madspace 0.3.1__cp314-cp314-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- madspace/__init__.py +1 -0
- madspace/_madspace_py.cpython-314-x86_64-linux-gnu.so +0 -0
- madspace/_madspace_py.pyi +2189 -0
- madspace/_madspace_py_loader.py +111 -0
- madspace/include/madspace/constants.h +17 -0
- madspace/include/madspace/madcode/function.h +102 -0
- madspace/include/madspace/madcode/function_builder_mixin.h +591 -0
- madspace/include/madspace/madcode/instruction.h +208 -0
- madspace/include/madspace/madcode/opcode_mixin.h +134 -0
- madspace/include/madspace/madcode/optimizer.h +31 -0
- madspace/include/madspace/madcode/type.h +203 -0
- madspace/include/madspace/madcode.h +6 -0
- madspace/include/madspace/phasespace/base.h +74 -0
- madspace/include/madspace/phasespace/channel_weight_network.h +46 -0
- madspace/include/madspace/phasespace/channel_weights.h +51 -0
- madspace/include/madspace/phasespace/chili.h +32 -0
- madspace/include/madspace/phasespace/cross_section.h +47 -0
- madspace/include/madspace/phasespace/cuts.h +34 -0
- madspace/include/madspace/phasespace/discrete_flow.h +44 -0
- madspace/include/madspace/phasespace/discrete_sampler.h +53 -0
- madspace/include/madspace/phasespace/flow.h +53 -0
- madspace/include/madspace/phasespace/histograms.h +26 -0
- madspace/include/madspace/phasespace/integrand.h +204 -0
- madspace/include/madspace/phasespace/invariants.h +26 -0
- madspace/include/madspace/phasespace/luminosity.h +41 -0
- madspace/include/madspace/phasespace/matrix_element.h +70 -0
- madspace/include/madspace/phasespace/mlp.h +37 -0
- madspace/include/madspace/phasespace/multichannel.h +49 -0
- madspace/include/madspace/phasespace/observable.h +85 -0
- madspace/include/madspace/phasespace/pdf.h +78 -0
- madspace/include/madspace/phasespace/phasespace.h +67 -0
- madspace/include/madspace/phasespace/rambo.h +26 -0
- madspace/include/madspace/phasespace/scale.h +52 -0
- madspace/include/madspace/phasespace/t_propagator_mapping.h +34 -0
- madspace/include/madspace/phasespace/three_particle.h +68 -0
- madspace/include/madspace/phasespace/topology.h +116 -0
- madspace/include/madspace/phasespace/two_particle.h +63 -0
- madspace/include/madspace/phasespace/vegas.h +53 -0
- madspace/include/madspace/phasespace.h +27 -0
- madspace/include/madspace/runtime/context.h +147 -0
- madspace/include/madspace/runtime/discrete_optimizer.h +24 -0
- madspace/include/madspace/runtime/event_generator.h +257 -0
- madspace/include/madspace/runtime/format.h +68 -0
- madspace/include/madspace/runtime/io.h +343 -0
- madspace/include/madspace/runtime/lhe_output.h +132 -0
- madspace/include/madspace/runtime/logger.h +46 -0
- madspace/include/madspace/runtime/runtime_base.h +39 -0
- madspace/include/madspace/runtime/tensor.h +603 -0
- madspace/include/madspace/runtime/thread_pool.h +101 -0
- madspace/include/madspace/runtime/vegas_optimizer.h +26 -0
- madspace/include/madspace/runtime.h +12 -0
- madspace/include/madspace/umami.h +202 -0
- madspace/include/madspace/util.h +142 -0
- madspace/lib/libmadspace.so +0 -0
- madspace/lib/libmadspace_cpu.so +0 -0
- madspace/lib/libmadspace_cpu_avx2.so +0 -0
- madspace/lib/libmadspace_cpu_avx512.so +0 -0
- madspace/lib/libmadspace_cuda.so +0 -0
- madspace/lib/libmadspace_hip.so +0 -0
- madspace/madnis/__init__.py +44 -0
- madspace/madnis/buffer.py +167 -0
- madspace/madnis/channel_grouping.py +85 -0
- madspace/madnis/distribution.py +103 -0
- madspace/madnis/integrand.py +175 -0
- madspace/madnis/integrator.py +973 -0
- madspace/madnis/interface.py +191 -0
- madspace/madnis/losses.py +186 -0
- madspace/torch.py +82 -0
- madspace-0.3.1.dist-info/METADATA +71 -0
- madspace-0.3.1.dist-info/RECORD +75 -0
- madspace-0.3.1.dist-info/WHEEL +6 -0
- madspace-0.3.1.dist-info/licenses/LICENSE +21 -0
- madspace.libs/libgfortran-83c28eba.so.5.0.0 +0 -0
- madspace.libs/libopenblas-r0-11edc3fa.3.15.so +0 -0
- madspace.libs/libquadmath-2284e583.so.0.0.0 +0 -0
|
@@ -0,0 +1,2189 @@
|
|
|
1
|
+
from __future__ import annotations
|
|
2
|
+
|
|
3
|
+
import collections.abc
|
|
4
|
+
import typing
|
|
5
|
+
|
|
6
|
+
__all__ = [
|
|
7
|
+
"AlphaSGrid",
|
|
8
|
+
"BatchSize",
|
|
9
|
+
"ChannelWeightNetwork",
|
|
10
|
+
"Context",
|
|
11
|
+
"CutItem",
|
|
12
|
+
"Cuts",
|
|
13
|
+
"DataType",
|
|
14
|
+
"Decay",
|
|
15
|
+
"Device",
|
|
16
|
+
"Diagram",
|
|
17
|
+
"DifferentialCrossSection",
|
|
18
|
+
"DiscreteFlow",
|
|
19
|
+
"DiscreteHistogram",
|
|
20
|
+
"DiscreteOptimizer",
|
|
21
|
+
"DiscreteSampler",
|
|
22
|
+
"EnergyScale",
|
|
23
|
+
"EventGenerator",
|
|
24
|
+
"EventGeneratorConfig",
|
|
25
|
+
"EventGeneratorStatus",
|
|
26
|
+
"EventGeneratorVerbosity",
|
|
27
|
+
"FastRamboMapping",
|
|
28
|
+
"Flow",
|
|
29
|
+
"Function",
|
|
30
|
+
"FunctionBuilder",
|
|
31
|
+
"FunctionGenerator",
|
|
32
|
+
"FunctionRuntime",
|
|
33
|
+
"Instruction",
|
|
34
|
+
"InstructionCall",
|
|
35
|
+
"Integrand",
|
|
36
|
+
"IntegrandProbability",
|
|
37
|
+
"Invariant",
|
|
38
|
+
"LHECompleter",
|
|
39
|
+
"LHEEvent",
|
|
40
|
+
"LHEFileWriter",
|
|
41
|
+
"LHEHeader",
|
|
42
|
+
"LHEMeta",
|
|
43
|
+
"LHEParticle",
|
|
44
|
+
"LHEProcess",
|
|
45
|
+
"LineRef",
|
|
46
|
+
"Logger",
|
|
47
|
+
"Luminosity",
|
|
48
|
+
"MLP",
|
|
49
|
+
"Mapping",
|
|
50
|
+
"MatrixElement",
|
|
51
|
+
"MatrixElementApi",
|
|
52
|
+
"MomentumPreprocessing",
|
|
53
|
+
"MultiChannelFunction",
|
|
54
|
+
"MultiChannelIntegrand",
|
|
55
|
+
"MultiChannelMapping",
|
|
56
|
+
"PartonDensity",
|
|
57
|
+
"PdfGrid",
|
|
58
|
+
"PhaseSpaceMapping",
|
|
59
|
+
"PrettyBox",
|
|
60
|
+
"Propagator",
|
|
61
|
+
"PropagatorChannelWeights",
|
|
62
|
+
"RunningCoupling",
|
|
63
|
+
"SubchannelWeights",
|
|
64
|
+
"SubprocArgs",
|
|
65
|
+
"TPropagatorMapping",
|
|
66
|
+
"Tensor",
|
|
67
|
+
"ThreeBodyDecay",
|
|
68
|
+
"Topology",
|
|
69
|
+
"TwoBodyDecay",
|
|
70
|
+
"TwoToThreeParticleScattering",
|
|
71
|
+
"TwoToTwoParticleScattering",
|
|
72
|
+
"Type",
|
|
73
|
+
"Unweighter",
|
|
74
|
+
"Value",
|
|
75
|
+
"VegasGridOptimizer",
|
|
76
|
+
"VegasHistogram",
|
|
77
|
+
"VegasMapping",
|
|
78
|
+
"batch_float",
|
|
79
|
+
"batch_float_array",
|
|
80
|
+
"batch_four_vec",
|
|
81
|
+
"batch_four_vec_array",
|
|
82
|
+
"batch_int",
|
|
83
|
+
"batch_size",
|
|
84
|
+
"batch_sizes",
|
|
85
|
+
"cpu_device",
|
|
86
|
+
"cuda_device",
|
|
87
|
+
"default_context",
|
|
88
|
+
"default_cuda_context",
|
|
89
|
+
"default_hip_context",
|
|
90
|
+
"float",
|
|
91
|
+
"format_progress",
|
|
92
|
+
"format_si_prefix",
|
|
93
|
+
"format_with_error",
|
|
94
|
+
"hip_device",
|
|
95
|
+
"initialize_vegas_grid",
|
|
96
|
+
"int",
|
|
97
|
+
"log",
|
|
98
|
+
"multichannel_batch_size",
|
|
99
|
+
"pretty",
|
|
100
|
+
"set_lib_path",
|
|
101
|
+
"set_simd_vector_size",
|
|
102
|
+
"set_thread_count",
|
|
103
|
+
"silent",
|
|
104
|
+
"single_float",
|
|
105
|
+
"single_int",
|
|
106
|
+
]
|
|
107
|
+
|
|
108
|
+
class AlphaSGrid:
|
|
109
|
+
def __init__(self, file: str) -> None: ...
|
|
110
|
+
def coefficients_shape(self, batch_dim: bool = False) -> list[int]: ...
