magic-pdf 0.9.2__py3-none-any.whl → 0.10.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- magic_pdf/config/constants.py +53 -0
- magic_pdf/config/drop_reason.py +35 -0
- magic_pdf/config/drop_tag.py +19 -0
- magic_pdf/config/make_content_config.py +11 -0
- magic_pdf/{libs/ModelBlockTypeEnum.py → config/model_block_type.py} +2 -1
- magic_pdf/data/read_api.py +1 -1
- magic_pdf/dict2md/mkcontent.py +226 -185
- magic_pdf/dict2md/ocr_mkcontent.py +12 -12
- magic_pdf/filter/pdf_meta_scan.py +101 -79
- magic_pdf/integrations/rag/utils.py +4 -5
- magic_pdf/libs/config_reader.py +6 -6
- magic_pdf/libs/draw_bbox.py +13 -6
- magic_pdf/libs/pdf_image_tools.py +36 -12
- magic_pdf/libs/version.py +1 -1
- magic_pdf/model/doc_analyze_by_custom_model.py +2 -0
- magic_pdf/model/magic_model.py +13 -13
- magic_pdf/model/pdf_extract_kit.py +142 -351
- magic_pdf/model/sub_modules/layout/doclayout_yolo/DocLayoutYOLO.py +21 -0
- magic_pdf/model/sub_modules/mfd/__init__.py +0 -0
- magic_pdf/model/sub_modules/mfd/yolov8/YOLOv8.py +12 -0
- magic_pdf/model/sub_modules/mfd/yolov8/__init__.py +0 -0
- magic_pdf/model/sub_modules/mfr/__init__.py +0 -0
- magic_pdf/model/sub_modules/mfr/unimernet/Unimernet.py +98 -0
- magic_pdf/model/sub_modules/mfr/unimernet/__init__.py +0 -0
- magic_pdf/model/sub_modules/model_init.py +149 -0
- magic_pdf/model/sub_modules/model_utils.py +51 -0
- magic_pdf/model/sub_modules/ocr/__init__.py +0 -0
- magic_pdf/model/sub_modules/ocr/paddleocr/__init__.py +0 -0
- magic_pdf/model/sub_modules/ocr/paddleocr/ocr_utils.py +285 -0
- magic_pdf/model/sub_modules/ocr/paddleocr/ppocr_273_mod.py +176 -0
- magic_pdf/model/sub_modules/ocr/paddleocr/ppocr_291_mod.py +213 -0
- magic_pdf/model/sub_modules/reading_oreder/__init__.py +0 -0
- magic_pdf/model/sub_modules/reading_oreder/layoutreader/__init__.py +0 -0
- magic_pdf/model/sub_modules/reading_oreder/layoutreader/xycut.py +242 -0
- magic_pdf/model/sub_modules/table/__init__.py +0 -0
- magic_pdf/model/sub_modules/table/rapidtable/__init__.py +0 -0
- magic_pdf/model/sub_modules/table/rapidtable/rapid_table.py +16 -0
- magic_pdf/model/sub_modules/table/structeqtable/__init__.py +0 -0
- magic_pdf/model/{pek_sub_modules/structeqtable/StructTableModel.py → sub_modules/table/structeqtable/struct_eqtable.py} +3 -11
- magic_pdf/model/sub_modules/table/table_utils.py +11 -0
- magic_pdf/model/sub_modules/table/tablemaster/__init__.py +0 -0
- magic_pdf/model/{ppTableModel.py → sub_modules/table/tablemaster/tablemaster_paddle.py} +31 -29
- magic_pdf/para/para_split.py +411 -248
- magic_pdf/para/para_split_v2.py +352 -182
- magic_pdf/para/para_split_v3.py +121 -66
- magic_pdf/pdf_parse_by_ocr.py +2 -0
- magic_pdf/pdf_parse_by_txt.py +2 -0
- magic_pdf/pdf_parse_union_core.py +174 -100
- magic_pdf/pdf_parse_union_core_v2.py +253 -50
- magic_pdf/pipe/AbsPipe.py +28 -44
- magic_pdf/pipe/OCRPipe.py +5 -5
- magic_pdf/pipe/TXTPipe.py +5 -6
- magic_pdf/pipe/UNIPipe.py +24 -25
- magic_pdf/post_proc/pdf_post_filter.py +7 -14
- magic_pdf/pre_proc/cut_image.py +9 -11
- magic_pdf/pre_proc/equations_replace.py +203 -212
- magic_pdf/pre_proc/ocr_detect_all_bboxes.py +235 -49
- magic_pdf/pre_proc/ocr_dict_merge.py +5 -5
- magic_pdf/pre_proc/ocr_span_list_modify.py +122 -63
- magic_pdf/pre_proc/pdf_pre_filter.py +37 -33
- magic_pdf/pre_proc/remove_bbox_overlap.py +20 -18
- magic_pdf/pre_proc/remove_colored_strip_bbox.py +36 -14
- magic_pdf/pre_proc/remove_footer_header.py +2 -5
- magic_pdf/pre_proc/remove_rotate_bbox.py +111 -63
- magic_pdf/pre_proc/resolve_bbox_conflict.py +10 -17
- magic_pdf/resources/model_config/model_configs.yaml +2 -1
- magic_pdf/spark/spark_api.py +15 -17
- magic_pdf/tools/cli.py +3 -4
- magic_pdf/tools/cli_dev.py +6 -9
- magic_pdf/tools/common.py +70 -36
- magic_pdf/user_api.py +29 -38
- {magic_pdf-0.9.2.dist-info → magic_pdf-0.10.0.dist-info}/METADATA +18 -13
- magic_pdf-0.10.0.dist-info/RECORD +198 -0
- {magic_pdf-0.9.2.dist-info → magic_pdf-0.10.0.dist-info}/WHEEL +1 -1
- magic_pdf/libs/Constants.py +0 -53
- magic_pdf/libs/MakeContentConfig.py +0 -11
- magic_pdf/libs/drop_reason.py +0 -27
- magic_pdf/libs/drop_tag.py +0 -19
- magic_pdf/model/pek_sub_modules/post_process.py +0 -36
- magic_pdf/model/pek_sub_modules/self_modify.py +0 -388
