magic-pdf 1.1.0__py3-none-any.whl → 1.2.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -6,8 +6,10 @@ import statistics
6
6
  import time
7
7
  from typing import List
8
8
 
9
+ import cv2
9
10
  import fitz
10
11
  import torch
12
+ import numpy as np
11
13
  from loguru import logger
12
14
 
13
15
  from magic_pdf.config.enums import SupportedPdfParseMethod
@@ -127,16 +129,15 @@ def fill_char_in_spans(spans, all_chars):
127
129
  span['chars'].append(char)
128
130
  break
129
131
 
130
- empty_spans = []
131
-
132
+ need_ocr_spans = []
132
133
  for span in spans:
133
134
  chars_to_content(span)
134
135
  # 有的span中虽然没有字但有一两个空的占位符,用宽高和content长度过滤
135
136
  if len(span['content']) * span['height'] < span['width'] * 0.5:
136
137
  # logger.info(f"maybe empty span: {len(span['content'])}, {span['height']}, {span['width']}")
137
- empty_spans.append(span)
138
+ need_ocr_spans.append(span)
138
139
  del span['height'], span['width']
139
- return empty_spans
140
+ return need_ocr_spans
140
141
 
141
142
 
142
143
  # 使用鲁棒性更强的中心点坐标判断
@@ -190,6 +191,31 @@ def remove_tilted_line(text_blocks):
190
191
  block['lines'].remove(line)
191
192
 
192
193
 
194
+ def calculate_contrast(img, img_mode) -> float:
195
+ """
196
+ 计算给定图像的对比度。
197
+ :param img: 图像,类型为numpy.ndarray
198
+ :Param img_mode = 图像的色彩通道,'rgb' 或 'bgr'
199
+ :return: 图像的对比度值
200
+ """
201
+ if img_mode == 'rgb':
202
+ # 将RGB图像转换为灰度图
203
+ gray_img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
204
+ elif img_mode == 'bgr':
205
+ # 将BGR图像转换为灰度图
206
+ gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
207
+ else:
208
+ raise ValueError("Invalid image mode. Please provide 'rgb' or 'bgr'.")
209
+
210
+ # 计算均值和标准差
211
+ mean_value = np.mean(gray_img)
212
+ std_dev = np.std(gray_img)
213
+ # 对比度定义为标准差除以平均值(加上小常数避免除零错误)
214
+ contrast = std_dev / (mean_value + 1e-6)
215
+ # logger.info(f"contrast: {contrast}")
216
+ return round(contrast, 2)
217
+
218
+
193
219
  def txt_spans_extract_v2(pdf_page, spans, all_bboxes, all_discarded_blocks, lang):
194
220
  # cid用0xfffd表示,连字符拆开
195
221
  # text_blocks_raw = pdf_page.get_text('rawdict', flags=fitz.TEXT_PRESERVE_WHITESPACE | fitz.TEXT_MEDIABOX_CLIP)['blocks']
@@ -274,9 +300,9 @@ def txt_spans_extract_v2(pdf_page, spans, all_bboxes, all_discarded_blocks, lang
274
300
  span['chars'] = []
275
301
  new_spans.append(span)
276
302
 
277
- empty_spans = fill_char_in_spans(new_spans, all_pymu_chars)
303
+ need_ocr_spans = fill_char_in_spans(new_spans, all_pymu_chars)
278
304
 
279
- if len(empty_spans) > 0:
305
+ if len(need_ocr_spans) > 0:
280
306
 
281
307
  # 初始化ocr模型
282
308
  atom_model_manager = AtomModelSingleton()
@@ -287,9 +313,15 @@ def txt_spans_extract_v2(pdf_page, spans, all_bboxes, all_discarded_blocks, lang
287
313
  lang=lang
288
314
  )
289
315
 
290
- for span in empty_spans:
316
+ for span in need_ocr_spans:
291
317
  # 对span的bbox截图再ocr
292
318
  span_img = cut_image_to_pil_image(span['bbox'], pdf_page, mode='cv2')
319
+
320
+ # 计算span的对比度,低于0.20的span不进行ocr
321
+ if calculate_contrast(span_img, img_mode='bgr') <= 0.20:
322
+ spans.remove(span)
323
+ continue
324
+
293
325
  ocr_res = ocr_model.ocr(span_img, det=False)
294
326
  if ocr_res and len(ocr_res) > 0:
295
327
  if len(ocr_res[0]) > 0:
@@ -306,24 +338,7 @@ def txt_spans_extract_v2(pdf_page, spans, all_bboxes, all_discarded_blocks, lang
306
338
 
