MSA
|
656
|
+
img_mask = torch.zeros((1, height, width, 1), dtype=dtype, device=device)
|
657
|
+
height_slices = (
|
658
|
+
slice(0, -self.window_size),
|
659
|
+
slice(-self.window_size, -self.shift_size),
|
660
|
+
slice(-self.shift_size, None),
|
661
|
+
)
|
662
|
+
width_slices = (
|
663
|
+
slice(0, -self.window_size),
|
664
|
+
slice(-self.window_size, -self.shift_size),
|
665
|
+
slice(-self.shift_size, None),
|
666
|
+
)
|
667
|
+
count = 0
|
668
|
+
for height_slice in height_slices:
|
669
|
+
for width_slice in width_slices:
|
670
|
+
img_mask[:, height_slice, width_slice, :] = count
|
671
|
+
count += 1
|
672
|
+
|
673
|
+
mask_windows = window_partition(img_mask, self.window_size)
|
674
|
+
mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
|
675
|
+
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
|
676
|
+
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
|
677
|
+
else:
|
678
|
+
attn_mask = None
|
679
|
+
return attn_mask
|
680
|
+
|
681
|
+
def maybe_pad(self, hidden_states, height, width):
|
682
|
+
pad_right = (self.window_size - width % self.window_size) % self.window_size
|
683
|
+
pad_bottom = (self.window_size - height % self.window_size) % self.window_size
|
684
|
+
pad_values = (0, 0, 0, pad_right, 0, pad_bottom)
|
685
|
+
hidden_states = nn.functional.pad(hidden_states, pad_values)
|
686
|
+
return hidden_states, pad_values
|
687
|
+
|
688
|
+
def forward(
|
689
|
+
self,
|
690
|
+
hidden_states: torch.Tensor,
|
691
|
+
input_dimensions: Tuple[int, int],
|
692
|
+
head_mask: Optional[torch.FloatTensor] = None,
|
693
|
+
output_attentions: Optional[bool] = False,
|
694
|
+
always_partition: Optional[bool] = False,
|
695
|
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
696
|
+
if not always_partition:
|
697
|
+
self.set_shift_and_window_size(input_dimensions)
|
698
|
+
else:
|
699
|
+
pass
|
700
|
+
height, width = input_dimensions
|
701
|
+
batch_size, _, channels = hidden_states.size()
|
702
|
+
|
703
|
+
|
704
|
+
|
705
|
+
hidden_states = self.ce[0](hidden_states, input_dimensions)
|
706
|
+
shortcut = hidden_states
|
707
|
+
|
708
|
+
|
709
|
+
hidden_states = self.layernorm_before(hidden_states)
|
710
|
+
hidden_states = hidden_states.view(batch_size, height, width, channels)
|
711
|
+
|
712
|
+
# pad hidden_states to multiples of window size
|
713
|
+
hidden_states, pad_values = self.maybe_pad(hidden_states, height, width)
|
714
|
+
|
715
|
+
_, height_pad, width_pad, _ = hidden_states.shape
|
716
|
+
# cyclic shift
|
717
|
+
if self.shift_size > 0:
|
718
|
+
shifted_hidden_states = torch.roll(hidden_states, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
|
719
|
+
else:
|
720
|
+
shifted_hidden_states = hidden_states
|
721
|
+
|
722
|
+
# partition windows
|
723
|
+
hidden_states_windows = window_partition(shifted_hidden_states, self.window_size)
|
724
|
+
hidden_states_windows = hidden_states_windows.view(-1, self.window_size * self.window_size, channels)
|
725
|
+
attn_mask = self.get_attn_mask(
|
726
|
+
height_pad, width_pad, dtype=hidden_states.dtype, device=hidden_states_windows.device
|
727
|
+
)
|
728
|
+
|
729
|
+
attention_outputs = self.attention(
|
730
|
+
hidden_states_windows, attn_mask, head_mask, output_attentions=output_attentions
|
731
|
+
)
|
732
|
+
|
733
|
+
attention_output = attention_outputs[0]
|
734
|
+
|
735
|
+
attention_windows = attention_output.view(-1, self.window_size, self.window_size, channels)
|
736
|
+
shifted_windows = window_reverse(attention_windows, self.window_size, height_pad, width_pad)
|
737
|
+
|
738
|
+
# reverse cyclic shift
|
739
|
+
if self.shift_size > 0:
|
740
|
+
attention_windows = torch.roll(shifted_windows, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
|
741
|
+
else:
|
742
|
+
attention_windows = shifted_windows
|
743
|
+
|
744
|
+
was_padded = pad_values[3] > 0 or pad_values[5] > 0
|
745
|
+
if was_padded:
|
746
|
+
attention_windows = attention_windows[:, :height, :width, :].contiguous()