- magic_pdf/para/para_pipeline.py +0 -297
- magic_pdf-0.9.2.dist-info/RECORD +0 -178
- /magic_pdf/{libs → config}/ocr_content_type.py +0 -0
- /magic_pdf/model/{pek_sub_modules → sub_modules}/__init__.py +0 -0
- /magic_pdf/model/{pek_sub_modules/layoutlmv3 → sub_modules/layout}/__init__.py +0 -0
- /magic_pdf/model/{pek_sub_modules/structeqtable → sub_modules/layout/doclayout_yolo}/__init__.py +0 -0
- /magic_pdf/model/{v3 → sub_modules/layout/layoutlmv3}/__init__.py +0 -0
- /magic_pdf/model/{pek_sub_modules → sub_modules/layout}/layoutlmv3/backbone.py +0 -0
- /magic_pdf/model/{pek_sub_modules → sub_modules/layout}/layoutlmv3/beit.py +0 -0
- /magic_pdf/model/{pek_sub_modules → sub_modules/layout}/layoutlmv3/deit.py +0 -0
- /magic_pdf/model/{pek_sub_modules → sub_modules/layout}/layoutlmv3/layoutlmft/__init__.py +0 -0
- /magic_pdf/model/{pek_sub_modules → sub_modules/layout}/layoutlmv3/layoutlmft/data/__init__.py +0 -0
- /magic_pdf/model/{pek_sub_modules → sub_modules/layout}/layoutlmv3/layoutlmft/data/cord.py +0 -0
- /magic_pdf/model/{pek_sub_modules → sub_modules/layout}/layoutlmv3/layoutlmft/data/data_collator.py +0 -0
- /magic_pdf/model/{pek_sub_modules → sub_modules/layout}/layoutlmv3/layoutlmft/data/funsd.py +0 -0
- /magic_pdf/model/{pek_sub_modules → sub_modules/layout}/layoutlmv3/layoutlmft/data/image_utils.py +0 -0
- /magic_pdf/model/{pek_sub_modules → sub_modules/layout}/layoutlmv3/layoutlmft/data/xfund.py +0 -0
- /magic_pdf/model/{pek_sub_modules → sub_modules/layout}/layoutlmv3/layoutlmft/models/__init__.py +0 -0
- /magic_pdf/model/{pek_sub_modules → sub_modules/layout}/layoutlmv3/layoutlmft/models/layoutlmv3/__init__.py +0 -0
- /magic_pdf/model/{pek_sub_modules → sub_modules/layout}/layoutlmv3/layoutlmft/models/layoutlmv3/configuration_layoutlmv3.py +0 -0
- /magic_pdf/model/{pek_sub_modules → sub_modules/layout}/layoutlmv3/layoutlmft/models/layoutlmv3/modeling_layoutlmv3.py +0 -0
- /magic_pdf/model/{pek_sub_modules → sub_modules/layout}/layoutlmv3/layoutlmft/models/layoutlmv3/tokenization_layoutlmv3.py +0 -0
- /magic_pdf/model/{pek_sub_modules → sub_modules/layout}/layoutlmv3/layoutlmft/models/layoutlmv3/tokenization_layoutlmv3_fast.py +0 -0
- /magic_pdf/model/{pek_sub_modules → sub_modules/layout}/layoutlmv3/model_init.py +0 -0
- /magic_pdf/model/{pek_sub_modules → sub_modules/layout}/layoutlmv3/rcnn_vl.py +0 -0
- /magic_pdf/model/{pek_sub_modules → sub_modules/layout}/layoutlmv3/visualizer.py +0 -0
- /magic_pdf/model/{v3 → sub_modules/reading_oreder/layoutreader}/helpers.py +0 -0
- {magic_pdf-0.9.2.dist-info → magic_pdf-0.10.0.dist-info}/LICENSE.md +0 -0
- {magic_pdf-0.9.2.dist-info → magic_pdf-0.10.0.dist-info}/entry_points.txt +0 -0
- {magic_pdf-0.9.2.dist-info → magic_pdf-0.10.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,176 @@
|
|
1
|
+
import copy
|
2
|
+
import time
|
3
|
+
|
4
|
+
import cv2
|
5
|
+
import numpy as np
|
6
|
+
from paddleocr import PaddleOCR
|
7
|
+
from paddleocr.paddleocr import check_img, logger
|
8
|
+
from paddleocr.ppocr.utils.utility import alpha_to_color, binarize_img
|
9
|
+
from paddleocr.tools.infer.predict_system import sorted_boxes
|
10
|
+
from paddleocr.tools.infer.utility import get_rotate_crop_image, get_minarea_rect_crop
|
11
|
+
|
12
|
+
from magic_pdf.model.sub_modules.ocr.paddleocr.ocr_utils import update_det_boxes, merge_det_boxes
|
13
|
+
|
14
|
+
|
15
|
+
class ModifiedPaddleOCR(PaddleOCR):
|
16
|
+
def ocr(self,
|
17
|
+
img,
|
18
|
+
det=True,
|
19
|
+
rec=True,
|
20
|
+
cls=True,
|
21
|
+
bin=False,
|
22
|
+
inv=False,
|
23
|
+
alpha_color=(255, 255, 255),
|
24
|
+
mfd_res=None,
|
25
|
+
):
|
26
|
+
"""
|
27
|
+
OCR with PaddleOCR
|
28
|
+
args:
|
29
|
+
img: img for OCR, support ndarray, img_path and list or ndarray
|
30
|
+
det: use text detection or not. If False, only rec will be exec. Default is True
|
31
|
+
rec: use text recognition or not. If False, only det will be exec. Default is True
|
32
|
+
cls: use angle classifier or not. Default is True. If True, the text with rotation of 180 degrees can be recognized. If no text is rotated by 180 degrees, use cls=False to get better performance. Text with rotation of 90 or 270 degrees can be recognized even if cls=False.