307
339
  def model_init(model_name: str):
308
340
  from transformers import LayoutLMv3ForTokenClassification
309
- device = get_device()
310
- if torch.cuda.is_available():
311
- device = torch.device('cuda')
312
- if torch.cuda.is_bf16_supported():
313
- supports_bfloat16 = True
314
- else:
315
- supports_bfloat16 = False
316
- elif str(device).startswith("npu"):
317
- import torch_npu
318
- if torch_npu.npu.is_available():
319
- device = torch.device('npu')
320
- supports_bfloat16 = False
321
- else:
322
- device = torch.device('cpu')
323
- supports_bfloat16 = False
324
- else:
325
- device = torch.device('cpu')
326
- supports_bfloat16 = False
341
+ device = torch.device(get_device())
327
342
 
328
343
  if model_name == 'layoutreader':
329
344
  # 检测modelscope的缓存目录是否存在
@@ -339,9 +354,6 @@ def model_init(model_name: str):
339
354
  model = LayoutLMv3ForTokenClassification.from_pretrained(
340
355
  'hantian/layoutreader'
341
356
  )
342
- # 检查设备是否支持 bfloat16
343
- if supports_bfloat16:
344
- model.bfloat16()
345
357
  model.to(device).eval()
346
358
  else:
347
359
  logger.error('model name not allow')
@@ -404,10 +416,11 @@ def cal_block_index(fix_blocks, sorted_bboxes):
404
416
  block_bboxes.append(block['bbox'])
405
417
 
406
418
  # 删除图表body block中的虚拟line信息, 并用real_lines信息回填
407
- if block['type'] in [BlockType.ImageBody, BlockType.TableBody]:
408
- block['virtual_lines'] = copy.deepcopy(block['lines'])
409
- block['lines'] = copy.deepcopy(block['real_lines'])
410
- del block['real_lines']
419
+ if block['type'] in [BlockType.ImageBody, BlockType.TableBody, BlockType.Title, BlockType.InterlineEquation]:
420
+ if 'real_lines' in block:
421
+ block['virtual_lines'] = copy.deepcopy(block['lines'])
422
+ block['lines'] = copy.deepcopy(block['real_lines'])
423
+ del block['real_lines']
411
424
 
412
425
  import numpy as np
413
426
 
@@ -3,6 +3,7 @@ import json
3
3
  from loguru import logger
4
4
  from magic_pdf.dict2md.ocr_mkcontent import merge_para_with_text
5
5
  from openai import OpenAI
6
+ import ast
6
7
 
7
8
 
8
9
  #@todo: 有的公式以"\"结尾,这样会导致尾部拼接的"$"被转义,也需要修复
@@ -119,11 +120,12 @@ def llm_aided_title(pdf_info_dict, title_aided_config):
119
120
  - 在完成初步分级后,仔细检查分级结果的合理性
120
121
  - 根据上下文关系和逻辑顺序,对不合理的分级进行微调
121
122
  - 确保最终的分级结果符合文档的实际结构和逻辑
123
+ - 字典中可能包含被误当成标题的正文,你可以通过将其层级标记为 0 来排除它们
122
124
 
123
125
  IMPORTANT:
124
- 请直接返回优化过的由标题层级组成的json,格式如下:
125
- {{"0":1,"1":2,"2":2,"3":3}}
126
- 返回的json不需要格式化。
126
+ 请直接返回优化过的由标题层级组成的字典,格式为{{标题id:标题层级}},如下:
127
+ {{0:1,1:2,2:2,3:3}}
128
+ 不需要对字典格式化,不需要返回任何其他信息。
127
129
 
128
130
  Input title list:
129
131
  {title_dict}
@@ -133,7 +135,7 @@ Corrected title list:
133
135
 
134
136
  retry_count = 0
135
137
  max_retries = 3
136
- json_completion = None
138
+ dict_completion = None
137
139
 
138
140
  while retry_count < max_retries:
139
141
  try:
@@ -143,24 +145,20 @@ Corrected title list:
143
145
  {'role': 'user', 'content': title_optimize_prompt}],
144
146
  temperature=0.7,
145
147
  )
146
- json_completion = json.loads(completion.choices[0].message.content)
148
+ # logger.info(f"Title completion: {completion.choices[0].message.content}")
149
+ dict_completion = ast.literal_eval(completion.choices[0].message.content)
150
+ # logger.info(f"len(dict_completion): {len(dict_completion)}, len(title_dict): {len(title_dict)}")
147
151
 