|
|
111
|
+
def initialize_globals(self, context: Context, prefix: str = "") -> None: ...
|
|
112
|
+
def logq2_shape(self, batch_dim: bool = False) -> list[int]: ...
|
|
113
|
+
@property
|
|
114
|
+
def logq2(self) -> list[float]: ...
|
|
115
|
+
@property
|
|
116
|
+
def q(self) -> list[float]: ...
|
|
117
|
+
@property
|
|
118
|
+
def q_count(self) -> int: ...
|
|
119
|
+
@property
|
|
120
|
+
def region_sizes(self) -> list[int]: ...
|
|
121
|
+
@property
|
|
122
|
+
def values(self) -> list[float]: ...
|
|
123
|
+
|
|
124
|
+
class BatchSize:
|
|
125
|
+
one: typing.ClassVar[BatchSize] # value = 1
|
|
126
|
+
@typing.overload
|
|
127
|
+
def __init__(self) -> None: ...
|
|
128
|
+
@typing.overload
|
|
129
|
+
def __init__(self, name: str) -> None: ...
|
|
130
|
+
def __repr__(self) -> str: ...
|
|
131
|
+
def __str__(self) -> str: ...
|
|
132
|
+
|
|
133
|
+
class ChannelWeightNetwork(FunctionGenerator):
|
|
134
|
+
def __init__(
|
|
135
|
+
self,
|
|
136
|
+
channel_count: typing.SupportsInt,
|
|
137
|
+
particle_count: typing.SupportsInt,
|
|
138
|
+
hidden_dim: typing.SupportsInt = 32,
|
|
139
|
+
layers: typing.SupportsInt = 3,
|
|
140
|
+
activation: MLP.Activation = MLP.Activation.Activation.leaky_relu,
|
|
141
|
+
prefix: str = "",
|
|
142
|
+
) -> None: ...
|
|
143
|
+
def initialize_globals(self, context: Context) -> None: ...
|
|
144
|
+
def mask_name(self) -> str: ...
|
|
145
|
+
def mlp(self) -> MLP: ...
|
|
146
|
+
def preprocessing(self) -> MomentumPreprocessing: ...
|
|
147
|
+
|
|
148
|
+
class Context:
|
|
149
|
+
@typing.overload
|
|
150
|
+
def __init__(self) -> None: ...
|
|
151
|
+
@typing.overload
|
|
152
|
+
def __init__(self, device: Device) -> None: ...
|
|
153
|
+
def define_global(
|
|
154
|
+
self,
|
|
155
|
+
name: str,
|
|
156
|
+
dtype: DataType,
|
|
157
|
+
shape: collections.abc.Sequence[typing.SupportsInt],
|
|
158
|
+
requires_grad: bool = False,
|
|
159
|
+
) -> Tensor: ...
|
|
160
|
+
def device(self) -> Device: ...
|
|
161
|
+
def get_global(self, name: str) -> Tensor: ...
|
|
162
|
+
def global_exists(self, name: str) -> bool: ...
|
|
163
|
+
def global_requires_grad(self, name: str) -> bool: ...
|
|
164
|
+
def load(self, file: str) -> None: ...
|
|
165
|
+
def load_matrix_element(self, file: str, param_card: str) -> MatrixElementApi: ...
|
|
166
|
+
def matrix_element(self, index: typing.SupportsInt) -> MatrixElementApi: ...
|
|
167
|
+
def save(self, file: str) -> None: ...
|
|
168
|
+
|
|
169
|
+
class CutItem:
|
|
170
|
+
def __init__(
|
|
171
|
+
self,
|
|
172
|
+
observable: Cuts.CutObservable,
|
|
173
|
+
limit_type: Cuts.LimitType,
|
|
174
|
+
value: typing.SupportsFloat,
|
|
175
|
+
pids: collections.abc.Sequence[typing.SupportsInt],
|
|
176
|
+
pids2: collections.abc.Sequence[typing.SupportsInt] = [],
|
|
177
|
+
) -> None: ...
|
|
178
|
+
@property
|
|
179
|
+
def limit_type(self) -> Cuts.LimitType: ...
|
|
180
|
+
@property
|
|
181
|
+
def observable(self) -> Cuts.CutObservable: ...
|
|
182
|
+
@property
|
|
183
|
+
def pids(self) -> list[int]: ...
|
|
184
|
+
@property
|
|
185
|
+
def pids2(self) -> list[int]: ...
|
|
186
|
+
@property
|
|
187
|
+
def value(self) -> float: ...
|
|
188
|
+
|
|
189
|
+
class Cuts(FunctionGenerator):
|
|
190
|
+
class CutObservable:
|
|
191
|
+
"""
|
|
192
|
+
Members:
|
|
193
|
+
|
|
194
|
+
obs_pt
|
|
195
|
+
|
|
196
|
+
obs_eta
|
|
197
|
+
|
|
198
|
+
obs_dr
|
|
199
|
+
|
|
200
|
+
obs_mass
|
|
201
|
+
|
|
202
|
+
obs_sqrt_s
|
|
203
|
+
"""
|
|
204
|
+
|
|
205
|
+
__members__: typing.ClassVar[
|
|
206
|
+
dict[str, Cuts.CutObservable]
|
|
207
|
+
] # value = {'obs_pt': <CutObservable.obs_pt: 0>, 'obs_eta': <CutObservable.obs_eta: 1>, 'obs_dr': <CutObservable.obs_dr: 2>, 'obs_mass': <CutObservable.obs_mass: 3>, 'obs_sqrt_s': <CutObservable.obs_sqrt_s: 4>}
|
|
208
|
+
obs_dr: typing.ClassVar[Cuts.CutObservable] # value = <CutObservable.obs_dr: 2>
|
|
209
|
+
obs_eta: typing.ClassVar[
|
|
210
|
+
Cuts.CutObservable
|
|
211
|
+
] # value = <CutObservable.obs_eta: 1>
|
|
212
|
+
obs_mass: typing.ClassVar[
|
|
213
|
+
Cuts.CutObservable
|
|
214
|
+
] # value = <CutObservable.obs_mass: 3>
|
|
215
|
+
obs_pt: typing.ClassVar[Cuts.CutObservable] # value = <CutObservable.obs_pt: 0>
|
|
216
|
+
obs_sqrt_s: typing.ClassVar[
|
|
217
|
+
Cuts.CutObservable
|
|
218
|
+
] # value = <CutObservable.obs_sqrt_s: 4>
|
|
219
|
+
def __eq__(self, other: typing.Any) -> bool: ...
|
|
220
|
+
def __getstate__(self) -> int: ...
|
|
221
|
+
def __hash__(self) -> int: ...
|
|
222
|
+
def __index__(self) -> int: ...
|
|
223
|
+
@typing.overload
|
|
224
|
+
def __init__(self, value: typing.SupportsInt) -> None: ...
|
|
225
|
+
@typing.overload
|
|
226
|
+
def __init__(self, name: str) -> None: ...
|
|
227
|
+
def __int__(self) -> int: ...
|
|
228
|
+
def __ne__(self, other: typing.Any) -> bool: ...
|
|
229
|
+
def __repr__(self) -> str: ...
|
|
230
|
+
def __setstate__(self, state: typing.SupportsInt) -> None: ...
|
|
231
|
+
def __str__(self) -> str: ...
|
|
232
|
+
@property
|
|
233
|
+
def name(self) -> str: ...
|
|
234
|
+
@property
|
|
235
|
+
def value(self) -> int: ...
|
|
236
|
+
|
|
237
|
+
class LimitType:
|
|
238
|
+
"""
|
|
239
|
+
Members:
|
|
240
|
+
|
|
241
|
+
min
|
|
242
|
+
|
|
243
|
+
max
|
|
244
|
+
"""
|
|
245
|
+
|
|
246
|
+
__members__: typing.ClassVar[
|
|
247
|
+
dict[str, Cuts.LimitType]
|
|
248
|
+
] # value = {'min': <LimitType.min: 0>, 'max': <LimitType.max: 1>}
|
|
249
|
+
max: typing.ClassVar[Cuts.LimitType] # value = <LimitType.max: 1>
|
|
250
|
+
min: typing.ClassVar[Cuts.LimitType] # value = <LimitType.min: 0>
|
|
251
|
+
def __eq__(self, other: typing.Any) -> bool: ...
|
|
252
|
+
def __getstate__(self) -> int: ...
|
|
253
|
+
def __hash__(self) -> int: ...
|
|
254
|
+
def __index__(self) -> int: ...
|
|
255
|
+
@typing.overload
|
|
256
|
+
def __init__(self, value: typing.SupportsInt) -> None: ...
|
|
257
|
+
@typing.overload
|
|
258
|
+
def __init__(self, name: str) -> None: ...
|
|
259
|
+
def __int__(self) -> int: ...
|
|
260
|
+
def __ne__(self, other: typing.Any) -> bool: ...
|
|
261
|
+
def __repr__(self) -> str: ...
|
|
262
|
+
def __setstate__(self, state: typing.SupportsInt) -> None: ...
|
|
263
|
+
def __str__(self) -> str: ...
|
|
264
|
+
@property
|
|
265
|
+
def name(self) -> str: ...
|
|
266
|
+
@property
|
|
267
|
+
def value(self) -> int: ...
|
|
268
|
+
|
|
269
|
+
bottom_pids: typing.ClassVar[list] = [-5, 5]
|
|
270
|
+
jet_pids: typing.ClassVar[list] = [1, 2, 3, 4, -1, -2, -3, -4, 21]
|
|
271
|
+
lepton_pids: typing.ClassVar[list] = [11, 13, 15, -11, -13, -15]
|
|
272
|
+
max: typing.ClassVar[Cuts.LimitType] # value = <LimitType.max: 1>
|
|
273
|
+
min: typing.ClassVar[Cuts.LimitType] # value = <LimitType.min: 0>
|
|
274
|
+
missing_pids: typing.ClassVar[list] = [12, 14, 16, -12, -14, -16]
|
|
275
|
+
obs_dr: typing.ClassVar[Cuts.CutObservable] # value = <CutObservable.obs_dr: 2>
|
|
276
|
+
obs_eta: typing.ClassVar[Cuts.CutObservable] # value = <CutObservable.obs_eta: 1>
|
|
277
|
+
obs_mass: typing.ClassVar[Cuts.CutObservable] # value = <CutObservable.obs_mass: 3>
|
|
278
|
+
obs_pt: typing.ClassVar[Cuts.CutObservable] # value = <CutObservable.obs_pt: 0>
|
|
279
|
+
obs_sqrt_s: typing.ClassVar[
|
|
280
|
+
Cuts.CutObservable
|
|
281
|
+
] # value = <CutObservable.obs_sqrt_s: 4>
|
|
282
|
+
photon_pids: typing.ClassVar[list] = [22]
|
|
283
|
+
def __init__(
|
|
284
|
+
self,
|
|
285
|
+
pids: collections.abc.Sequence[typing.SupportsInt],
|
|
286
|
+
cut_data: collections.abc.Sequence[CutItem],
|
|
287
|
+
) -> None: ...