|
33
|
+
bin: binarize image to black and white. Default is False.
|
34
|
+
inv: invert image colors. Default is False.
|
35
|
+
alpha_color: set RGB color Tuple for transparent parts replacement. Default is pure white.
|
36
|
+
"""
|
37
|
+
assert isinstance(img, (np.ndarray, list, str, bytes))
|
38
|
+
if isinstance(img, list) and det == True:
|
39
|
+
logger.error('When input a list of images, det must be false')
|
40
|
+
exit(0)
|
41
|
+
if cls == True and self.use_angle_cls == False:
|
42
|
+
pass
|
43
|
+
# logger.warning(
|
44
|
+
# 'Since the angle classifier is not initialized, it will not be used during the forward process'
|
45
|
+
# )
|
46
|
+
|
47
|
+
img = check_img(img)
|
48
|
+
# for infer pdf file
|
49
|
+
if isinstance(img, list):
|
50
|
+
if self.page_num > len(img) or self.page_num == 0:
|
51
|
+
self.page_num = len(img)
|
52
|
+
imgs = img[:self.page_num]
|
53
|
+
else:
|
54
|
+
imgs = [img]
|
55
|
+
|
56
|
+
def preprocess_image(_image):
|
57
|
+
_image = alpha_to_color(_image, alpha_color)
|
58
|
+
if inv:
|
59
|
+
_image = cv2.bitwise_not(_image)
|
60
|
+
if bin:
|
61
|
+
_image = binarize_img(_image)
|
62
|
+
return _image
|
63
|
+
|
64
|
+
if det and rec:
|
65
|
+
ocr_res = []
|
66
|
+
for idx, img in enumerate(imgs):
|
67
|
+
img = preprocess_image(img)
|
68
|
+
dt_boxes, rec_res, _ = self.__call__(img, cls, mfd_res=mfd_res)
|
69
|
+
if not dt_boxes and not rec_res:
|
70
|
+
ocr_res.append(None)
|
71
|
+
continue
|
72
|
+
tmp_res = [[box.tolist(), res]
|
73
|
+
for box, res in zip(dt_boxes, rec_res)]
|
74
|
+
ocr_res.append(tmp_res)
|
75
|
+
return ocr_res
|
76
|
+
elif det and not rec:
|
77
|
+
ocr_res = []
|
78
|
+
for idx, img in enumerate(imgs):
|
79
|
+
img = preprocess_image(img)
|
80
|
+
dt_boxes, elapse = self.text_detector(img)
|
81
|
+
if dt_boxes is None:
|
82
|
+
ocr_res.append(None)
|
83
|
+
continue
|
84
|
+
dt_boxes = sorted_boxes(dt_boxes)
|
85
|
+
# merge_det_boxes 和 update_det_boxes 都会把poly转成bbox再转回poly,因此需要过滤所有倾斜程度较大的文本框
|
86
|
+
dt_boxes = merge_det_boxes(dt_boxes)
|
87
|
+
if mfd_res:
|
88
|
+
bef = time.time()
|
89
|
+
dt_boxes = update_det_boxes(dt_boxes, mfd_res)
|
90
|
+
aft = time.time()
|
91
|
+
logger.debug("split text box by formula, new dt_boxes num : {}, elapsed : {}".format(
|
92
|
+
len(dt_boxes), aft - bef))
|
93
|
+
tmp_res = [box.tolist() for box in dt_boxes]
|
94
|
+
ocr_res.append(tmp_res)
|
95
|
+
return ocr_res
|
96
|
+
else:
|
97
|
+
ocr_res = []
|
98
|
+
cls_res = []
|
99
|
+
for idx, img in enumerate(imgs):
|
100
|
+
if not isinstance(img, list):
|
101
|
+
img = preprocess_image(img)
|
102
|
+
img = [img]
|
103
|
+
if self.use_angle_cls and cls:
|
104
|
+
img, cls_res_tmp, elapse = self.text_classifier(img)
|
105
|
+
if not rec:
|
106
|
+
cls_res.append(cls_res_tmp)
|
107
|
+
rec_res, elapse = self.text_recognizer(img)
|
108
|
+
ocr_res.append(rec_res)
|
109
|
+
if not rec:
|
110
|
+
return cls_res
|
111
|
+
return ocr_res
|
112
|
+
|
113
|
+
def __call__(self, img, cls=True, mfd_res=None):
|
114
|
+
time_dict = {'det': 0, 'rec': 0, 'cls': 0, 'all': 0}
|
115
|
+
|
116
|
+
if img is None:
|
117
|
+
logger.debug("no valid image provided")
|
118
|
+
return None, None, time_dict
|
119
|
+
|
120
|
+
start = time.time()
|
121
|
+
ori_im = img.copy()
|
122
|
+
dt_boxes, elapse = self.text_detector(img)
|
123
|
+
time_dict['det'] = elapse
|
124
|
+
|
125
|
+
if dt_boxes is None:
|
126
|
+
logger.debug("no dt_boxes found, elapsed : {}".format(elapse))
|
127
|
+
end = time.time()
|
128
|
+
time_dict['all'] = end - start
|
129
|
+
return None, None, time_dict
|
130
|
+
else:
|
131
|
+
logger.debug("dt_boxes num : {}, elapsed : {}".format(
|
132
|
+
len(dt_boxes), elapse))
|
133
|
+
img_crop_list = []
|
134
|
+
|
135
|
+
dt_boxes = sorted_boxes(dt_boxes)
|
136
|
+
|
137
|
+
# merge_det_boxes 和 update_det_boxes 都会把poly转成bbox再转回poly,因此需要过滤所有倾斜程度较大的文本框
|
138
|
+
dt_boxes = merge_det_boxes(dt_boxes)
|
139
|
+
|
140
|
+
if mfd_res:
|
141
|
+
bef = time.time()
|
142
|
+
dt_boxes = update_det_boxes(dt_boxes, mfd_res)
|
143
|
+
aft = time.time()
|
144
|
+
logger.debug("split text box by formula, new dt_boxes num : {}, elapsed : {}".format(
|