148
- # logger.info(f"Title completion: {json_completion}")
149
- # logger.info(f"len(json_completion): {len(json_completion)}, len(title_dict): {len(title_dict)}")
150
-
151
- if len(json_completion) == len(title_dict):
152
+ if len(dict_completion) == len(title_dict):
152
153
  for i, origin_title_block in enumerate(origin_title_list):
153
- origin_title_block["level"] = int(json_completion[str(i)])
154
+ origin_title_block["level"] = int(dict_completion[i])
154
155
  break
155
156
  else:
156
157
  logger.warning("The number of titles in the optimized result is not equal to the number of titles in the input.")
157
158
  retry_count += 1
158
159
  except Exception as e:
159
- if isinstance(e, json.decoder.JSONDecodeError):
160
- logger.warning(f"JSON decode error on attempt {retry_count + 1}: {e}")
161
- else:
162
- logger.exception(e)
160
+ logger.exception(e)
163
161
  retry_count += 1
164
162
 
165
- if json_completion is None:
166
- logger.error("Failed to decode JSON after maximum retries.")
163
+ if dict_completion is None:
164
+ logger.error("Failed to decode dict after maximum retries.")
@@ -60,6 +60,19 @@ def merge_spans_to_line(spans, threshold=0.6):
60
60
  return lines
61
61
 
62
62
 
63
+ def span_block_type_compatible(span_type, block_type):
64
+ if span_type in [ContentType.Text, ContentType.InlineEquation]:
65
+ return block_type in [BlockType.Text, BlockType.Title, BlockType.ImageCaption, BlockType.ImageFootnote, BlockType.TableCaption, BlockType.TableFootnote]
66
+ elif span_type == ContentType.InterlineEquation:
67
+ return block_type in [BlockType.InterlineEquation]
68
+ elif span_type == ContentType.Image:
69
+ return block_type in [BlockType.ImageBody]
70
+ elif span_type == ContentType.Table:
71
+ return block_type in [BlockType.TableBody]
72
+ else:
73
+ return False
74
+
75
+
63
76
  def fill_spans_in_blocks(blocks, spans, radio):
64
77
  """将allspans中的span按位置关系,放入blocks中."""
65
78
  block_with_spans = []
@@ -78,8 +91,7 @@ def fill_spans_in_blocks(blocks, spans, radio):
78
91
  block_spans = []
79
92
  for span in spans:
80
93
  span_bbox = span['bbox']
81
- if calculate_overlap_area_in_bbox1_area_ratio(
82
- span_bbox, block_bbox) > radio:
94
+ if calculate_overlap_area_in_bbox1_area_ratio(span_bbox, block_bbox) > radio and span_block_type_compatible(span['type'], block_type):
83
95
  block_spans.append(span)
84
96
 