|
|
288
|
+
def eta_max(self) -> list[float]: ...
|
|
289
|
+
def pt_min(self) -> list[float]: ...
|
|
290
|
+
def sqrt_s_min(self) -> float: ...
|
|
291
|
+
|
|
292
|
+
class DataType:
|
|
293
|
+
"""
|
|
294
|
+
Members:
|
|
295
|
+
|
|
296
|
+
int
|
|
297
|
+
|
|
298
|
+
float
|
|
299
|
+
|
|
300
|
+
batch_sizes
|
|
301
|
+
"""
|
|
302
|
+
|
|
303
|
+
__members__: typing.ClassVar[
|
|
304
|
+
dict[str, DataType]
|
|
305
|
+
] # value = {'int': <DataType.int: 0>, 'float': <DataType.float: 1>, 'batch_sizes': <DataType.batch_sizes: 2>}
|
|
306
|
+
batch_sizes: typing.ClassVar[DataType] # value = <DataType.batch_sizes: 2>
|
|
307
|
+
float: typing.ClassVar[DataType] # value = <DataType.float: 1>
|
|
308
|
+
int: typing.ClassVar[DataType] # value = <DataType.int: 0>
|
|
309
|
+
def __eq__(self, other: typing.Any) -> bool: ...
|
|
310
|
+
def __getstate__(self) -> int: ...
|
|
311
|
+
def __hash__(self) -> int: ...
|
|
312
|
+
def __index__(self) -> int: ...
|
|
313
|
+
@typing.overload
|
|
314
|
+
def __init__(self, value: typing.SupportsInt) -> None: ...
|
|
315
|
+
@typing.overload
|
|
316
|
+
def __init__(self, name: str) -> None: ...
|
|
317
|
+
def __int__(self) -> int: ...
|
|
318
|
+
def __ne__(self, other: typing.Any) -> bool: ...
|
|
319
|
+
def __repr__(self) -> str: ...
|
|
320
|
+
def __setstate__(self, state: typing.SupportsInt) -> None: ...
|
|
321
|
+
def __str__(self) -> str: ...
|
|
322
|
+
@property
|
|
323
|
+
def name(self) -> str: ...
|
|
324
|
+
@property
|
|
325
|
+
def value(self) -> int: ...
|
|
326
|
+
|
|
327
|
+
class Decay:
|
|
328
|
+
@property
|
|
329
|
+
def child_indices(self) -> list[int]: ...
|
|
330
|
+
@property
|
|
331
|
+
def e_max(self) -> float: ...
|
|
332
|
+
@property
|
|
333
|
+
def e_min(self) -> float: ...
|
|
334
|
+
@property
|
|
335
|
+
def index(self) -> int: ...
|
|
336
|
+
@property
|
|
337
|
+
def mass(self) -> float: ...
|
|
338
|
+
@property
|
|
339
|
+
def on_shell(self) -> bool: ...
|
|
340
|
+
@property
|
|
341
|
+
def parent_index(self) -> int: ...
|
|
342
|
+
@property
|
|
343
|
+
def pdg_id(self) -> int: ...
|
|
344
|
+
@property
|
|
345
|
+
def width(self) -> float: ...
|
|
346
|
+
|
|
347
|
+
class Device:
|
|
348
|
+
pass
|
|
349
|
+
|
|
350
|
+
class Diagram:
|
|
351
|
+
def __init__(
|
|
352
|
+
self,
|
|
353
|
+
incoming_masses: collections.abc.Sequence[typing.SupportsFloat],
|
|
354
|
+
outgoing_masses: collections.abc.Sequence[typing.SupportsFloat],
|
|
355
|
+
propagators: collections.abc.Sequence[Propagator],
|
|
356
|
+
vertices: collections.abc.Sequence[collections.abc.Sequence[LineRef]],
|
|
357
|
+
) -> None: ...
|
|
358
|
+
@property
|
|
359
|
+
def incoming_masses(self) -> list[float]: ...
|
|
360
|
+
@property
|
|
361
|
+
def incoming_vertices(self) -> typing.Annotated[list[int], "FixedSize(2)"]: ...
|
|
362
|
+
@property
|
|
363
|
+
def outgoing_masses(self) -> list[float]: ...
|
|
364
|
+
@property
|
|
365
|
+
def outgoing_vertices(self) -> list[int]: ...
|
|
366
|
+
@property
|
|
367
|
+
def propagator_vertices(self) -> list[list[int]]: ...
|
|
368
|
+
@property
|
|
369
|
+
def propagators(self) -> list[Propagator]: ...
|
|
370
|
+
@property
|
|
371
|
+
def vertices(self) -> list[list[LineRef]]: ...
|
|
372
|
+
|
|
373
|
+
class DifferentialCrossSection(FunctionGenerator):
|
|
374
|
+
def __init__(
|
|
375
|
+
self,
|
|
376
|
+
matrix_element: MatrixElement,
|
|
377
|
+
cm_energy: typing.SupportsFloat,
|
|
378
|
+
running_coupling: RunningCoupling,
|
|
379
|
+
energy_scale: EnergyScale,
|
|
380
|
+
pid_options: collections.abc.Sequence[
|
|
381
|
+
collections.abc.Sequence[typing.SupportsInt]
|
|
382
|
+
] = [],
|
|
383
|
+
has_pdf1: bool = False,
|
|
384
|
+
has_pdf2: bool = False,
|
|
385
|
+
pdf_grid1: madspace._madspace_py.PdfGrid | None = None,
|
|
386
|
+
pdf_grid2: madspace._madspace_py.PdfGrid | None = None,
|
|
387
|
+
has_mirror: bool = False,
|
|
388
|
+
input_momentum_fraction: bool = True,
|
|
389
|
+
) -> None: ...
|
|
390
|
+
def has_mirror(self) -> bool: ...
|
|
391
|
+
def matrix_element(self) -> MatrixElement: ...
|
|
392
|
+
def pid_options(self) -> list[list[int]]: ...
|
|
393
|
+
|
|
394
|
+
class DiscreteFlow(Mapping):
|
|
395
|
+
def __init__(
|
|
396
|
+
self,
|
|
397
|
+
option_counts: collections.abc.Sequence[typing.SupportsInt],
|
|
398
|
+
prefix: str = "",
|
|
399
|
+
dims_with_prior: collections.abc.Sequence[typing.SupportsInt] = [],
|
|
400
|
+
condition_dim: typing.SupportsInt = 0,
|
|
401
|
+
subnet_hidden_dim: typing.SupportsInt = 32,
|
|
402
|
+
subnet_layers: typing.SupportsInt = 3,
|
|
403
|
+
subnet_activation: MLP.Activation = MLP.Activation.Activation.leaky_relu,
|
|
404
|
+
) -> None: ...
|
|
405
|
+
def condition_dim(self) -> int: ...
|
|
406
|
+
def initialize_globals(self, context: Context) -> None: ...
|
|
407
|
+
def option_counts(self) -> list[int]: ...
|
|
408
|
+
|
|
409
|
+
class DiscreteHistogram(FunctionGenerator):
|
|
410
|
+
def __init__(
|
|
411
|
+
self, option_counts: collections.abc.Sequence[typing.SupportsInt]
|
|
412
|
+
) -> None: ...
|
|
413
|
+
|
|
414
|
+
class DiscreteOptimizer:
|
|
415
|
+
def __init__(
|
|
416
|
+
self, context: Context, prob_names: collections.abc.Sequence[str]
|
|
417
|
+
) -> None: ...
|
|
418
|
+
def add_data(
|
|
419
|
+
self, values_and_counts: collections.abc.Sequence[typing.Any]
|
|
420
|
+
) -> None: ...
|
|
421
|
+
def optimize(self) -> None: ...
|
|
422
|
+
|
|
423
|
+
class DiscreteSampler(Mapping):
|
|
424
|
+
def __init__(
|
|
425
|
+
self,
|
|
426
|
+
option_counts: collections.abc.Sequence[typing.SupportsInt],
|
|
427
|
+
prefix: str = "",
|
|
428
|
+
dims_with_prior: collections.abc.Sequence[typing.SupportsInt] = [],
|
|
429
|
+
) -> None: ...
|
|
430
|
+
def initialize_globals(self, context: Context) -> None: ...
|
|
431
|
+
def option_counts(self) -> list[int]: ...
|
|
432
|
+
def prob_names(self) -> list[str]: ...