145
|
+
len(dt_boxes), aft - bef))
|
146
|
+
|
147
|
+
for bno in range(len(dt_boxes)):
|
148
|
+
tmp_box = copy.deepcopy(dt_boxes[bno])
|
149
|
+
if self.args.det_box_type == "quad":
|
150
|
+
img_crop = get_rotate_crop_image(ori_im, tmp_box)
|
151
|
+
else:
|
152
|
+
img_crop = get_minarea_rect_crop(ori_im, tmp_box)
|
153
|
+
img_crop_list.append(img_crop)
|
154
|
+
if self.use_angle_cls and cls:
|
155
|
+
img_crop_list, angle_list, elapse = self.text_classifier(
|
156
|
+
img_crop_list)
|
157
|
+
time_dict['cls'] = elapse
|
158
|
+
logger.debug("cls num : {}, elapsed : {}".format(
|
159
|
+
len(img_crop_list), elapse))
|
160
|
+
|
161
|
+
rec_res, elapse = self.text_recognizer(img_crop_list)
|
162
|
+
time_dict['rec'] = elapse
|
163
|
+
logger.debug("rec_res num : {}, elapsed : {}".format(
|
164
|
+
len(rec_res), elapse))
|
165
|
+
if self.args.save_crop_res:
|
166
|
+
self.draw_crop_rec_res(self.args.crop_res_save_dir, img_crop_list,
|
167
|
+
rec_res)
|
168
|
+
filter_boxes, filter_rec_res = [], []
|
169
|
+
for box, rec_result in zip(dt_boxes, rec_res):
|
170
|
+
text, score = rec_result
|
171
|
+
if score >= self.drop_score:
|
172
|
+
filter_boxes.append(box)
|
173
|
+
filter_rec_res.append(rec_result)
|
174
|
+
end = time.time()
|
175
|
+
time_dict['all'] = end - start
|
176
|
+
return filter_boxes, filter_rec_res, time_dict
|
@@ -0,0 +1,213 @@
|
|
1
|
+
import copy
|
2
|
+
import time
|
3
|
+
|
4
|
+
|
5
|
+
import cv2
|
6
|
+
import numpy as np
|
7
|
+
from paddleocr import PaddleOCR
|
8
|
+
from paddleocr.paddleocr import check_img, logger
|
9
|
+
from paddleocr.ppocr.utils.utility import alpha_to_color, binarize_img
|
10
|
+
from paddleocr.tools.infer.predict_system import sorted_boxes
|
11
|
+
from paddleocr.tools.infer.utility import slice_generator, merge_fragmented, get_rotate_crop_image, \
|
12
|
+
get_minarea_rect_crop
|
13
|
+
|
14
|
+
from magic_pdf.model.sub_modules.ocr.paddleocr.ocr_utils import update_det_boxes
|
15
|
+
|
16
|
+
|
17
|
+
class ModifiedPaddleOCR(PaddleOCR):
|
18
|
+
|
19
|
+
def ocr(
|
20
|
+
self,
|
21
|
+
img,
|
22
|
+
det=True,
|
23
|
+
rec=True,
|
24
|
+
cls=True,
|
25
|
+
bin=False,
|
26
|
+
inv=False,
|
27
|
+
alpha_color=(255, 255, 255),
|
28
|
+
slice={},
|
29
|
+
mfd_res=None,
|
30
|
+
):
|
31
|
+
"""
|
32
|
+
OCR with PaddleOCR
|
33
|
+
|
34
|
+
Args:
|
35
|
+
img: Image for OCR. It can be an ndarray, img_path, or a list of ndarrays.
|
36
|
+
det: Use text detection or not. If False, only text recognition will be executed. Default is True.
|
37
|
+
rec: Use text recognition or not. If False, only text detection will be executed. Default is True.
|
38
|
+
cls: Use angle classifier or not. Default is True. If True, the text with a rotation of 180 degrees can be recognized. If no text is rotated by 180 degrees, use cls=False to get better performance.
|
39
|
+
bin: Binarize image to black and white. Default is False.
|
40
|
+
inv: Invert image colors. Default is False.
|
41
|
+
alpha_color: Set RGB color Tuple for transparent parts replacement. Default is pure white.
|
42
|
+
slice: Use sliding window inference for large images. Both det and rec must be True. Requires int values for slice["horizontal_stride"], slice["vertical_stride"], slice["merge_x_thres"], slice["merge_y_thres"] (See doc/doc_en/slice_en.md). Default is {}.
|
43
|
+
|
44
|
+
Returns:
|
45
|
+
If both det and rec are True, returns a list of OCR results for each image. Each OCR result is a list of bounding boxes and recognized text for each detected text region.
|
46
|
+
If det is True and rec is False, returns a list of detected bounding boxes for each image.
|
47
|
+
If det is False and rec is True, returns a list of recognized text for each image.
|
48
|
+
If both det and rec are False, returns a list of angle classification results for each image.
|
49
|
+
|
50
|
+
Raises:
|
51
|
+
AssertionError: If the input image is not of type ndarray, list, str, or bytes.
|
52
|
+
SystemExit: If det is True and the input is a list of images.
|
53
|
+
|
54
|
+
Note:
|
55
|
+
- If the angle classifier is not initialized (use_angle_cls=False), it will not be used during the forward process.