85
97
  block_dict['spans'] = block_spans
@@ -1,49 +1,49 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: magic-pdf
3
- Version: 1.1.0
3
+ Version: 1.2.0
4
4
  Summary: A practical tool for converting PDF to Markdown
5
5
  Home-page: https://github.com/opendatalab/MinerU
6
6
  Requires-Python: >=3.9
7
7
  Description-Content-Type: text/markdown
8
8
  License-File: LICENSE.md
9
- Requires-Dist: boto3 >=1.28.43
10
- Requires-Dist: Brotli >=1.1.0
11
- Requires-Dist: click >=8.1.7
12
- Requires-Dist: fast-langdetect >=0.2.3
13
- Requires-Dist: loguru >=0.6.0
14
- Requires-Dist: numpy <2.0.0,>=1.21.6
15
- Requires-Dist: pydantic >=2.7.2
16
- Requires-Dist: PyMuPDF <=1.24.14,>=1.24.9
17
- Requires-Dist: scikit-learn >=1.0.2
18
- Requires-Dist: torch >=2.2.2
9
+ Requires-Dist: boto3>=1.28.43
10
+ Requires-Dist: Brotli>=1.1.0
11
+ Requires-Dist: click>=8.1.7
12
+ Requires-Dist: fast-langdetect>=0.2.3
13
+ Requires-Dist: loguru>=0.6.0
14
+ Requires-Dist: numpy<2.0.0,>=1.21.6
15
+ Requires-Dist: pydantic>=2.7.2
16
+ Requires-Dist: PyMuPDF<=1.24.14,>=1.24.9
17
+ Requires-Dist: scikit-learn>=1.0.2
18
+ Requires-Dist: torch>=2.2.2
19
19
  Requires-Dist: transformers
20
- Requires-Dist: pdfminer.six ==20231228
20
+ Requires-Dist: pdfminer.six==20231228
21
21
  Provides-Extra: full
22
- Requires-Dist: unimernet ==0.2.3 ; extra == 'full'
23
- Requires-Dist: torch <=2.3.1,>=2.2.2 ; extra == 'full'
24
- Requires-Dist: torchvision <=0.18.1,>=0.17.2 ; extra == 'full'
25
- Requires-Dist: ultralytics >=8.3.48 ; extra == 'full'
26
- Requires-Dist: paddleocr ==2.7.3 ; extra == 'full'
27
- Requires-Dist: struct-eqtable ==0.3.2 ; extra == 'full'
28
- Requires-Dist: einops ; extra == 'full'
29
- Requires-Dist: accelerate ; extra == 'full'
30
- Requires-Dist: doclayout-yolo ==0.0.2b1 ; extra == 'full'
31
- Requires-Dist: rapidocr-paddle ; extra == 'full'
32
- Requires-Dist: rapidocr-onnxruntime ; extra == 'full'
33
- Requires-Dist: rapid-table <2.0.0,>=1.0.3 ; extra == 'full'
34
- Requires-Dist: PyYAML ; extra == 'full'
35
- Requires-Dist: openai ; extra == 'full'
36
- Requires-Dist: detectron2 ; extra == 'full'
37
- Requires-Dist: paddlepaddle ==3.0.0b1 ; (platform_system == "Linux") and extra == 'full'
38
- Requires-Dist: matplotlib ; (platform_system == "Linux" or platform_system == "Darwin") and extra == 'full'
39
- Requires-Dist: matplotlib <=3.9.0 ; (platform_system == "Windows") and extra == 'full'
40
- Requires-Dist: paddlepaddle ==2.6.1 ; (platform_system == "Windows" or platform_system == "Darwin") and extra == 'full'
22
+ Requires-Dist: unimernet==0.2.3; extra == "full"
23
+ Requires-Dist: torch<=2.3.1,>=2.2.2; extra == "full"
24
+ Requires-Dist: torchvision<=0.18.1,>=0.17.2; extra == "full"
25
+ Requires-Dist: ultralytics>=8.3.48; extra == "full"
26
+ Requires-Dist: paddleocr==2.7.3; extra == "full"
27
+ Requires-Dist: struct-eqtable==0.3.2; extra == "full"
28
+ Requires-Dist: einops; extra == "full"
29
+ Requires-Dist: accelerate; extra == "full"
30
+ Requires-Dist: doclayout-yolo==0.0.2b1; extra == "full"
31
+ Requires-Dist: rapidocr-paddle<2.0.0,>=1.4.5; extra == "full"
32
+ Requires-Dist: rapidocr-onnxruntime<2.0.0,>=1.4.4; extra == "full"
33
+ Requires-Dist: rapid-table<2.0.0,>=1.0.3; extra == "full"
34
+ Requires-Dist: PyYAML; extra == "full"
35
+ Requires-Dist: openai; extra == "full"
36
+ Requires-Dist: detectron2; extra == "full"
37
+ Requires-Dist: matplotlib; (platform_system == "Linux" or platform_system == "Darwin") and extra == "full"
38
+ Requires-Dist: paddlepaddle==3.0.0rc1; (platform_system == "Linux" or platform_system == "Darwin") and extra == "full"
39
+ Requires-Dist: matplotlib<=3.9.0; platform_system == "Windows" and extra == "full"
40
+ Requires-Dist: paddlepaddle==2.6.1; platform_system == "Windows" and extra == "full"
41
41
  Provides-Extra: lite
42
- Requires-Dist: paddleocr ==2.7.3 ; extra == 'lite'
43
- Requires-Dist: paddlepaddle ==3.0.0b1 ; (platform_system == "Linux") and extra == 'lite'
44
- Requires-Dist: paddlepaddle ==2.6.1 ; (platform_system == "Windows" or platform_system == "Darwin") and extra == 'lite'
42
+ Requires-Dist: paddleocr==2.7.3; extra == "lite"
43
+ Requires-Dist: paddlepaddle==3.0.0b1; platform_system == "Linux" and extra == "lite"
44
+ Requires-Dist: paddlepaddle==2.6.1; (platform_system == "Windows" or platform_system == "Darwin") and extra == "lite"
45
45
  Provides-Extra: old_linux
46
- Requires-Dist: albumentations <=1.4.20 ; extra == 'old_linux'
46
+ Requires-Dist: albumentations<=1.4.20; extra == "old-linux"
47
47
 