|
747
|
+
|
748
|
+
attention_windows = attention_windows.view(batch_size, height * width, channels)
|
749
|
+
|
750
|
+
hidden_states = shortcut + self.drop_path(attention_windows)
|
751
|
+
|
752
|
+
|
753
|
+
|
754
|
+
hidden_states = self.ce[1](hidden_states, input_dimensions)
|
755
|
+
layer_output = self.layernorm_after(hidden_states)
|
756
|
+
layer_output = self.intermediate(layer_output)
|
757
|
+
layer_output = hidden_states + self.output(layer_output)
|
758
|
+
|
759
|
+
layer_outputs = (layer_output, attention_outputs[1]) if output_attentions else (layer_output,)
|
760
|
+
return layer_outputs
|
761
|
+
|
762
|
+
|
763
|
+
# Copied from transformers.models.swin.modeling_swin.SwinStage with Swin->UnimerSwin
|
764
|
+
class UnimerSwinStage(nn.Module):
|
765
|
+
def __init__(self, config, dim, input_resolution, depth, num_heads, drop_path, downsample):
|
766
|
+
super().__init__()
|
767
|
+
self.config = config
|
768
|
+
self.dim = dim
|
769
|
+
self.blocks = nn.ModuleList(
|
770
|
+
[
|
771
|
+
UnimerSwinLayer(
|
772
|
+
config=config,
|
773
|
+
dim=dim,
|
774
|
+
input_resolution=input_resolution,
|
775
|
+
num_heads=num_heads,
|
776
|
+
shift_size=0,
|
777
|
+
)
|
778
|
+
for i in range(depth)
|
779
|
+
]
|
780
|
+
)
|
781
|
+
|
782
|
+
# patch merging layer
|
783
|
+
if downsample is not None:
|
784
|
+
self.downsample = downsample(input_resolution, dim=dim, norm_layer=nn.LayerNorm)
|
785
|
+
else:
|
786
|
+
self.downsample = None
|
787
|
+
|
788
|
+
self.pointing = False
|
789
|
+
|
790
|
+
def forward(
|
791
|
+
self,
|
792
|
+
hidden_states: torch.Tensor,
|
793
|
+
input_dimensions: Tuple[int, int],
|
794
|
+
head_mask: Optional[torch.FloatTensor] = None,
|
795
|
+
output_attentions: Optional[bool] = False,
|
796
|
+
always_partition: Optional[bool] = False,
|
797
|
+
) -> Tuple[torch.Tensor]:
|
798
|
+
height, width = input_dimensions
|
799
|
+
for i, layer_module in enumerate(self.blocks):
|
800
|
+
layer_head_mask = head_mask[i] if head_mask is not None else None
|
801
|
+
|
802
|
+
layer_outputs = layer_module(
|
803
|
+
hidden_states, input_dimensions, layer_head_mask, output_attentions, always_partition
|
804
|
+
)
|
805
|
+
|
806
|
+
hidden_states = layer_outputs[0]
|
807
|
+
|
808
|
+
hidden_states_before_downsampling = hidden_states
|
809
|
+
if self.downsample is not None:
|
810
|
+
height_downsampled, width_downsampled = (height + 1) // 2, (width + 1) // 2
|
811
|
+
output_dimensions = (height, width, height_downsampled, width_downsampled)
|
812
|
+
hidden_states = self.downsample(hidden_states_before_downsampling, input_dimensions)
|
813
|
+
else:
|
814
|
+
output_dimensions = (height, width, height, width)
|
815
|
+
|
816
|
+
stage_outputs = (hidden_states, hidden_states_before_downsampling, output_dimensions)
|
817
|
+
|
818
|
+
if output_attentions:
|
819
|
+
stage_outputs += layer_outputs[1:]
|
820
|
+
return stage_outputs
|
821
|
+
|
822
|
+
|
823
|
+
# Copied from transformers.models.swin.modeling_swin.SwinEncoder with Swin->UnimerSwin
|
824
|
+
class UnimerSwinEncoder(nn.Module):
|
825
|
+
def __init__(self, config, grid_size):
|
826
|
+
super().__init__()
|
827
|
+
self.num_layers = len(config.depths)
|
828
|
+
self.config = config
|
829
|
+
dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, sum(config.depths))]
|
830
|
+
self.layers = nn.ModuleList(
|
831
|
+
[
|
832
|
+
UnimerSwinStage(
|
833
|
+
config=config,
|
834
|
+
dim=int(config.embed_dim * 2**i_layer),
|
835
|
+
input_resolution=(grid_size[0] // (2**i_layer), grid_size[1] // (2**i_layer)),
|
836
|
+
depth=config.depths[i_layer],
|
837
|
+
num_heads=config.num_heads[i_layer],
|
838
|
+
drop_path=dpr[sum(config.depths[:i_layer]) : sum(config.depths[: i_layer + 1])],
|
839
|
+
downsample=UnimerSwinPatchMerging if (i_layer < self.num_layers - 1) else None,
|
840
|
+
)
|
841
|
+
for i_layer in range(self.num_layers)
|
842
|
+
]
|
843
|
+
)
|
844