|
56
|
+
- For PDF files, if the input is a list of images and the page_num is specified, only the first page_num images will be processed.
|
57
|
+
- The preprocess_image function is used to preprocess the input image by applying alpha color replacement, inversion, and binarization if specified.
|
58
|
+
"""
|
59
|
+
assert isinstance(img, (np.ndarray, list, str, bytes))
|
60
|
+
if isinstance(img, list) and det == True:
|
61
|
+
logger.error("When input a list of images, det must be false")
|
62
|
+
exit(0)
|
63
|
+
if cls == True and self.use_angle_cls == False:
|
64
|
+
logger.warning(
|
65
|
+
"Since the angle classifier is not initialized, it will not be used during the forward process"
|
66
|
+
)
|
67
|
+
|
68
|
+
img, flag_gif, flag_pdf = check_img(img, alpha_color)
|
69
|
+
# for infer pdf file
|
70
|
+
if isinstance(img, list) and flag_pdf:
|
71
|
+
if self.page_num > len(img) or self.page_num == 0:
|
72
|
+
imgs = img
|
73
|
+
else:
|
74
|
+
imgs = img[: self.page_num]
|
75
|
+
else:
|
76
|
+
imgs = [img]
|
77
|
+
|
78
|
+
def preprocess_image(_image):
|
79
|
+
_image = alpha_to_color(_image, alpha_color)
|
80
|
+
if inv:
|
81
|
+
_image = cv2.bitwise_not(_image)
|
82
|
+
if bin:
|
83
|
+
_image = binarize_img(_image)
|
84
|
+
return _image
|
85
|
+
|
86
|
+
if det and rec:
|
87
|
+
ocr_res = []
|
88
|
+
for img in imgs:
|
89
|
+
img = preprocess_image(img)
|
90
|
+
dt_boxes, rec_res, _ = self.__call__(img, cls, slice, mfd_res=mfd_res)
|
91
|
+
if not dt_boxes and not rec_res:
|
92
|
+
ocr_res.append(None)
|
93
|
+
continue
|
94
|
+
tmp_res = [[box.tolist(), res] for box, res in zip(dt_boxes, rec_res)]
|
95
|
+
ocr_res.append(tmp_res)
|
96
|
+
return ocr_res
|
97
|
+
elif det and not rec:
|
98
|
+
ocr_res = []
|
99
|
+
for img in imgs:
|
100
|
+
img = preprocess_image(img)
|
101
|
+
dt_boxes, elapse = self.text_detector(img)
|
102
|
+
if dt_boxes.size == 0:
|
103
|
+
ocr_res.append(None)
|
104
|
+
continue
|
105
|
+
tmp_res = [box.tolist() for box in dt_boxes]
|
106
|
+
ocr_res.append(tmp_res)
|
107
|
+
return ocr_res
|
108
|
+
else:
|
109
|
+
ocr_res = []
|
110
|
+
cls_res = []
|
111
|
+
for img in imgs:
|
112
|
+
if not isinstance(img, list):
|
113
|
+
img = preprocess_image(img)
|
114
|
+
img = [img]
|
115
|
+
if self.use_angle_cls and cls:
|
116
|
+
img, cls_res_tmp, elapse = self.text_classifier(img)
|
117
|
+
if not rec:
|
118
|
+
cls_res.append(cls_res_tmp)
|
119
|
+
rec_res, elapse = self.text_recognizer(img)
|
120
|
+
ocr_res.append(rec_res)
|
121
|
+
if not rec:
|
122
|
+
return cls_res
|
123
|
+
return ocr_res
|
124
|
+
|
125
|
+
def __call__(self, img, cls=True, slice={}, mfd_res=None):
|
126
|
+
time_dict = {"det": 0, "rec": 0, "cls": 0, "all": 0}
|
127
|
+
|
128
|
+
if img is None:
|
129
|
+
logger.debug("no valid image provided")
|
130
|
+
return None, None, time_dict
|
131
|
+
|
132
|
+
start = time.time()
|
133
|
+
ori_im = img.copy()
|
134
|
+
if slice:
|
135
|
+
slice_gen = slice_generator(
|
136
|
+
img,
|
137
|
+
horizontal_stride=slice["horizontal_stride"],
|
138
|
+
vertical_stride=slice["vertical_stride"],
|
139
|
+
)
|
140
|
+
elapsed = []
|
141
|
+
dt_slice_boxes = []
|
142
|
+
for slice_crop, v_start, h_start in slice_gen:
|
143
|
+
dt_boxes, elapse = self.text_detector(slice_crop, use_slice=True)
|
144
|
+
if dt_boxes.size:
|
145
|
+
dt_boxes[:, :, 0] += h_start
|
146
|
+
dt_boxes[:, :, 1] += v_start
|
147
|
+
dt_slice_boxes.append(dt_boxes)
|
148
|
+
elapsed.append(elapse)
|
149
|
+
dt_boxes = np.concatenate(dt_slice_boxes)
|
150
|
+
|
151
|
+
dt_boxes = merge_fragmented(
|
152
|
+
boxes=dt_boxes,
|
153
|
+
x_threshold=slice["merge_x_thres"],
|
154
|
+
y_threshold=slice["merge_y_thres"],
|
155
|
+
)
|
156
|
+
elapse = sum(elapsed)
|
157
|
+
else:
|
158
|
+
dt_boxes, elapse = self.text_detector(img)
|
159
|
+
|
160
|
+
time_dict["det"] = elapse
|
161
|
+
|
162
|
+
if dt_boxes is None:
|
163
|
+
logger.debug("no dt_boxes found, elapsed : {}".format(elapse))