48
48
  <div align="center" xmlns="http://www.w3.org/1999/html">
49
49
  <!-- logo -->
@@ -94,6 +94,15 @@ Easier to use: Just grab MinerU Desktop. No coding, no login, just a simple inte
94
94
  </div>
95
95
 
96
96
  # Changelog
97
+ - 2025/02/24 1.2.0 released. This version includes several fixes and improvements to enhance parsing efficiency and accuracy:
98
+ - Performance Optimization
99
+ - Increased classification speed for PDF documents in auto mode.
100
+ - Parsing Optimization
101
+ - Improved parsing logic for documents containing watermarks, significantly enhancing the parsing results for such documents.
102
+ - Enhanced the matching logic for multiple images/tables and captions within a single page, improving the accuracy of image-text matching in complex layouts.
103
+ - Bug Fixes
104
+ - Fixed an issue where image/table spans were incorrectly filled into text blocks under certain conditions.
105
+ - Resolved an issue where title blocks were empty in some cases.
97
106
  - 2025/01/22 1.1.0 released. In this version we have focused on improving parsing accuracy and efficiency:
98
107
  - Model capability upgrade (requires re-executing the [model download process](docs/how_to_download_models_en.md) to obtain incremental updates of model files)
99
108
  - The layout recognition model has been upgraded to the latest `doclayout_yolo(2501)` model, improving layout recognition accuracy.
@@ -280,10 +289,9 @@ There are three different ways to experience MinerU:
280
289
 
281
290
  ### Online Demo
282
291
 
283
- Stable Version (Stable version verified by QA):
284
- [![OpenDataLab](https://img.shields.io/badge/Demo_on_OpenDataLab-blue?logo=&labelColor=white)](https://mineru.net/OpenSourceTools/Extractor?source=github)
292
+ Synced with dev branch updates:
285
293
 
286
- Test Version (Synced with dev branch updates, testing new features):
294
+ [![OpenDataLab](https://img.shields.io/badge/Demo_on_OpenDataLab-blue?logo=&labelColor=white)](https://mineru.net/OpenSourceTools/Extractor?source=github)
287
295
  [![HuggingFace](https://img.shields.io/badge/Demo_on_HuggingFace-yellow.svg?logo=&labelColor=white)](https://huggingface.co/spaces/opendatalab/MinerU)
288
296
  [![ModelScope](https://img.shields.io/badge/Demo_on_ModelScope-purple?logo=&labelColor=white)](https://www.modelscope.cn/studios/OpenDataLab/MinerU)
289
297
 
@@ -292,8 +300,8 @@ Test Version (Synced with dev branch updates, testing new features):
292
300
  #### 1. Install magic-pdf
293
301
 
294
302
  ```bash
295
- conda create -n MinerU python=3.10
296
- conda activate MinerU
303
+ conda create -n mineru python=3.10
304
+ conda activate mineru
297
305
  pip install -U "magic-pdf[full]" --extra-index-url https://wheels.myhloli.com
298
306
  ```
299
307
 
@@ -353,7 +361,7 @@ If your device supports CUDA and meets the GPU requirements of the mainline envi
353
361
  ```bash
354
362
  wget https://github.com/opendatalab/MinerU/raw/master/docker/global/Dockerfile -O Dockerfile
355
363
  docker build -t mineru:latest .
356
- docker run --rm -it --gpus=all mineru:latest /bin/bash -c "echo 'source /opt/mineru_venv/bin/activate' >> ~/.bashrc && exec bash"
364
+ docker run -it --name mineru --gpus=all mineru:latest /bin/bash -c "echo 'source /opt/mineru_venv/bin/activate' >> ~/.bashrc && exec bash"
357
365
  magic-pdf --help
358
366
  ```
359
367
 