|
|
433
|
+
|
|
434
|
+
class EnergyScale(FunctionGenerator):
|
|
435
|
+
class DynamicalScaleType:
|
|
436
|
+
"""
|
|
437
|
+
Members:
|
|
438
|
+
|
|
439
|
+
transverse_energy
|
|
440
|
+
|
|
441
|
+
transverse_mass
|
|
442
|
+
|
|
443
|
+
half_transverse_mass
|
|
444
|
+
|
|
445
|
+
partonic_energy
|
|
446
|
+
"""
|
|
447
|
+
|
|
448
|
+
__members__: typing.ClassVar[
|
|
449
|
+
dict[str, EnergyScale.DynamicalScaleType]
|
|
450
|
+
] # value = {'transverse_energy': <DynamicalScaleType.transverse_energy: 0>, 'transverse_mass': <DynamicalScaleType.transverse_mass: 1>, 'half_transverse_mass': <DynamicalScaleType.half_transverse_mass: 2>, 'partonic_energy': <DynamicalScaleType.partonic_energy: 3>}
|
|
451
|
+
half_transverse_mass: typing.ClassVar[
|
|
452
|
+
EnergyScale.DynamicalScaleType
|
|
453
|
+
] # value = <DynamicalScaleType.half_transverse_mass: 2>
|
|
454
|
+
partonic_energy: typing.ClassVar[
|
|
455
|
+
EnergyScale.DynamicalScaleType
|
|
456
|
+
] # value = <DynamicalScaleType.partonic_energy: 3>
|
|
457
|
+
transverse_energy: typing.ClassVar[
|
|
458
|
+
EnergyScale.DynamicalScaleType
|
|
459
|
+
] # value = <DynamicalScaleType.transverse_energy: 0>
|
|
460
|
+
transverse_mass: typing.ClassVar[
|
|
461
|
+
EnergyScale.DynamicalScaleType
|
|
462
|
+
] # value = <DynamicalScaleType.transverse_mass: 1>
|
|
463
|
+
def __eq__(self, other: typing.Any) -> bool: ...
|
|
464
|
+
def __getstate__(self) -> int: ...
|
|
465
|
+
def __hash__(self) -> int: ...
|
|
466
|
+
def __index__(self) -> int: ...
|
|
467
|
+
@typing.overload
|
|
468
|
+
def __init__(self, value: typing.SupportsInt) -> None: ...
|
|
469
|
+
@typing.overload
|
|
470
|
+
def __init__(self, name: str) -> None: ...
|
|
471
|
+
def __int__(self) -> int: ...
|
|
472
|
+
def __ne__(self, other: typing.Any) -> bool: ...
|
|
473
|
+
def __repr__(self) -> str: ...
|
|
474
|
+
def __setstate__(self, state: typing.SupportsInt) -> None: ...
|
|
475
|
+
def __str__(self) -> str: ...
|
|
476
|
+
@property
|
|
477
|
+
def name(self) -> str: ...
|
|
478
|
+
@property
|
|
479
|
+
def value(self) -> int: ...
|
|
480
|
+
|
|
481
|
+
half_transverse_mass: typing.ClassVar[
|
|
482
|
+
EnergyScale.DynamicalScaleType
|
|
483
|
+
] # value = <DynamicalScaleType.half_transverse_mass: 2>
|
|
484
|
+
partonic_energy: typing.ClassVar[
|
|
485
|
+
EnergyScale.DynamicalScaleType
|
|
486
|
+
] # value = <DynamicalScaleType.partonic_energy: 3>
|
|
487
|
+
transverse_energy: typing.ClassVar[
|
|
488
|
+
EnergyScale.DynamicalScaleType
|
|
489
|
+
] # value = <DynamicalScaleType.transverse_energy: 0>
|
|
490
|
+
transverse_mass: typing.ClassVar[
|
|
491
|
+
EnergyScale.DynamicalScaleType
|
|
492
|
+
] # value = <DynamicalScaleType.transverse_mass: 1>
|
|
493
|
+
@typing.overload
|
|
494
|
+
def __init__(self, particle_count: typing.SupportsInt) -> None: ...
|
|
495
|
+
@typing.overload
|
|
496
|
+
def __init__(
|
|
497
|
+
self, particle_count: typing.SupportsInt, type: EnergyScale.DynamicalScaleType
|
|
498
|
+
) -> None: ...
|
|
499
|
+
@typing.overload
|
|
500
|
+
def __init__(
|
|
501
|
+
self, particle_count: typing.SupportsInt, fixed_scale: typing.SupportsFloat
|
|
502
|
+
) -> None: ...
|
|
503
|
+
@typing.overload
|
|
504
|
+
def __init__(
|
|
505
|
+
self,
|
|
506
|
+
particle_count: typing.SupportsInt,
|
|
507
|
+
dynamical_scale_type: EnergyScale.DynamicalScaleType,
|
|
508
|
+
ren_scale_fixed: bool,
|
|
509
|
+
fact_scale_fixed: bool,
|
|
510
|
+
ren_scale: typing.SupportsFloat,
|
|
511
|
+
fact_scale1: typing.SupportsFloat,
|
|
512
|
+
fact_scale2: typing.SupportsFloat,
|
|
513
|
+
) -> None: ...
|
|
514
|
+
|
|
515
|
+
class EventGenerator:
|
|
516
|
+
default_config: typing.ClassVar[
|
|
517
|
+
EventGeneratorConfig
|
|
518
|
+
] # value = <madspace._madspace_py.EventGeneratorConfig object>
|
|
519
|
+
integrand_flags: typing.ClassVar[int] = 1077
|
|
520
|
+
def __init__(
|
|
521
|
+
self,
|
|
522
|
+
context: Context,
|
|
523
|
+
channels: collections.abc.Sequence[Integrand],
|
|
524
|
+
temp_file_prefix: str,
|
|
525
|
+
status_file: str = "",
|
|
526
|
+
default_config: EventGeneratorConfig = ...,
|
|
527
|
+
channel_subprocesses: collections.abc.Sequence[typing.SupportsInt] = [],
|
|
528
|
+
channel_names: collections.abc.Sequence[str] = [],
|
|
529
|
+
) -> None: ...
|
|
530
|
+
def channel_status(self) -> list[EventGeneratorStatus]: ...
|
|
531
|
+
def combine_to_compact_npy(self, file_name: str) -> None: ...
|
|
532
|
+
def combine_to_lhe(self, file_name: str, lhe_completer: ...) -> None: ...
|
|
533
|
+
def combine_to_lhe_npy(self, file_name: str, lhe_completer: ...) -> None: ...
|
|
534
|
+
def generate(self) -> None: ...
|
|
535
|
+
def status(self) -> EventGeneratorStatus: ...
|
|
536
|
+
def survey(self) -> None: ...
|
|
537
|
+
|
|
538
|
+
class EventGeneratorConfig:
|
|
539
|
+
verbosity: EventGeneratorVerbosity
|
|
540
|
+
def __init__(self) -> None: ...
|
|
541
|
+
@property
|
|
542
|
+
def batch_size(self) -> int: ...
|
|
543
|
+
@batch_size.setter
|
|
544
|
+
def batch_size(self, arg0: typing.SupportsInt) -> None: ...
|
|
545
|
+
@property
|
|
546
|
+
def freeze_max_weight_after(self) -> int: ...
|
|
547
|
+
@freeze_max_weight_after.setter
|
|
548
|
+
def freeze_max_weight_after(self, arg0: typing.SupportsInt) -> None: ...
|
|
549
|
+
@property
|
|
550
|
+
def max_batch_size(self) -> int: ...
|
|
551
|
+
@max_batch_size.setter
|
|
552
|
+
def max_batch_size(self, arg0: typing.SupportsInt) -> None: ...
|
|
553
|
+
@property
|
|
554
|
+
def max_overweight_truncation(self) -> float: ...
|
|
555
|
+
@max_overweight_truncation.setter
|
|
556
|
+
def max_overweight_truncation(self, arg0: typing.SupportsFloat) -> None: ...
|
|
557
|
+
@property
|
|
558
|
+
def optimization_patience(self) -> int: ...
|
|
559
|
+
@optimization_patience.setter
|
|
560
|
+
def optimization_patience(self, arg0: typing.SupportsInt) -> None: ...
|
|
561
|
+
@property
|
|
562
|
+
def optimization_threshold(self) -> float: ...
|
|
563
|
+
@optimization_threshold.setter
|
|
564
|
+
def optimization_threshold(self, arg0: typing.SupportsFloat) -> None: ...
|
|
565
|
+
@property
|
|
566
|
+
def start_batch_size(self) -> int: ...
|
|
567
|
+
@start_batch_size.setter
|
|
568
|
+
def start_batch_size(self, arg0: typing.SupportsInt) -> None: ...
|
|
569
|
+
@property
|
|
570
|
+
def survey_max_iters(self) -> int: ...
|
|
571
|
+
@survey_max_iters.setter
|
|
572
|
+
def survey_max_iters(self, arg0: typing.SupportsInt) -> None: ...
|
|
573
|
+
@property
|
|
574
|
+
def survey_min_iters(self) -> int: ...
|
|
575
|
+
@survey_min_iters.setter
|
|
576
|
+
def survey_min_iters(self, arg0: typing.SupportsInt) -> None: ...
|
|
577
|
+
@property
|
|
578
|
+
def survey_target_precision(self) -> float: ...
|
|
579
|
+
@survey_target_precision.setter
|
|
580
|
+
def survey_target_precision(self, arg0: typing.SupportsFloat) -> None: ...
|
|
581
|
+
@property
|
|
582
|
+
def target_count(self) -> int: ...
|
|
583
|
+
@target_count.setter
|
|
584
|
+
def target_count(self, arg0: typing.SupportsInt) -> None: ...
|
|
585
|
+
@property
|
|
586
|
+
def vegas_damping(self) -> float: ...
|
|
587
|
+
@vegas_damping.setter
|
|
588
|
+
def vegas_damping(self, arg0: typing.SupportsFloat) -> None: ...
|
|
589
|
+
|
|
590
|
+
class EventGeneratorStatus:
|
|
591
|
+
done: bool
|
|
592
|
+
def __init__(self) -> None: ...
|
|
593
|
+
@property
|
|
594
|
+
def count(self) -> int: ...
|
|
595
|
+
@count.setter
|
|
596
|
+
def count(self, arg0: typing.SupportsInt) -> None: ...
|
|
597
|
+
@property
|
|
598
|
+
def count_after_cuts(self) -> int: ...
|
|
599
|
+
@count_after_cuts.setter
|
|
600
|
+
def count_after_cuts(self, arg0: typing.SupportsInt) -> None: ...
|
|
601
|
+
@property
|
|
602
|
+
def count_after_cuts_opt(self) -> int: ...
|
|
603
|
+
@count_after_cuts_opt.setter
|
|
604
|
+
def count_after_cuts_opt(self, arg0: typing.SupportsInt) -> None: ...
|
|
605
|
+
@property
|
|
606
|
+
def count_opt(self) -> int: ...