|
164
|
+
end = time.time()
|
165
|
+
time_dict["all"] = end - start
|
166
|
+
return None, None, time_dict
|
167
|
+
else:
|
168
|
+
logger.debug(
|
169
|
+
"dt_boxes num : {}, elapsed : {}".format(len(dt_boxes), elapse)
|
170
|
+
)
|
171
|
+
img_crop_list = []
|
172
|
+
|
173
|
+
dt_boxes = sorted_boxes(dt_boxes)
|
174
|
+
|
175
|
+
if mfd_res:
|
176
|
+
bef = time.time()
|
177
|
+
dt_boxes = update_det_boxes(dt_boxes, mfd_res)
|
178
|
+
aft = time.time()
|
179
|
+
logger.debug("split text box by formula, new dt_boxes num : {}, elapsed : {}".format(
|
180
|
+
len(dt_boxes), aft - bef))
|
181
|
+
|
182
|
+
for bno in range(len(dt_boxes)):
|
183
|
+
tmp_box = copy.deepcopy(dt_boxes[bno])
|
184
|
+
if self.args.det_box_type == "quad":
|
185
|
+
img_crop = get_rotate_crop_image(ori_im, tmp_box)
|
186
|
+
else:
|
187
|
+
img_crop = get_minarea_rect_crop(ori_im, tmp_box)
|
188
|
+
img_crop_list.append(img_crop)
|
189
|
+
if self.use_angle_cls and cls:
|
190
|
+
img_crop_list, angle_list, elapse = self.text_classifier(img_crop_list)
|
191
|
+
time_dict["cls"] = elapse
|
192
|
+
logger.debug(
|
193
|
+
"cls num : {}, elapsed : {}".format(len(img_crop_list), elapse)
|
194
|
+
)
|
195
|
+
if len(img_crop_list) > 1000:
|
196
|
+
logger.debug(
|
197
|
+
f"rec crops num: {len(img_crop_list)}, time and memory cost may be large."
|
198
|
+
)
|
199
|
+
|
200
|
+
rec_res, elapse = self.text_recognizer(img_crop_list)
|
201
|
+
time_dict["rec"] = elapse
|
202
|
+
logger.debug("rec_res num : {}, elapsed : {}".format(len(rec_res), elapse))
|
203
|
+
if self.args.save_crop_res:
|
204
|
+
self.draw_crop_rec_res(self.args.crop_res_save_dir, img_crop_list, rec_res)
|
205
|
+
filter_boxes, filter_rec_res = [], []
|
206
|
+
for box, rec_result in zip(dt_boxes, rec_res):
|
207
|
+
text, score = rec_result[0], rec_result[1]
|
208
|
+
if score >= self.drop_score:
|
209
|
+
filter_boxes.append(box)
|
210
|
+
filter_rec_res.append(rec_result)
|
211
|
+
end = time.time()
|
212
|
+
time_dict["all"] = end - start
|
213
|
+
return filter_boxes, filter_rec_res, time_dict
|
File without changes
|
File without changes
|
@@ -0,0 +1,242 @@
|
|
1
|
+
from typing import List
|
2
|
+
import cv2
|
3
|
+
import numpy as np
|
4
|
+
|
5
|
+
|
6
|
+
def projection_by_bboxes(boxes: np.array, axis: int) -> np.ndarray:
|
7
|
+
"""
|
8
|
+
通过一组 bbox 获得投影直方图,最后以 per-pixel 形式输出
|
9
|
+
|
10
|
+
Args:
|
11
|
+
boxes: [N, 4]
|
12
|
+
axis: 0-x坐标向水平方向投影, 1-y坐标向垂直方向投影
|
13
|
+
|
14
|
+
Returns:
|
15
|
+
1D 投影直方图,长度为投影方向坐标的最大值(我们不需要图片的实际边长,因为只是要找文本框的间隔)
|
16
|
+
|
17
|
+
"""
|
18
|
+
assert axis in [0, 1]
|
19
|
+
length = np.max(boxes[:, axis::2])
|
20
|
+
res = np.zeros(length, dtype=int)
|
21
|
+
# TODO: how to remove for loop?
|
22
|
+
for start, end in boxes[:, axis::2]:
|
23
|
+
res[start:end] += 1
|
24
|
+
return res
|
25
|
+
|
26
|
+
|
27
|
+
# from: https://dothinking.github.io/2021-06-19-%E9%80%92%E5%BD%92%E6%8A%95%E5%BD%B1%E5%88%86%E5%89%B2%E7%AE%97%E6%B3%95/#:~:text=%E9%80%92%E5%BD%92%E6%8A%95%E5%BD%B1%E5%88%86%E5%89%B2%EF%BC%88Recursive%20XY,%EF%BC%8C%E5%8F%AF%E4%BB%A5%E5%88%92%E5%88%86%E6%AE%B5%E8%90%BD%E3%80%81%E8%A1%8C%E3%80%82
|
28
|
+
def split_projection_profile(arr_values: np.array, min_value: float, min_gap: float):
|
29
|
+
"""Split projection profile:
|
30
|
+
|
31
|
+
```
|
32
|
+
┌──┐
|
33
|
+
arr_values │ │ ┌─┐───
|
34
|
+
┌──┐ │ │ │ │ |
|
35
|
+
│ │ │ │ ┌───┐ │ │min_value
|
36
|
+
│ │<- min_gap ->│ │ │ │ │ │ |
|
37
|
+
────┴──┴─────────────┴──┴─┴───┴─┴─┴─┴───
|
38
|
+
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
|
39
|
+
```
|
40
|
+
|
41
|
+
Args:
|
42
|
+
arr_values (np.array): 1-d array representing the projection profile.
|
43
|
+
min_value (float): Ignore the profile if `arr_value` is less than `min_value`.
|
44
|
+
min_gap (float): Ignore the gap if less than this value.
|
45
|
+
|
46
|
+
Returns:
|
47
|
+
tuple: Start indexes and end indexes of split groups.