@@ -1,5 +1,5 @@
1
1
  magic_pdf/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
2
- magic_pdf/pdf_parse_union_core_v2.py,sha256=qh-Vj7v8EenC_f_MNMa76i1DVuckulQo1QC1IOw8LRE,37723
2
+ magic_pdf/pdf_parse_union_core_v2.py,sha256=jIrXgU_gKL4toJ6GsCoDxByszaN8mAr5vrEy_c63ewk,38310
3
3
  magic_pdf/config/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
4
4
  magic_pdf/config/constants.py,sha256=fXGzANULnJWLPxwYp3BEFWx-rnorzpySMx63ffyEyq4,1272
5
5
  magic_pdf/config/drop_reason.py,sha256=CqjMzBE96Qo8OeFvhhhItY8WhyqsKhE3DmyJLoQZNCc,2248
@@ -24,10 +24,10 @@ magic_pdf/data/io/base.py,sha256=SqNQqe30ZvoVvg7GVv-hLMCjN6yBgDyQQWeLgGsTfhQ,111
24
24
  magic_pdf/data/io/http.py,sha256=XlKB0DNf4a_uUnfgcclvaaOtmE7lmddx0DnK8A-emAM,958
25
25
  magic_pdf/data/io/s3.py,sha256=hyA7sbNriQy64xd_uyJ7acN_oneQ1Pdmoc7_xcvkue8,3606
26
26
  magic_pdf/dict2md/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
27
- magic_pdf/dict2md/ocr_mkcontent.py,sha256=RQ47F2CT0Zgmg1rZoqYj5IW5msqoCTEF6GEHi3mVd8U,12989
28
- magic_pdf/filter/__init__.py,sha256=rV4dvUxfKyVErDx9ZbUp8DVq_fRIlv0lfSXp1ND4STc,1503
29
- magic_pdf/filter/pdf_classify_by_type.py,sha256=spmDO-f2ihAl1d6-EP-j271Yi50oyu6mw4X2kRd_m0s,42320
30
- magic_pdf/filter/pdf_meta_scan.py,sha256=rqTuStW2_ICr3HmV_9IQ5jnsl4JnSh7-bL11vbtH3i0,17470
27
+ magic_pdf/dict2md/ocr_mkcontent.py,sha256=ZZTaiIn18OWuWKGbDdpoOZ3VMhe_3_JKwrKCfzDiSk0,13715
28
+ magic_pdf/filter/__init__.py,sha256=_7lSez_myu4b6cdzPpQ-NfREuqeBSq_QdyBPKVLyq2U,1505
29
+ magic_pdf/filter/pdf_classify_by_type.py,sha256=YNYXamxYgEiSujwilCNHOtrwpgJGDiQ597qJfardDVc,42354
30
+ magic_pdf/filter/pdf_meta_scan.py,sha256=eOuM0-JgaXvHolSgepGoNDJDmv_uITWLQpH_0MfnVQw,17478
31
31
  magic_pdf/integrations/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
32
32
  magic_pdf/integrations/rag/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
33
33
  magic_pdf/integrations/rag/api.py,sha256=t38wvIBzLje4_JzTP3dewMLqV-tQJ-A3B92Sj2oyrfs,2507
@@ -47,23 +47,23 @@ magic_pdf/libs/language.py,sha256=7RT3mxSa7jdpoC5ySd7ZddHA7TO7UsnmDOWiYZAxuyg,14
47
47
  magic_pdf/libs/local_math.py,sha256=tqljQOgqh3fZc146HYhO88JXJaiXMVwArBkk_CSGICc,177
48
48
  magic_pdf/libs/markdown_utils.py,sha256=86v2BmsSV4NkoRZrH4uQD1youJhYFF3vIKr_vDeg3z0,270
49
49
  magic_pdf/libs/path_utils.py,sha256=Hykw_l5CU736b2egHV9P7B-qh3QNKO4nZSGCbsi0Z8E,1043
50
- magic_pdf/libs/pdf_check.py,sha256=zBwUThKKBtnrNPmgE10lYsTy1Kq7j_6IejO7JR0J4pA,3118
50
+ magic_pdf/libs/pdf_check.py,sha256=7GWWvDR6g_rj_fE6XJlbTq5AFVX11ngRIzT0N18F214,3396
51
51
  magic_pdf/libs/pdf_image_tools.py,sha256=kjzSEbm7K0yiHv8kJ4VbZ9HHktM8qvAv3LhxRyDZEQk,1987
52
52
  magic_pdf/libs/safe_filename.py,sha256=ckwcM_eqoysTb5id8czp-tXq2G9da0-l3pshZDCHQtE,236
53
- magic_pdf/libs/version.py,sha256=LGVQyDsWifdACo7qztwb8RWWHds1E7uQ-ZqD8SAjyw4,22
53