|
|
607
|
+
@count_opt.setter
|
|
608
|
+
def count_opt(self, arg0: typing.SupportsInt) -> None: ...
|
|
609
|
+
@property
|
|
610
|
+
def count_target(self) -> float: ...
|
|
611
|
+
@count_target.setter
|
|
612
|
+
def count_target(self, arg0: typing.SupportsFloat) -> None: ...
|
|
613
|
+
@property
|
|
614
|
+
def count_unweighted(self) -> float: ...
|
|
615
|
+
@count_unweighted.setter
|
|
616
|
+
def count_unweighted(self, arg0: typing.SupportsFloat) -> None: ...
|
|
617
|
+
@property
|
|
618
|
+
def error(self) -> float: ...
|
|
619
|
+
@error.setter
|
|
620
|
+
def error(self, arg0: typing.SupportsFloat) -> None: ...
|
|
621
|
+
@property
|
|
622
|
+
def index(self) -> int: ...
|
|
623
|
+
@index.setter
|
|
624
|
+
def index(self, arg0: typing.SupportsInt) -> None: ...
|
|
625
|
+
@property
|
|
626
|
+
def iterations(self) -> int: ...
|
|
627
|
+
@iterations.setter
|
|
628
|
+
def iterations(self, arg0: typing.SupportsInt) -> None: ...
|
|
629
|
+
@property
|
|
630
|
+
def mean(self) -> float: ...
|
|
631
|
+
@mean.setter
|
|
632
|
+
def mean(self, arg0: typing.SupportsFloat) -> None: ...
|
|
633
|
+
@property
|
|
634
|
+
def rel_std_dev(self) -> float: ...
|
|
635
|
+
@rel_std_dev.setter
|
|
636
|
+
def rel_std_dev(self, arg0: typing.SupportsFloat) -> None: ...
|
|
637
|
+
|
|
638
|
+
class EventGeneratorVerbosity:
|
|
639
|
+
"""
|
|
640
|
+
Members:
|
|
641
|
+
|
|
642
|
+
silent
|
|
643
|
+
|
|
644
|
+
log
|
|
645
|
+
|
|
646
|
+
pretty
|
|
647
|
+
"""
|
|
648
|
+
|
|
649
|
+
__members__: typing.ClassVar[
|
|
650
|
+
dict[str, EventGeneratorVerbosity]
|
|
651
|
+
] # value = {'silent': <EventGeneratorVerbosity.silent: 0>, 'log': <EventGeneratorVerbosity.log: 1>, 'pretty': <EventGeneratorVerbosity.pretty: 2>}
|
|
652
|
+
log: typing.ClassVar[
|
|
653
|
+
EventGeneratorVerbosity
|
|
654
|
+
] # value = <EventGeneratorVerbosity.log: 1>
|
|
655
|
+
pretty: typing.ClassVar[
|
|
656
|
+
EventGeneratorVerbosity
|
|
657
|
+
] # value = <EventGeneratorVerbosity.pretty: 2>
|
|
658
|
+
silent: typing.ClassVar[
|
|
659
|
+
EventGeneratorVerbosity
|
|
660
|
+
] # value = <EventGeneratorVerbosity.silent: 0>
|
|
661
|
+
def __eq__(self, other: typing.Any) -> bool: ...
|
|
662
|
+
def __getstate__(self) -> int: ...
|
|
663
|
+
def __hash__(self) -> int: ...
|
|
664
|
+
def __index__(self) -> int: ...
|
|
665
|
+
@typing.overload
|
|
666
|
+
def __init__(self, value: typing.SupportsInt) -> None: ...
|
|
667
|
+
@typing.overload
|
|
668
|
+
def __init__(self, name: str) -> None: ...
|
|
669
|
+
def __int__(self) -> int: ...
|
|
670
|
+
def __ne__(self, other: typing.Any) -> bool: ...
|
|
671
|
+
def __repr__(self) -> str: ...
|
|
672
|
+
def __setstate__(self, state: typing.SupportsInt) -> None: ...
|
|
673
|
+
def __str__(self) -> str: ...
|
|
674
|
+
@property
|
|
675
|
+
def name(self) -> str: ...
|
|
676
|
+
@property
|
|
677
|
+
def value(self) -> int: ...
|
|
678
|
+
|
|
679
|
+
class FastRamboMapping(Mapping):
|
|
680
|
+
def __init__(self, n_particles: typing.SupportsInt, massless: bool) -> None: ...
|
|
681
|
+
|
|
682
|
+
class Flow(Mapping):
|
|
683
|
+
def __init__(
|
|
684
|
+
self,
|
|
685
|
+
input_dim: typing.SupportsInt,
|
|
686
|
+
condition_dim: typing.SupportsInt = 0,
|
|
687
|
+
prefix: str = "",
|
|
688
|
+
bin_count: typing.SupportsInt = 10,
|
|
689
|
+
subnet_hidden_dim: typing.SupportsInt = 32,
|
|
690
|
+
subnet_layers: typing.SupportsInt = 3,
|
|
691
|
+
subnet_activation: MLP.Activation = MLP.Activation.Activation.leaky_relu,
|
|
692
|
+
invert_spline: bool = True,
|
|
693
|
+
) -> None: ...
|
|
694
|
+
def condition_dim(self) -> int: ...
|
|
695
|
+
def initialize_from_vegas(self, context: Context, grid_name: str) -> None: ...
|
|
696
|
+
def initialize_globals(self, context: Context) -> None: ...
|
|
697
|
+
def input_dim(self) -> int: ...
|
|
698
|
+
|
|
699
|
+
class Function:
|
|
700
|
+
@staticmethod
|
|
701
|
+
def load(file: str) -> Function: ...
|
|
702
|
+
def __call__(self, *args): ...
|
|
703
|
+
def __repr__(self) -> str: ...
|
|
704
|
+
def __str__(self) -> str: ...
|
|
705
|
+
def save(self, file: str) -> None: ...
|
|
706
|
+
@property
|
|
707
|
+
def globals(self) -> dict[str, Value]: ...
|
|
708
|
+
@property
|
|
709
|
+
def inputs(self) -> list[Value]: ...
|
|
710
|
+
@property
|
|
711
|
+
def instructions(self) -> list[InstructionCall]: ...
|
|
712
|
+
@property
|
|
713
|
+
def locals(self) -> list[Value]: ...
|
|
714
|
+
@property
|
|
715
|
+
def outputs(self) -> list[Value]: ...
|
|
716
|
+
|
|
717
|
+
class FunctionBuilder:
|
|
718
|
+
def __init__(
|
|
719
|
+
self,
|
|
720
|
+
input_types: collections.abc.Sequence[Type],
|
|
721
|
+
output_types: collections.abc.Sequence[Type],
|
|
722
|
+
) -> None: ...
|
|
723
|
+
def add(self, in1: Value, in2: Value) -> Value: ...
|
|
724
|
+
def add_int(self, in1: Value, in2: Value) -> Value: ...
|
|
725
|
+
def apply_subchannel_weights(
|
|
726
|
+
self,
|
|
727
|
+
channel_weights_in: Value,
|
|
728
|
+
subchannel_weights: Value,
|
|
729
|
+
channel_indices: Value,
|
|
730
|
+
subchannel_indices: Value,
|
|
731
|
+
) -> Value: ...
|
|
732
|
+
def batch_cat(
|
|
733
|
+
self, args: collections.abc.Sequence[Value]
|
|
734
|
+
) -> typing.Annotated[list[Value], "FixedSize(2)"]: ...
|
|
735
|
+
def batch_gather(self, indices: Value, values: Value) -> Value: ...
|
|
736
|
+
def batch_scatter(self, indices: Value, target: Value, source: Value) -> Value: ...
|
|
737
|
+
def batch_size(self, args: collections.abc.Sequence[Value]) -> Value: ...
|
|
738
|
+
def batch_split(self, in1: Value, counts: Value) -> list[Value]: ...
|
|
739
|
+
def boost_beam(self, p1: Value, x1: Value, x2: Value) -> Value: ...
|
|
740
|
+
def boost_beam_inverse(self, p1: Value, x1: Value, x2: Value) -> Value: ...
|
|
741
|
+
def breit_wigner_invariant(
|
|
742
|
+
self, r: Value, mass: Value, width: Value, s_min: Value, s_max: Value
|
|
743
|
+
) -> typing.Annotated[list[Value], "FixedSize(2)"]: ...
|
|
744
|
+
def breit_wigner_invariant_inverse(
|
|
745
|
+
self, s: Value, mass: Value, width: Value, s_min: Value, s_max: Value
|
|
746
|
+
) -> typing.Annotated[list[Value], "FixedSize(2)"]: ...
|
|
747
|
+
def cat(self, args: collections.abc.Sequence[Value]) -> Value: ...
|
|
748
|
+
def chili_forward(
|
|
749
|
+
self, r: Value, e_cm: Value, m_out: Value, pt_min: Value, y_max: Value
|
|
750
|
+
) -> typing.Annotated[list[Value], "FixedSize(4)"]: ...
|
|
751
|
+
def collect_channel_weights(
|
|
752
|
+
self, amp2: Value, channel_indices: Value, channel_count: Value
|
|
753
|
+
) -> Value: ...
|
|
754
|
+
def com_p_in(
|
|
755
|
+
self, e_cm: Value
|
|
756
|
+
) -> typing.Annotated[list[Value], "FixedSize(2)"]: ...
|
|
757
|
+
def cut_dr(self, p: Value, indices: Value, min_max: Value) -> Value: ...
|
|
758
|
+
def cut_eta(self, p: Value, min_max: Value) -> Value: ...
|
|
759
|
+
def cut_m_inv(self, p: Value, indices: Value, min_max: Value) -> Value: ...
|
|
760
|
+
def cut_pt(self, p: Value, min_max: Value) -> Value: ...
|
|
761
|
+
def cut_sqrt_s(self, p: Value, min_max: Value) -> Value: ...
|
|
762
|
+
def cut_unphysical(self, w_in: Value, p: Value, x1: Value, x2: Value) -> Value: ...