|
48
|
+
"""
|
49
|
+
# all indexes with projection height exceeding the threshold
|
50
|
+
arr_index = np.where(arr_values > min_value)[0]
|
51
|
+
if not len(arr_index):
|
52
|
+
return
|
53
|
+
|
54
|
+
# find zero intervals between adjacent projections
|
55
|
+
# | | ||
|
56
|
+
# ||||<- zero-interval -> |||||
|
57
|
+
arr_diff = arr_index[1:] - arr_index[0:-1]
|
58
|
+
arr_diff_index = np.where(arr_diff > min_gap)[0]
|
59
|
+
arr_zero_intvl_start = arr_index[arr_diff_index]
|
60
|
+
arr_zero_intvl_end = arr_index[arr_diff_index + 1]
|
61
|
+
|
62
|
+
# convert to index of projection range:
|
63
|
+
# the start index of zero interval is the end index of projection
|
64
|
+
arr_start = np.insert(arr_zero_intvl_end, 0, arr_index[0])
|
65
|
+
arr_end = np.append(arr_zero_intvl_start, arr_index[-1])
|
66
|
+
arr_end += 1 # end index will be excluded as index slice
|
67
|
+
|
68
|
+
return arr_start, arr_end
|
69
|
+
|
70
|
+
|
71
|
+
def recursive_xy_cut(boxes: np.ndarray, indices: List[int], res: List[int]):
|
72
|
+
"""
|
73
|
+
|
74
|
+
Args:
|
75
|
+
boxes: (N, 4)
|
76
|
+
indices: 递归过程中始终表示 box 在原始数据中的索引
|
77
|
+
res: 保存输出结果
|
78
|
+
|
79
|
+
"""
|
80
|
+
# 向 y 轴投影
|
81
|
+
assert len(boxes) == len(indices)
|
82
|
+
|
83
|
+
_indices = boxes[:, 1].argsort()
|
84
|
+
y_sorted_boxes = boxes[_indices]
|
85
|
+
y_sorted_indices = indices[_indices]
|
86
|
+
|
87
|
+
# debug_vis(y_sorted_boxes, y_sorted_indices)
|
88
|
+
|
89
|
+
y_projection = projection_by_bboxes(boxes=y_sorted_boxes, axis=1)
|
90
|
+
pos_y = split_projection_profile(y_projection, 0, 1)
|
91
|
+
if not pos_y:
|
92
|
+
return
|
93
|
+
|
94
|
+
arr_y0, arr_y1 = pos_y
|
95
|
+
for r0, r1 in zip(arr_y0, arr_y1):
|
96
|
+
# [r0, r1] 表示按照水平切分,有 bbox 的区域,对这些区域会再进行垂直切分
|
97
|
+
_indices = (r0 <= y_sorted_boxes[:, 1]) & (y_sorted_boxes[:, 1] < r1)
|
98
|
+
|
99
|
+
y_sorted_boxes_chunk = y_sorted_boxes[_indices]
|
100
|
+
y_sorted_indices_chunk = y_sorted_indices[_indices]
|
101
|
+
|
102
|
+
_indices = y_sorted_boxes_chunk[:, 0].argsort()
|
103
|
+
x_sorted_boxes_chunk = y_sorted_boxes_chunk[_indices]
|
104
|
+
x_sorted_indices_chunk = y_sorted_indices_chunk[_indices]
|
105
|
+
|
106
|
+
# 往 x 方向投影
|
107
|
+
x_projection = projection_by_bboxes(boxes=x_sorted_boxes_chunk, axis=0)
|
108
|
+
pos_x = split_projection_profile(x_projection, 0, 1)
|
109
|
+
if not pos_x:
|
110
|
+
continue
|
111
|
+
|
112
|
+
arr_x0, arr_x1 = pos_x
|
113
|
+
if len(arr_x0) == 1:
|
114
|
+
# x 方向无法切分
|
115
|
+
res.extend(x_sorted_indices_chunk)
|
116
|
+
continue
|
117
|
+
|
118
|
+
# x 方向上能分开,继续递归调用
|
119
|
+
for c0, c1 in zip(arr_x0, arr_x1):
|
120
|
+
_indices = (c0 <= x_sorted_boxes_chunk[:, 0]) & (
|
121
|
+
x_sorted_boxes_chunk[:, 0] < c1
|
122
|
+
)
|
123
|
+
recursive_xy_cut(
|
124
|
+
x_sorted_boxes_chunk[_indices], x_sorted_indices_chunk[_indices], res
|
125
|
+
)
|
126
|
+
|
127
|
+
|
128
|
+
def points_to_bbox(points):
|
129
|
+
assert len(points) == 8
|
130
|
+
|
131
|
+
# [x1,y1,x2,y2,x3,y3,x4,y4]
|
132
|
+
left = min(points[::2])
|
133
|
+
right = max(points[::2])
|
134
|
+
top = min(points[1::2])
|
135
|
+
bottom = max(points[1::2])
|
136
|
+
|
137
|
+
left = max(left, 0)
|
138
|
+
top = max(top, 0)
|
139
|
+
right = max(right, 0)
|
140
|
+
bottom = max(bottom, 0)
|
141
|
+
return [left, top, right, bottom]
|
142
|
+
|
143
|
+
|
144
|
+
def bbox2points(bbox):
|
145
|
+
left, top, right, bottom = bbox
|
146
|
+
return [left, top, right, top, right, bottom, left, bottom]
|
147
|
+
|
148
|
+
|
149
|
+
def vis_polygon(img, points, thickness=2, color=None):
|
150
|
+
br2bl_color = color
|
151
|
+
tl2tr_color = color
|
152
|
+
tr2br_color = color
|
153
|
+
bl2tl_color = color
|
154
|
+
cv2.line(
|
155
|
+
img,
|
156
|
+
(points[0][0], points[0][1]),
|
157
|
+
(points[1][0], points[1][1]),
|