+ magic_pdf/libs/version.py,sha256=MpAT5hgNoHnTtG1XRD_GV_A7QrHVU6vJjGSw_8qMGA4,22
54
54
  magic_pdf/model/__init__.py,sha256=sa-dO2k-TLy25I2gRrzjm_cQeYfzMf-pLwBJHkIxGo0,51
55
55
  magic_pdf/model/batch_analyze.py,sha256=sbrgOJWycb1Ep6e62CPi6jEyG6VSeklIxc4PmrqaLhM,11933
56
- magic_pdf/model/doc_analyze_by_custom_model.py,sha256=zryHy3ljcEvDqOWivXZQrpau_jPtt6x1lLOZaOkk_tI,8153
57
- magic_pdf/model/magic_model.py,sha256=Nt74oZGYUcbm4qdOQtN-hbKhXxlWO2LVv3K9yXvteWY,25204
56
+ magic_pdf/model/doc_analyze_by_custom_model.py,sha256=wma0aq6RyxAepEqnaiTJ9_pWWKLVBj39c6xWA85dxzA,8068
57
+ magic_pdf/model/magic_model.py,sha256=OcKhSJ_PyAAldgpKPiPxi2uuvnj3Sf4SvXi_5Rv0a6Q,30667
58
58
  magic_pdf/model/model_list.py,sha256=aqfEJlEfbib3D3ISrxc0Coh6SbffYh8Yq2FlQN35_zA,213
59
- magic_pdf/model/pdf_extract_kit.py,sha256=S-UVZQroUe-eEAJzuOucdCh9FCAWy2DVAZow3dGUiWI,12520
59
+ magic_pdf/model/pdf_extract_kit.py,sha256=Rd51VNZPKRA_tUbDss-b44d84K6WDG2S87a37Ax7HUA,12224
60
60
  magic_pdf/model/pp_structure_v2.py,sha256=NcqFWL4nUtjl82MFak8HX_8V3i4Aw_fK4dATrIp5uGs,3840
61
61
  magic_pdf/model/sub_modules/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
62
- magic_pdf/model/sub_modules/model_init.py,sha256=RCv6BkRLEFBKrfVReRvIvbRQ21BZLz8jj-AKQhwHkhw,6520
62
+ magic_pdf/model/sub_modules/model_init.py,sha256=Ltwi3Nd5PdVVXRF9fto5nImFVg6w-twAMzOLV_F-c3g,7693
63
63
  magic_pdf/model/sub_modules/model_utils.py,sha256=2pI1Xcr2zCF3b64e4WoFtIbjSmTVYBE4zjyHB23gvmE,2488
64
64
  magic_pdf/model/sub_modules/language_detection/__init__.py,sha256=8CRrCQVuExa0BttRFh3Z40lFy2K5jN0sp67KWjOlj5c,50
65
65
  magic_pdf/model/sub_modules/language_detection/utils.py,sha256=5nec_loLyYCJ5o6n38AYLz2SKmRvHDCBdt6ka84EaGM,3096
66
- magic_pdf/model/sub_modules/language_detection/yolov11/YOLOv11.py,sha256=GW_9WkqIzpJm1MFJexZ2ZvA6AjoqM-6yh8p4LupJhas,4762
66
+ magic_pdf/model/sub_modules/language_detection/yolov11/YOLOv11.py,sha256=bl2i7kweoJNdj47FlE9h0B_-nNQrMcW9mCLQ1puMEH8,4893
67
67
  magic_pdf/model/sub_modules/language_detection/yolov11/__init__.py,sha256=8CRrCQVuExa0BttRFh3Z40lFy2K5jN0sp67KWjOlj5c,50
68
68
  magic_pdf/model/sub_modules/layout/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
69
69
  magic_pdf/model/sub_modules/layout/doclayout_yolo/DocLayoutYOLO.py,sha256=gy7rc8poO-Zr8511NJjuBV8Uryq5k3JKrstLtCONg0c,2237
@@ -115,14 +115,13 @@ magic_pdf/operators/__init__.py,sha256=liU2-WYUvsQ1G4PYBppyvokS9z5IjrnlVMtoBAC1R
115
115
  magic_pdf/operators/models.py,sha256=mRqbCVrxxaUVDpEBAsXaK7EL1M-goICkE1W0FYgewio,5305
116
116
  magic_pdf/operators/pipes.py,sha256=XgBgisKQd_ruW-3Tw4v5LhqloZUHgn2aFcpi_q8LbCs,6767
117
117
  magic_pdf/post_proc/__init__.py,sha256=8CRrCQVuExa0BttRFh3Z40lFy2K5jN0sp67KWjOlj5c,50
118
- magic_pdf/post_proc/llm_aided.py,sha256=p-XwDObLkDv5rPxsdI7092MP-rHCMr1uAUq3fs7Zc-E,6334
119