|
|
763
|
+
def diff_cross_section(
|
|
764
|
+
self,
|
|
765
|
+
x1: Value,
|
|
766
|
+
x2: Value,
|
|
767
|
+
pdf1: Value,
|
|
768
|
+
pdf2: Value,
|
|
769
|
+
matrix_element: Value,
|
|
770
|
+
e_cm2: Value,
|
|
771
|
+
) -> Value: ...
|
|
772
|
+
def discrete_histogram(
|
|
773
|
+
self, input: Value, weights: Value, option_count: Value
|
|
774
|
+
) -> typing.Annotated[list[Value], "FixedSize(2)"]: ...
|
|
775
|
+
def elu(self, in1: Value) -> Value: ...
|
|
776
|
+
def fast_rambo_massive(
|
|
777
|
+
self, r: Value, e_cm: Value, masses: Value, p0: Value
|
|
778
|
+
) -> typing.Annotated[list[Value], "FixedSize(2)"]: ...
|
|
779
|
+
def fast_rambo_massive_com(
|
|
780
|
+
self, r: Value, e_cm: Value, masses: Value
|
|
781
|
+
) -> typing.Annotated[list[Value], "FixedSize(2)"]: ...
|
|
782
|
+
def fast_rambo_massless(
|
|
783
|
+
self, r: Value, e_cm: Value, p0: Value
|
|
784
|
+
) -> typing.Annotated[list[Value], "FixedSize(2)"]: ...
|
|
785
|
+
def fast_rambo_massless_com(
|
|
786
|
+
self, r: Value, e_cm: Value
|
|
787
|
+
) -> typing.Annotated[list[Value], "FixedSize(2)"]: ...
|
|
788
|
+
def full(self, args: collections.abc.Sequence[Value]) -> Value: ...
|
|
789
|
+
def function(self) -> Function: ...
|
|
790
|
+
def gather(self, index: Value, choices: Value) -> Value: ...
|
|
791
|
+
def gather_int(self, index: Value, choices: Value) -> Value: ...
|
|
792
|
+
def gelu(self, in1: Value) -> Value: ...
|
|
793
|
+
def get_global(
|
|
794
|
+
self,
|
|
795
|
+
name: str,
|
|
796
|
+
dtype: DataType,
|
|
797
|
+
shape: collections.abc.Sequence[typing.SupportsInt],
|
|
798
|
+
) -> Value: ...
|
|
799
|
+
def input(self, index: typing.SupportsInt) -> Value: ...
|
|
800
|
+
def input_range(
|
|
801
|
+
self, start_index: typing.SupportsInt, end_index: typing.SupportsInt
|
|
802
|
+
) -> list[Value]: ...
|
|
803
|
+
def interpolate_alpha_s(
|
|
804
|
+
self, q2: Value, grid_logq2: Value, grid_coeffs: Value
|
|
805
|
+
) -> Value: ...
|
|
806
|
+
def interpolate_pdf(
|
|
807
|
+
self,
|
|
808
|
+
x: Value,
|
|
809
|
+
q2: Value,
|
|
810
|
+
pid_indices: Value,
|
|
811
|
+
grid_logx: Value,
|
|
812
|
+
grid_logq2: Value,
|
|
813
|
+
grid_coeffs: Value,
|
|
814
|
+
) -> Value: ...
|
|
815
|
+
def invariants_from_momenta(self, p_ext: Value, factors: Value) -> Value: ...
|
|
816
|
+
def leaky_relu(self, in1: Value) -> Value: ...
|
|
817
|
+
def matmul(self, x: Value, weight: Value, bias: Value) -> Value: ...
|
|
818
|
+
def matrix_element(self, args: collections.abc.Sequence[Value]) -> list[Value]: ...
|
|
819
|
+
def max(self, in1: Value, in2: Value) -> Value: ...
|
|
820
|
+
def min(self, in1: Value, in2: Value) -> Value: ...
|
|
821
|
+
def mirror_momenta(self, p_ext: Value, mirror: Value) -> Value: ...
|
|
822
|
+
def momenta_to_x1x2(
|
|
823
|
+
self, p_ext: Value, e_cm: Value
|
|
824
|
+
) -> typing.Annotated[list[Value], "FixedSize(2)"]: ...
|
|
825
|
+
def mul(self, in1: Value, in2: Value) -> Value: ...
|
|
826
|
+
def nonzero(self, input: Value) -> Value: ...
|
|
827
|
+
def offset_indices(
|
|
828
|
+
self, batch_sizes_offset: Value, batch_sizes_out: Value
|
|
829
|
+
) -> Value: ...
|
|
830
|
+
def one_hot(self, index: Value, option_count: Value) -> Value: ...
|
|
831
|
+
def output(self, index: typing.SupportsInt, value: Value) -> None: ...
|
|
832
|
+
def output_range(
|
|
833
|
+
self, start_index: typing.SupportsInt, values: collections.abc.Sequence[Value]
|
|
834
|
+
) -> None: ...
|
|
835
|
+
def permute_momenta(
|
|
836
|
+
self, momenta: Value, permutations: Value, index: Value
|
|
837
|
+
) -> Value: ...
|
|
838
|
+
def pop(self, in1: Value) -> typing.Annotated[list[Value], "FixedSize(2)"]: ...
|
|
839
|
+
def product(self, values: collections.abc.Sequence[Value]) -> Value: ...
|
|
840
|
+
def pt_eta_phi_x(self, p_ext: Value, x1: Value, x2: Value) -> Value: ...
|
|
841
|
+
def r_to_x1x2(
|
|
842
|
+
self, r: Value, s_hat: Value, s_lab: Value
|
|
843
|
+
) -> typing.Annotated[list[Value], "FixedSize(3)"]: ...
|
|
844
|
+
def random(self, batch_size: Value, count: Value) -> Value: ...
|
|
845
|
+
def reduce_product(self, in1: Value) -> Value: ...
|
|
846
|
+
def relu(self, in1: Value) -> Value: ...
|
|
847
|
+
def rqs_find_bin(
|
|
848
|
+
self, input: Value, in_sizes: Value, out_sizes: Value, derivatives: Value
|
|
849
|
+
) -> Value: ...
|
|
850
|
+
def rqs_forward(
|
|
851
|
+
self, input: Value, condition: Value
|
|
852
|
+
) -> typing.Annotated[list[Value], "FixedSize(2)"]: ...
|
|
853
|
+
def rqs_inverse(
|
|
854
|
+
self, input: Value, condition: Value
|
|
855
|
+
) -> typing.Annotated[list[Value], "FixedSize(2)"]: ...
|
|
856
|
+
def rqs_reshape(
|
|
857
|
+
self, input: Value, bin_count: Value
|
|
858
|
+
) -> typing.Annotated[list[Value], "FixedSize(3)"]: ...
|
|
859
|
+
def s_inv_min_max(
|
|
860
|
+
self, pa: Value, pb: Value, p3: Value, t1_abs: Value, m1: Value, m2: Value
|
|
861
|
+
) -> typing.Annotated[list[Value], "FixedSize(2)"]: ...
|
|
862
|
+
def sample_discrete(
|
|
863
|
+
self, r: Value, option_count: Value
|
|
864
|
+
) -> typing.Annotated[list[Value], "FixedSize(2)"]: ...
|
|
865
|
+
def sample_discrete_inverse(
|
|
866
|
+
self, index: Value, option_count: Value
|
|
867
|
+
) -> typing.Annotated[list[Value], "FixedSize(2)"]: ...
|
|
868
|
+
def sample_discrete_probs(
|
|
869
|
+
self, r: Value, probs: Value
|
|
870
|
+
) -> typing.Annotated[list[Value], "FixedSize(2)"]: ...
|
|
871
|
+
def sample_discrete_probs_inverse(
|
|
872
|
+
self, index: Value, probs: Value
|
|
873
|
+
) -> typing.Annotated[list[Value], "FixedSize(2)"]: ...
|
|
874
|
+
def scale_half_transverse_mass(self, momenta: Value) -> Value: ...
|
|
875
|
+
def scale_partonic_energy(self, momenta: Value) -> Value: ...
|
|
876
|
+
def scale_transverse_energy(self, momenta: Value) -> Value: ...
|
|
877
|
+
def scale_transverse_mass(self, momenta: Value) -> Value: ...
|
|
878
|
+
def sde2_channel_weights(
|
|
879
|
+
self, invariants: Value, masses: Value, widths: Value, indices: Value
|
|
880
|
+
) -> Value: ...
|
|
881
|
+
def select(self, input: Value, indices: Value) -> Value: ...
|
|
882
|
+
def sigmoid(self, in1: Value) -> Value: ...
|
|
883
|
+
def softmax(self, input: Value) -> Value: ...
|
|
884
|
+
def softmax_prior(self, input: Value, prior: Value) -> Value: ...
|
|
885
|
+
def softplus(self, in1: Value) -> Value: ...
|
|
886
|
+
def sqrt(self, in1: Value) -> Value: ...
|
|
887
|
+
def square(self, in1: Value) -> Value: ...
|
|
888
|
+
def squeeze(self, input: Value) -> Value: ...
|
|
889
|
+
def stable_invariant(
|
|
890
|
+
self, r: Value, mass: Value, s_min: Value, s_max: Value
|
|
891
|
+
) -> typing.Annotated[list[Value], "FixedSize(2)"]: ...
|
|
892
|
+
def stable_invariant_inverse(
|
|
893
|
+
self, s: Value, mass: Value, s_min: Value, s_max: Value
|
|
894
|
+
) -> typing.Annotated[list[Value], "FixedSize(2)"]: ...
|
|
895
|
+
def stable_invariant_nu(
|
|
896
|
+
self, r: Value, mass: Value, nu: Value, s_min: Value, s_max: Value
|
|
897
|
+
) -> typing.Annotated[list[Value], "FixedSize(2)"]: ...
|
|
898
|
+
def stable_invariant_nu_inverse(
|
|
899
|
+
self, s: Value, mass: Value, nu: Value, s_min: Value, s_max: Value
|
|
900
|
+
) -> typing.Annotated[list[Value], "FixedSize(2)"]: ...
|
|
901
|
+
def stack(self, args: collections.abc.Sequence[Value]) -> Value: ...