|
+
|
845
|
+
self.gradient_checkpointing = False
|
846
|
+
|
847
|
+
def forward(
|
848
|
+
self,
|
849
|
+
hidden_states: torch.Tensor,
|
850
|
+
input_dimensions: Tuple[int, int],
|
851
|
+
head_mask: Optional[torch.FloatTensor] = None,
|
852
|
+
output_attentions: Optional[bool] = False,
|
853
|
+
output_hidden_states: Optional[bool] = False,
|
854
|
+
output_hidden_states_before_downsampling: Optional[bool] = False,
|
855
|
+
always_partition: Optional[bool] = False,
|
856
|
+
return_dict: Optional[bool] = True,
|
857
|
+
) -> Union[Tuple, UnimerSwinEncoderOutput]:
|
858
|
+
all_hidden_states = () if output_hidden_states else None
|
859
|
+
all_reshaped_hidden_states = () if output_hidden_states else None
|
860
|
+
all_self_attentions = () if output_attentions else None
|
861
|
+
|
862
|
+
if output_hidden_states:
|
863
|
+
batch_size, _, hidden_size = hidden_states.shape
|
864
|
+
# rearrange b (h w) c -> b c h w
|
865
|
+
reshaped_hidden_state = hidden_states.view(batch_size, *input_dimensions, hidden_size)
|
866
|
+
reshaped_hidden_state = reshaped_hidden_state.permute(0, 3, 1, 2)
|
867
|
+
all_hidden_states += (hidden_states,)
|
868
|
+
all_reshaped_hidden_states += (reshaped_hidden_state,)
|
869
|
+
|
870
|
+
for i, layer_module in enumerate(self.layers):
|
871
|
+
layer_head_mask = head_mask[i] if head_mask is not None else None
|
872
|
+
|
873
|
+
if self.gradient_checkpointing and self.training:
|
874
|
+
layer_outputs = self._gradient_checkpointing_func(
|
875
|
+
layer_module.__call__,
|
876
|
+
hidden_states,
|
877
|
+
input_dimensions,
|
878
|
+
layer_head_mask,
|
879
|
+
output_attentions,
|
880
|
+
always_partition,
|
881
|
+
)
|
882
|
+
else:
|
883
|
+
layer_outputs = layer_module(
|
884
|
+
hidden_states, input_dimensions, layer_head_mask, output_attentions, always_partition
|
885
|
+
)
|
886
|
+
|
887
|
+
hidden_states = layer_outputs[0]
|
888
|
+
hidden_states_before_downsampling = layer_outputs[1]
|
889
|
+
output_dimensions = layer_outputs[2]
|
890
|
+
|
891
|
+
input_dimensions = (output_dimensions[-2], output_dimensions[-1])
|
892
|
+
|
893
|
+
if output_hidden_states and output_hidden_states_before_downsampling:
|
894
|
+
batch_size, _, hidden_size = hidden_states_before_downsampling.shape
|
895
|
+
# rearrange b (h w) c -> b c h w
|
896
|
+
# here we use the original (not downsampled) height and width
|
897
|
+
reshaped_hidden_state = hidden_states_before_downsampling.view(
|
898
|
+
batch_size, *(output_dimensions[0], output_dimensions[1]), hidden_size
|
899
|
+
)
|
900
|
+
reshaped_hidden_state = reshaped_hidden_state.permute(0, 3, 1, 2)
|
901
|
+
all_hidden_states += (hidden_states_before_downsampling,)
|
902
|
+
all_reshaped_hidden_states += (reshaped_hidden_state,)
|
903
|
+
elif output_hidden_states and not output_hidden_states_before_downsampling:
|
904
|
+
batch_size, _, hidden_size = hidden_states.shape
|
905
|
+
# rearrange b (h w) c -> b c h w
|
906
|
+
reshaped_hidden_state = hidden_states.view(batch_size, *input_dimensions, hidden_size)
|
907
|
+
reshaped_hidden_state = reshaped_hidden_state.permute(0, 3, 1, 2)
|
908
|
+
all_hidden_states += (hidden_states,)
|
909
|
+
all_reshaped_hidden_states += (reshaped_hidden_state,)
|
910
|
+
|
911
|
+
if output_attentions:
|
912
|
+
all_self_attentions += layer_outputs[3:]
|
913
|
+
|
914
|
+
if not return_dict:
|
915
|
+
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
|
916
|
+
|
917
|
+
return UnimerSwinEncoderOutput(
|
918
|
+
last_hidden_state=hidden_states,
|
919
|
+
hidden_states=all_hidden_states,
|
920
|
+
attentions=all_self_attentions,
|
921
|
+
reshaped_hidden_states=all_reshaped_hidden_states,
|
922
|
+
)
|
923
|
+
|
924
|
+
|
925
|
+
# Copied from transformers.models.swin.modeling_swin.SwinPreTrainedModel with Swin->UnimerSwin
|
926
|
+
class UnimerSwinPreTrainedModel(PreTrainedModel):
|
927
|
+
"""
|
928
|
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
929
|
+
models.