- magic_pdf/post_proc/llm_aided_ocr.py,sha256=89kxzEQVqNGSUtmvgcg2AVDDmgb43bamdRxXbwS2FxQ,33557
118
+ magic_pdf/post_proc/llm_aided.py,sha256=yzhu2cCpUZjdwf3v0swYDgSs9VWIfMAoXepYIP1EMZs,6367
120
119
  magic_pdf/post_proc/para_split_v3.py,sha256=v4SdQn4OZdHRXpWQMfQ-FGJz_tglQ88uFUqpwY542Fo,16922
121
120
  magic_pdf/pre_proc/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
122
121
  magic_pdf/pre_proc/construct_page_dict.py,sha256=OFmq5XRKi6fYIo-lmGlL-NB16Sf0egzsfEx-fT2uYrc,660
123
122
  magic_pdf/pre_proc/cut_image.py,sha256=NDzbxwD7z7Tb4uAxL4KR6LzURFdN1Tzr4nPvj-VmEqc,1225
124
123
  magic_pdf/pre_proc/ocr_detect_all_bboxes.py,sha256=nt88ttXCEI_1ihAF7HU15SQjwM69V-iJmk-L_nyzA6o,9328
125
- magic_pdf/pre_proc/ocr_dict_merge.py,sha256=Ycgz2whzotL7kwl0-mHNV48QOQ2j4tRXqLSQrJRojYg,4847
124
+ magic_pdf/pre_proc/ocr_dict_merge.py,sha256=vrbLIzNIjxrm7PonfHaFdY6qaicc0uIly62SJwgZ5UM,5496
126
125
  magic_pdf/pre_proc/ocr_span_list_modify.py,sha256=xrgC9vR0poklZuY4Og41pZVdXzuaGFg3BnQ01X60dpo,3102
127
126
  magic_pdf/pre_proc/remove_bbox_overlap.py,sha256=mcdxAh4P56NZ3Ij8h3vW8qC_SrszfXflVWuWUuUiTNg,3089
128
127
  magic_pdf/resources/fasttext-langdetect/lid.176.ftz,sha256=jzRyz-hzintgmejpmcPL-uDc0VaWqsfXc4qAOdtgPoM,938013
@@ -139,9 +138,9 @@ magic_pdf/tools/common.py,sha256=1LfMeXBBsb3WlGeNAze_pPOYXQ8Qbfh-JgRXweojHKo,838
139
138
  magic_pdf/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
140
139
  magic_pdf/utils/annotations.py,sha256=82ou3uELNbQWa9hOFFkVt0gsIskAKf5msCv5J2IJ5V0,211
141
140
  magic_pdf/utils/office_to_pdf.py,sha256=7aj-Ls2v8saD-Rgu_t3FIc-J3Ka9wnmiEH5zY-H1Vxs,729
142
- magic_pdf-1.1.0.dist-info/LICENSE.md,sha256=jVa0BUaKrRH4erV2P5AeJ24I2WRv9chIGxditreJ6e0,34524
143
- magic_pdf-1.1.0.dist-info/METADATA,sha256=Ud48caL9BHS-ZuLN-3VpswLJFPqao7KqY0aqfF0ApOo,40958
144
- magic_pdf-1.1.0.dist-info/WHEEL,sha256=yQN5g4mg4AybRjkgi-9yy4iQEFibGQmlz78Pik5Or-A,92
145
- magic_pdf-1.1.0.dist-info/entry_points.txt,sha256=wXwYke3j8fqDQTocUspL-CqDUEv3Tfcwp09fM8dZAhA,98
146
- magic_pdf-1.1.0.dist-info/top_level.txt,sha256=J9I0AzmHWGkp9c6DL8Oe4mEx3yYphLzkRn4H25Lg1rE,10
147
- magic_pdf-1.1.0.dist-info/RECORD,,
141
+ magic_pdf-1.2.0.dist-info/LICENSE.md,sha256=jVa0BUaKrRH4erV2P5AeJ24I2WRv9chIGxditreJ6e0,34524
142
+ magic_pdf-1.2.0.dist-info/METADATA,sha256=7iel3MItxKhJc1Bbfh_NMbDp8a23k9G1vA8LYEw2k_U,40720
143
+ magic_pdf-1.2.0.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
144
+ magic_pdf-1.2.0.dist-info/entry_points.txt,sha256=wXwYke3j8fqDQTocUspL-CqDUEv3Tfcwp09fM8dZAhA,98
145
+ magic_pdf-1.2.0.dist-info/top_level.txt,sha256=J9I0AzmHWGkp9c6DL8Oe4mEx3yYphLzkRn4H25Lg1rE,10
146
+ magic_pdf-1.2.0.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: bdist_wheel (0.41.2)
2
+ Generator: bdist_wheel (0.45.1)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5