|
|
902
|
+
def sub(self, in1: Value, in2: Value) -> Value: ...
|
|
903
|
+
def subchannel_weights(
|
|
904
|
+
self,
|
|
905
|
+
invariants: Value,
|
|
906
|
+
masses: Value,
|
|
907
|
+
widths: Value,
|
|
908
|
+
indices: Value,
|
|
909
|
+
on_shell: Value,
|
|
910
|
+
group_sizes: Value,
|
|
911
|
+
) -> Value: ...
|
|
912
|
+
def t_inv_min_max(
|
|
913
|
+
self, pa: Value, pb: Value, m1: Value, m2: Value
|
|
914
|
+
) -> typing.Annotated[list[Value], "FixedSize(2)"]: ...
|
|
915
|
+
def three_body_decay(
|
|
916
|
+
self,
|
|
917
|
+
r_e1: Value,
|
|
918
|
+
r_e2: Value,
|
|
919
|
+
r_phi: Value,
|
|
920
|
+
r_cos_theta: Value,
|
|
921
|
+
r_beta: Value,
|
|
922
|
+
m0: Value,
|
|
923
|
+
m1: Value,
|
|
924
|
+
m2: Value,
|
|
925
|
+
m3: Value,
|
|
926
|
+
p0: Value,
|
|
927
|
+
) -> typing.Annotated[list[Value], "FixedSize(4)"]: ...
|
|
928
|
+
def three_body_decay_com(
|
|
929
|
+
self,
|
|
930
|
+
r_e1: Value,
|
|
931
|
+
r_e2: Value,
|
|
932
|
+
r_phi: Value,
|
|
933
|
+
r_cos_theta: Value,
|
|
934
|
+
r_beta: Value,
|
|
935
|
+
m0: Value,
|
|
936
|
+
m1: Value,
|
|
937
|
+
m2: Value,
|
|
938
|
+
m3: Value,
|
|
939
|
+
) -> typing.Annotated[list[Value], "FixedSize(4)"]: ...
|
|
940
|
+
def two_body_decay(
|
|
941
|
+
self,
|
|
942
|
+
r_phi: Value,
|
|
943
|
+
r_cos_theta: Value,
|
|
944
|
+
m0: Value,
|
|
945
|
+
m1: Value,
|
|
946
|
+
m2: Value,
|
|
947
|
+
p0: Value,
|
|
948
|
+
) -> typing.Annotated[list[Value], "FixedSize(3)"]: ...
|
|
949
|
+
def two_body_decay_com(
|
|
950
|
+
self, r_phi: Value, r_cos_theta: Value, m0: Value, m1: Value, m2: Value
|
|
951
|
+
) -> typing.Annotated[list[Value], "FixedSize(3)"]: ...
|
|
952
|
+
def two_to_three_particle_scattering(
|
|
953
|
+
self,
|
|
954
|
+
phi_choice: Value,
|
|
955
|
+
pa: Value,
|
|
956
|
+
pb: Value,
|
|
957
|
+
p3: Value,
|
|
958
|
+
s23: Value,
|
|
959
|
+
t1_abs: Value,
|
|
960
|
+
m1: Value,
|
|
961
|
+
m2: Value,
|
|
962
|
+
) -> typing.Annotated[list[Value], "FixedSize(3)"]: ...
|
|
963
|
+
def two_to_two_particle_scattering(
|
|
964
|
+
self, r_phi: Value, pa: Value, pb: Value, t_abs: Value, m1: Value, m2: Value
|
|
965
|
+
) -> typing.Annotated[list[Value], "FixedSize(3)"]: ...
|
|
966
|
+
def two_to_two_particle_scattering_com(
|
|
967
|
+
self, r_phi: Value, pa: Value, pb: Value, t_abs: Value, m1: Value, m2: Value
|
|
968
|
+
) -> typing.Annotated[list[Value], "FixedSize(3)"]: ...
|
|
969
|
+
def uniform_invariant(
|
|
970
|
+
self, r: Value, s_min: Value, s_max: Value
|
|
971
|
+
) -> typing.Annotated[list[Value], "FixedSize(2)"]: ...
|
|
972
|
+
def uniform_invariant_inverse(
|
|
973
|
+
self, s: Value, s_min: Value, s_max: Value
|
|
974
|
+
) -> typing.Annotated[list[Value], "FixedSize(2)"]: ...
|
|
975
|
+
def unsqueeze(self, input: Value) -> Value: ...
|
|
976
|
+
def unstack(self, in1: Value) -> list[Value]: ...
|
|
977
|
+
def unstack_sizes(self, in1: Value) -> list[Value]: ...
|
|
978
|
+
def unweight(
|
|
979
|
+
self, weights: Value, max_weight: Value
|
|
980
|
+
) -> typing.Annotated[list[Value], "FixedSize(2)"]: ...
|
|
981
|
+
def vegas_forward(
|
|
982
|
+
self, input: Value, grid: Value
|
|
983
|
+
) -> typing.Annotated[list[Value], "FixedSize(2)"]: ...
|
|
984
|
+
def vegas_histogram(
|
|
985
|
+
self, input: Value, weights: Value, bin_count: Value
|
|
986
|
+
) -> typing.Annotated[list[Value], "FixedSize(2)"]: ...
|
|
987
|
+
def vegas_inverse(
|
|
988
|
+
self, input: Value, grid: Value
|
|
989
|
+
) -> typing.Annotated[list[Value], "FixedSize(2)"]: ...
|
|
990
|
+
def x1x2_to_r(
|
|
991
|
+
self, x1: Value, x2: Value, s_lab: Value
|
|
992
|
+
) -> typing.Annotated[list[Value], "FixedSize(2)"]: ...
|
|
993
|
+
|
|
994
|
+
class FunctionGenerator:
|
|
995
|
+
def __call__(self, *args): ...
|
|
996
|
+
def __init__(
|
|
997
|
+
self,
|
|
998
|
+
name: str,
|
|
999
|
+
arg_types: collections.abc.Sequence[Type],
|
|
1000
|
+
return_types: collections.abc.Sequence[Type],
|
|
1001
|
+
) -> None: ...
|
|
1002
|
+
def build_function(
|
|
1003
|
+
self, builder: FunctionBuilder, args: collections.abc.Sequence[Value]
|
|
1004
|
+
) -> list[Value]: ...
|
|
1005
|
+
def function(self) -> Function: ...
|
|
1006
|
+
|
|
1007
|
+
class FunctionRuntime:
|
|
1008
|
+
def __call__(self, *args): ...
|
|
1009
|
+
@typing.overload
|
|
1010
|
+
def __init__(self, function: Function) -> None: ...
|
|
1011
|
+
@typing.overload
|
|
1012
|
+
def __init__(self, function: Function, context: Context) -> None: ...
|
|
1013
|
+
def call(self, arg0: collections.abc.Sequence[typing.Any]) -> list[Tensor]: ...
|
|
1014
|
+
def call_backward(
|
|
1015
|
+
self,
|
|
1016
|
+
arg0: collections.abc.Sequence[typing.Any],
|
|
1017
|
+
arg1: collections.abc.Sequence[typing.Any],
|
|
1018
|
+
arg2: collections.abc.Sequence[bool],
|
|
1019
|
+
) -> tuple[
|
|
1020
|
+
list[madspace._madspace_py.Tensor | None],
|
|
1021
|
+
list[tuple[str, madspace._madspace_py.Tensor | None]],
|
|
1022
|
+
]: ...
|
|
1023
|
+
def call_with_grad(
|
|
1024
|
+
self,
|
|
1025
|
+
arg0: collections.abc.Sequence[typing.Any],
|
|
1026
|
+
arg1: collections.abc.Sequence[bool],
|
|
1027
|
+
) -> tuple[list[Tensor], list[madspace._madspace_py.Tensor | None], list[bool]]: ...
|
|
1028
|
+
|
|
1029
|
+
class Instruction:
|
|
1030
|
+
def __str__(self) -> str: ...
|
|
1031
|
+
@property
|
|
1032
|
+
def name(self) -> str: ...
|
|
1033
|
+
@property
|
|
1034
|
+
def opcode(self) -> int: ...
|
|
1035
|
+
|
|
1036
|
+
class InstructionCall:
|
|
1037
|
+
def __repr__(self) -> str: ...
|
|
1038
|
+
def __str__(self) -> str: ...
|
|
1039
|
+
@property
|
|
1040
|
+
def inputs(self) -> list[Value]: ...
|
|
1041
|
+
@property
|
|
1042
|
+
def instruction(self) -> Instruction: ...
|
|
1043
|
+
@property
|
|
1044
|
+
def outputs(self) -> list[Value]: ...