|
930
|
+
"""
|
931
|
+
|
932
|
+
config_class = UnimerSwinConfig
|
933
|
+
base_model_prefix = "unimer-swin"
|
934
|
+
main_input_name = "pixel_values"
|
935
|
+
supports_gradient_checkpointing = True
|
936
|
+
_no_split_modules = ["UnimerSwinStage"]
|
937
|
+
|
938
|
+
def _init_weights(self, module):
|
939
|
+
"""Initialize the weights"""
|
940
|
+
if isinstance(module, (nn.Linear, nn.Conv2d)):
|
941
|
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
942
|
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
943
|
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
944
|
+
if module.bias is not None:
|
945
|
+
module.bias.data.zero_()
|
946
|
+
elif isinstance(module, nn.LayerNorm):
|
947
|
+
module.bias.data.zero_()
|
948
|
+
module.weight.data.fill_(1.0)
|
949
|
+
|
950
|
+
|
951
|
+
SWIN_START_DOCSTRING = r"""
|
952
|
+
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
|
953
|
+
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
|
954
|
+
behavior.
|
955
|
+
|
956
|
+
Parameters:
|
957
|
+
config ([`UnimerSwinConfig`]): Model configuration class with all the parameters of the model.
|
958
|
+
Initializing with a config file does not load the weights associated with the model, only the
|
959
|
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
960
|
+
"""
|
961
|
+
|
962
|
+
SWIN_INPUTS_DOCSTRING = r"""
|
963
|
+
Args:
|
964
|
+
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
965
|
+
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
|
966
|
+
[`DonutImageProcessor.__call__`] for details.
|
967
|
+
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
968
|
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
969
|
+
|
970
|
+
- 1 indicates the head is **not masked**,
|
971
|
+
- 0 indicates the head is **masked**.
|
972
|
+
|
973
|
+
output_attentions (`bool`, *optional*):
|
974
|
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
975
|
+
tensors for more detail.
|
976
|
+
output_hidden_states (`bool`, *optional*):
|
977
|
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
978
|
+
more detail.
|
979
|
+
interpolate_pos_encoding (`bool`, *optional*, defaults to `False`):
|
980
|
+
Whether to interpolate the pre-trained position encodings.