158
|
+
color=tl2tr_color,
|
159
|
+
thickness=thickness,
|
160
|
+
)
|
161
|
+
|
162
|
+
cv2.line(
|
163
|
+
img,
|
164
|
+
(points[1][0], points[1][1]),
|
165
|
+
(points[2][0], points[2][1]),
|
166
|
+
color=tr2br_color,
|
167
|
+
thickness=thickness,
|
168
|
+
)
|
169
|
+
|
170
|
+
cv2.line(
|
171
|
+
img,
|
172
|
+
(points[2][0], points[2][1]),
|
173
|
+
(points[3][0], points[3][1]),
|
174
|
+
color=br2bl_color,
|
175
|
+
thickness=thickness,
|
176
|
+
)
|
177
|
+
|
178
|
+
cv2.line(
|
179
|
+
img,
|
180
|
+
(points[3][0], points[3][1]),
|
181
|
+
(points[0][0], points[0][1]),
|
182
|
+
color=bl2tl_color,
|
183
|
+
thickness=thickness,
|
184
|
+
)
|
185
|
+
return img
|
186
|
+
|
187
|
+
|
188
|
+
def vis_points(
|
189
|
+
img: np.ndarray, points, texts: List[str] = None, color=(0, 200, 0)
|
190
|
+
) -> np.ndarray:
|
191
|
+
"""
|
192
|
+
|
193
|
+
Args:
|
194
|
+
img:
|
195
|
+
points: [N, 8] 8: x1,y1,x2,y2,x3,y3,x3,y4
|
196
|
+
texts:
|
197
|
+
color:
|
198
|
+
|
199
|
+
Returns:
|
200
|
+
|
201
|
+
"""
|
202
|
+
points = np.array(points)
|
203
|
+
if texts is not None:
|
204
|
+
assert len(texts) == points.shape[0]
|
205
|
+
|
206
|
+
for i, _points in enumerate(points):
|
207
|
+
vis_polygon(img, _points.reshape(-1, 2), thickness=2, color=color)
|
208
|
+
bbox = points_to_bbox(_points)
|
209
|
+
left, top, right, bottom = bbox
|
210
|
+
cx = (left + right) // 2
|
211
|
+
cy = (top + bottom) // 2
|
212
|
+
|
213
|
+
txt = texts[i]
|
214
|
+
font = cv2.FONT_HERSHEY_SIMPLEX
|
215
|
+
cat_size = cv2.getTextSize(txt, font, 0.5, 2)[0]
|
216
|
+
|
217
|
+
img = cv2.rectangle(
|
218
|
+
img,
|
219
|
+
(cx - 5 * len(txt), cy - cat_size[1] - 5),
|
220
|
+
(cx - 5 * len(txt) + cat_size[0], cy - 5),
|
221
|
+
color,
|
222
|
+
-1,
|
223
|
+
)
|
224
|
+
|
225
|
+
img = cv2.putText(
|
226
|
+
img,
|
227
|
+
txt,
|
228
|
+
(cx - 5 * len(txt), cy - 5),
|
229
|
+
font,
|
230
|
+
0.5,
|
231
|
+
(255, 255, 255),
|
232
|
+
thickness=1,
|
233
|
+
lineType=cv2.LINE_AA,
|
234
|
+
)
|
235
|
+
|
236
|
+
return img
|
237
|
+
|
238
|
+
|
239
|
+
def vis_polygons_with_index(image, points):
|
240
|
+
texts = [str(i) for i in range(len(points))]
|
241
|
+
res_img = vis_points(image.copy(), points, texts)
|
242
|
+
return res_img
|
File without changes
|
File without changes
|
@@ -0,0 +1,16 @@
|
|
1
|
+
import numpy as np
|
2
|
+
from rapid_table import RapidTable
|
3
|
+
from rapidocr_paddle import RapidOCR
|
4
|
+
|
5
|
+
|
6
|
+
class RapidTableModel(object):
|
7
|
+
def __init__(self):
|
8
|
+
self.table_model = RapidTable()
|
9
|
+
self.ocr_engine = RapidOCR(det_use_cuda=True, cls_use_cuda=True, rec_use_cuda=True)
|
10
|
+
|
11
|
+
def predict(self, image):
|
12
|
+
ocr_result, _ = self.ocr_engine(np.asarray(image))
|
13
|
+
if ocr_result is None:
|
14
|
+
return None, None, None
|
15
|
+
html_code, table_cell_bboxes, elapse = self.table_model(np.asarray(image), ocr_result)
|
16
|
+
return html_code, table_cell_bboxes, elapse
|
File without changes
|
@@ -1,8 +1,8 @@
|
|
1
|
-
import re
|
2
|
-
|
3
1
|
import torch
|
4
2
|
from struct_eqtable import build_model
|
5
3
|
|
4
|
+
from magic_pdf.model.sub_modules.table.table_utils import minify_html
|
5
|
+
|
6
6
|
|
7
7
|
class StructTableModel:
|
8
8
|
def __init__(self, model_path, max_new_tokens=1024, max_time=60):
|
@@ -31,15 +31,7 @@ class StructTableModel:
|
|
31
31
|
)
|
32
32
|
|
33
33
|
if output_format == "html":
|
34
|
-
results = [
|
34
|
+
results = [minify_html(html) for html in results]
|
35
35
|
|
36
36
|
return results
|
37
37
|
|
38
|
-
def minify_html(self, html):
|
39
|
-
# 移除多余的空白字符
|
40
|
-
html = re.sub(r'\s+', ' ', html)
|
41
|
-
# 移除行尾的空白字符
|
42
|
-
html = re.sub(r'\s*>\s*', '>', html)
|
43
|
-
# 移除标签前的空白字符
|
44
|
-
html = re.sub(r'\s*<\s*', '<', html)
|
45
|
-
return html.strip()
|