|
981
|
+
return_dict (`bool`, *optional*):
|
982
|
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
983
|
+
"""
|
984
|
+
|
985
|
+
|
986
|
+
@add_start_docstrings(
|
987
|
+
"The bare UnimerSwin Model transformer outputting raw hidden-states without any specific head on top.",
|
988
|
+
SWIN_START_DOCSTRING,
|
989
|
+
)
|
990
|
+
class UnimerSwinModel(UnimerSwinPreTrainedModel):
|
991
|
+
def __init__(self, config, add_pooling_layer=True, use_mask_token=False):
|
992
|
+
super().__init__(config)
|
993
|
+
self.config = config
|
994
|
+
self.num_layers = len(config.depths)
|
995
|
+
self.num_features = int(config.embed_dim * 2 ** (self.num_layers - 1))
|
996
|
+
|
997
|
+
self.embeddings = UnimerSwinEmbeddings(config, use_mask_token=use_mask_token)
|
998
|
+
self.encoder = UnimerSwinEncoder(config, self.embeddings.patch_grid)
|
999
|
+
self.pooler = nn.AdaptiveAvgPool1d(1) if add_pooling_layer else None
|
1000
|
+
|
1001
|
+
# Initialize weights and apply final processing
|
1002
|
+
self.post_init()
|
1003
|
+
|
1004
|
+
def get_input_embeddings(self):
|
1005
|
+
return self.embeddings.patch_embeddings
|
1006
|
+
|
1007
|
+
def _prune_heads(self, heads_to_prune):
|
1008
|
+
"""
|
1009
|
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
1010
|
+
class PreTrainedModel
|
1011
|
+
"""
|
1012
|
+
for layer, heads in heads_to_prune.items():
|
1013
|
+
self.encoder.layer[layer].attention.prune_heads(heads)
|
1014
|
+
|
1015
|
+
@add_start_docstrings_to_model_forward(SWIN_INPUTS_DOCSTRING)
|
1016
|
+
@add_code_sample_docstrings(
|
1017
|
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1018
|
+
output_type=UnimerSwinModelOutput,
|
1019
|
+
config_class=_CONFIG_FOR_DOC,
|
1020
|
+
modality="vision",
|
1021
|
+
expected_output=_EXPECTED_OUTPUT_SHAPE,
|
1022
|
+
)
|
1023
|
+
def forward(
|
1024
|
+
self,
|
1025
|
+
pixel_values: Optional[torch.FloatTensor] = None,
|
1026
|
+
bool_masked_pos: Optional[torch.BoolTensor] = None,
|
1027
|
+
head_mask: Optional[torch.FloatTensor] = None,
|
1028
|
+
output_attentions: Optional[bool] = None,
|
1029
|
+
output_hidden_states: Optional[bool] = None,
|
1030
|
+
interpolate_pos_encoding: bool = False,
|
1031
|
+
return_dict: Optional[bool] = None,
|
1032
|
+
) -> Union[Tuple, UnimerSwinModelOutput]:
|
1033
|
+
r"""
|
1034
|
+
bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, num_patches)`):
|
1035
|
+
Boolean masked positions. Indicates which patches are masked (1) and which aren't (0).
|
1036
|
+
"""
|
1037
|
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1038
|
+
output_hidden_states = (
|
1039
|
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1040
|
+
)
|
1041
|
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1042
|
+
|
1043
|
+
if pixel_values is None:
|
1044
|
+
raise ValueError("You have to specify pixel_values")
|
1045
|
+
|
1046
|
+
# Prepare head mask if needed
|
1047
|
+
# 1.0 in head_mask indicate we keep the head
|
1048
|
+
# attention_probs has shape bsz x n_heads x N x N
|
1049
|
+
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
1050
|
+
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
1051
|
+
head_mask = self.get_head_mask(head_mask, len(self.config.depths))
|
1052
|
+
|
1053
|
+
embedding_output, input_dimensions = self.embeddings(
|
1054
|
+
pixel_values, bool_masked_pos=bool_masked_pos, interpolate_pos_encoding=interpolate_pos_encoding
|
1055
|
+
)
|
1056
|
+
|
1057
|
+
encoder_outputs = self.encoder(
|
1058
|
+
embedding_output,
|
1059
|
+
input_dimensions,
|
1060
|
+
head_mask=head_mask,
|
1061
|
+
output_attentions=output_attentions,
|
1062
|
+
output_hidden_states=output_hidden_states,
|
1063
|
+
return_dict=return_dict,
|
1064
|
+
)
|
1065
|
+
|
1066
|
+
sequence_output = encoder_outputs[0]
|
1067
|
+
|
1068
|
+
pooled_output = None
|
1069
|
+
if self.pooler is not None:
|
1070
|
+
pooled_output = self.pooler(sequence_output.transpose(1, 2))
|
1071
|
+
pooled_output = torch.flatten(pooled_output, 1)
|
1072
|
+
|
1073
|
+
if not return_dict:
|
1074
|
+
output = (sequence_output, pooled_output) + encoder_outputs[1:]
|
1075
|
+
|
1076
|
+
return output
|
1077
|
+
|
1078
|
+
return UnimerSwinModelOutput(
|
1079
|
+
last_hidden_state=sequence_output,
|
1080
|
+
pooler_output=pooled_output,
|
1081
|
+
hidden_states=encoder_outputs.hidden_states,
|
1082
|
+
attentions=encoder_outputs.attentions,
|
1083
|
+
reshaped_hidden_states=encoder_outputs.reshaped_hidden_states,
|
1084
|
+
)
|