|
|
1045
|
+
|
|
1046
|
+
class Integrand(FunctionGenerator):
|
|
1047
|
+
matrix_element_inputs: typing.ClassVar[
|
|
1048
|
+
list
|
|
1049
|
+
] # value = [<MatrixElementInput.momenta_in: 0>, <MatrixElementInput.alpha_s_in: 1>, <MatrixElementInput.flavor_in: 2>, <MatrixElementInput.random_color_in: 3>, <MatrixElementInput.random_helicity_in: 4>, <MatrixElementInput.random_diagram_in: 5>]
|
|
1050
|
+
matrix_element_outputs: typing.ClassVar[
|
|
1051
|
+
list
|
|
1052
|
+
] # value = [<MatrixElementOutput.matrix_element_out: 0>, <MatrixElementOutput.diagram_amp2_out: 1>, <MatrixElementOutput.color_index_out: 2>, <MatrixElementOutput.helicity_index_out: 3>, <MatrixElementOutput.diagram_index_out: 4>]
|
|
1053
|
+
return_chan_weights: typing.ClassVar[int] = 256
|
|
1054
|
+
return_channel: typing.ClassVar[int] = 128
|
|
1055
|
+
return_cwnet_input: typing.ClassVar[int] = 512
|
|
1056
|
+
return_discrete: typing.ClassVar[int] = 1024
|
|
1057
|
+
return_discrete_latent: typing.ClassVar[int] = 2048
|
|
1058
|
+
return_indices: typing.ClassVar[int] = 16
|
|
1059
|
+
return_latent: typing.ClassVar[int] = 64
|
|
1060
|
+
return_momenta: typing.ClassVar[int] = 4
|
|
1061
|
+
return_random: typing.ClassVar[int] = 32
|
|
1062
|
+
return_x1_x2: typing.ClassVar[int] = 8
|
|
1063
|
+
sample: typing.ClassVar[int] = 1
|
|
1064
|
+
unweight: typing.ClassVar[int] = 2
|
|
1065
|
+
def __init__(
|
|
1066
|
+
self,
|
|
1067
|
+
mapping: PhaseSpaceMapping,
|
|
1068
|
+
diff_xs: DifferentialCrossSection,
|
|
1069
|
+
adaptive_map: (
|
|
1070
|
+
None | madspace._madspace_py.VegasMapping | madspace._madspace_py.Flow
|
|
1071
|
+
) = None,
|
|
1072
|
+
discrete_before: (
|
|
1073
|
+
None
|
|
1074
|
+
| madspace._madspace_py.DiscreteSampler
|
|
1075
|
+
| madspace._madspace_py.DiscreteFlow
|
|
1076
|
+
) = None,
|
|
1077
|
+
discrete_after: (
|
|
1078
|
+
None
|
|
1079
|
+
| madspace._madspace_py.DiscreteSampler
|
|
1080
|
+
| madspace._madspace_py.DiscreteFlow
|
|
1081
|
+
) = None,
|
|
1082
|
+
pdf_grid: madspace._madspace_py.PdfGrid | None = None,
|
|
1083
|
+
energy_scale: madspace._madspace_py.EnergyScale | None = None,
|
|
1084
|
+
prop_chan_weights: madspace._madspace_py.PropagatorChannelWeights | None = None,
|
|
1085
|
+
subchan_weights: madspace._madspace_py.SubchannelWeights | None = None,
|
|
1086
|
+
chan_weight_net: madspace._madspace_py.ChannelWeightNetwork | None = None,
|
|
1087
|
+
chan_weight_remap: collections.abc.Sequence[typing.SupportsInt] = [],
|
|
1088
|
+
remapped_chan_count: typing.SupportsInt = 0,
|
|
1089
|
+
flags: typing.SupportsInt = 0,
|
|
1090
|
+
channel_indices: collections.abc.Sequence[typing.SupportsInt] = [],
|
|
1091
|
+
active_flavors: collections.abc.Sequence[typing.SupportsInt] = [],
|
|
1092
|
+
) -> None: ...
|
|
1093
|
+
def adaptive_map(
|
|
1094
|
+
self,
|
|
1095
|
+
) -> None | madspace._madspace_py.VegasMapping | madspace._madspace_py.Flow: ...
|
|
1096
|
+
def chan_weight_net(self) -> madspace._madspace_py.ChannelWeightNetwork | None: ...
|
|
1097
|
+
def diff_xs(self) -> DifferentialCrossSection: ...
|
|
1098
|
+
def discrete_after(
|
|
1099
|
+
self,
|
|
1100
|
+
) -> (
|
|
1101
|
+
None
|
|
1102
|
+
| madspace._madspace_py.DiscreteSampler
|
|
1103
|
+
| madspace._madspace_py.DiscreteFlow
|
|
1104
|
+
): ...
|
|
1105
|
+
def discrete_before(
|
|
1106
|
+
self,
|
|
1107
|
+
) -> (
|
|
1108
|
+
None
|
|
1109
|
+
| madspace._madspace_py.DiscreteSampler
|
|
1110
|
+
| madspace._madspace_py.DiscreteFlow
|
|
1111
|
+
): ...
|
|
1112
|
+
def energy_scale(self) -> madspace._madspace_py.EnergyScale | None: ...
|
|
1113
|
+
def flags(self) -> int: ...
|
|
1114
|
+
def latent_dims(self) -> tuple[list[int], list[bool]]: ...
|
|
1115
|
+
def mapping(self) -> PhaseSpaceMapping: ...
|
|
1116
|
+
def particle_count(self) -> int: ...
|
|
1117
|
+
def prop_chan_weights(
|
|
1118
|
+
self,
|
|
1119
|
+
) -> madspace._madspace_py.PropagatorChannelWeights | None: ...
|
|
1120
|
+
def random_dim(self) -> int: ...
|
|
1121
|
+
def vegas_grid_name(self) -> str | None: ...
|
|
1122
|
+
|
|
1123
|
+
class IntegrandProbability(FunctionGenerator):
|
|
1124
|
+
def __init__(self, integrand: Integrand) -> None: ...
|
|
1125
|
+
|
|
1126
|
+
class Invariant(Mapping):
|
|
1127
|
+
def __init__(
|
|
1128
|
+
self,
|
|
1129
|
+
power: typing.SupportsFloat = 0.0,
|
|
1130
|
+
mass: typing.SupportsFloat = 0.0,
|
|
1131
|
+
width: typing.SupportsFloat = 0.0,
|
|
1132
|
+
) -> None: ...
|
|
1133
|
+
|
|
1134
|
+
class LHECompleter:
|
|
1135
|
+
def __init__(
|
|
1136
|
+
self,
|
|
1137
|
+
subproc_args: collections.abc.Sequence[SubprocArgs],
|
|
1138
|
+
bw_cutoff: typing.SupportsFloat,
|
|
1139
|
+
) -> None: ...
|
|
1140
|
+
def complete_event_data(
|
|
1141
|
+
self,
|
|
1142
|
+
event: LHEEvent,
|
|
1143
|
+
subprocess_index: typing.SupportsInt,
|
|
1144
|
+
diagram_index: typing.SupportsInt,
|
|
1145
|
+
color_index: typing.SupportsInt,
|
|
1146
|
+
flavor_index: typing.SupportsInt,
|
|
1147
|
+
helicity_index: typing.SupportsInt,
|
|
1148
|
+
) -> None: ...
|
|
1149
|
+
@property
|
|
1150
|
+
def max_particle_count(self) -> int: ...
|
|
1151
|
+
|
|
1152
|
+
class LHEEvent:
|
|
1153
|
+
def __init__(
|
|
1154
|
+
self,
|
|
1155
|
+
process_id: typing.SupportsInt = 0,
|
|
1156
|
+
weight: typing.SupportsFloat = 0.0,
|
|
1157
|
+
scale: typing.SupportsFloat = 0.0,
|
|
1158
|
+
alpha_qed: typing.SupportsFloat = 0.0,
|
|
1159
|
+
alpha_qcd: typing.SupportsFloat = 0.0,
|
|
1160
|
+
particles: collections.abc.Sequence[LHEParticle] = [],
|
|
1161
|
+
) -> None: ...
|
|
1162
|
+
@property
|
|
1163
|
+
def alpha_qcd(self) -> int: ...
|
|
1164
|
+
@alpha_qcd.setter
|
|
1165
|
+
def alpha_qcd(self, arg0: typing.SupportsInt) -> None: ...
|
|
1166
|
+
@property
|
|
1167
|
+
def alpha_qed(self) -> float: ...
|
|
1168
|
+
@alpha_qed.setter
|
|
1169
|
+
def alpha_qed(self, arg0: typing.SupportsFloat) -> None: ...
|
|
1170
|
+
@property
|
|
1171
|
+
def particles(self) -> list[LHEParticle]: ...
|
|
1172
|
+
@particles.setter
|
|
1173
|
+
def particles(self, arg0: collections.abc.Sequence[LHEParticle]) -> None: ...
|
|
1174
|
+
@property
|
|
1175
|
+
def process_id(self) -> int: ...
|
|
1176
|
+
@process_id.setter
|
|
1177
|
+
def process_id(self, arg0: typing.SupportsInt) -> None: ...
|
|
1178
|
+
@property
|
|
1179
|
+
def scale(self) -> float: ...
|
|
1180
|
+
@scale.setter
|
|
1181
|
+
def scale(self, arg0: typing.SupportsFloat) -> None: ...
|
|
1182
|
+
@property
|
|
1183
|
+
def weight(self) -> float: ...
|
|
1184
|
+
@weight.setter
|
|
1185
|
+
def weight(self, arg0: typing.SupportsFloat) -> None: ...
|
|
1186
|
+
|
|
1187
|
+
class LHEFileWriter:
|
|
1188
|
+
def __init__(self, file_name: str, meta: LHEMeta) -> None: ...
|
|
1189
|
+
def write(self, event: LHEEvent) -> None: ...
|
|
1190
|
+
def write_string(self, str: str) -> None: ...
|
|
1191
|
+
|
|
1192
|
+
class LHEHeader:
|
|
1193
|
+
content: str
|
|
1194
|
+
escape_content: bool
|
|
1195
|
+
name: str
|
|
1196
|
+
def __init__(
|
|
1197
|
+
self, name: str = "", content: str = "", escape_content: bool = False
|
|
1198
|
+
) -> None: ...
|
|
1199
|
+
|
|
1200
|
+
class LHEMeta:
|
|
1201
|
+
def __init__(
|
|
1202
|
+
self,
|
|
1203
|
+
beam1_pdg_id: typing.SupportsInt = 0,
|
|
1204
|
+
beam2_pdg_id: typing.SupportsInt = 0,
|
|
1205
|
+
beam1_energy: typing.SupportsFloat = 0.0,
|
|
1206
|
+
beam2_energy: typing.SupportsFloat = 0.0,
|
|
1207
|
+
beam1_pdf_authors: typing.SupportsInt = 0,
|
|
1208
|
+
beam2_pdf_authors: typing.SupportsInt = 0,
|
|
1209
|
+
beam1_pdf_id: typing.SupportsInt = 0,
|
|
1210
|
+
beam2_pdf_id: typing.SupportsInt = 0,
|
|
1211
|
+
weight_mode: typing.SupportsInt = 0,
|
|
1212
|
+
processes: collections.abc.Sequence[LHEProcess] = [],
|
|
1213
|
+
headers: collections.abc.Sequence[LHEHeader] = [],
|
|
1214
|
+
) -> None: ...
|
|
1215
|
+
@property
|
|
1216
|
+
def beam1_energy(self) -> float: ...
|
|
1217
|
+
@beam1_energy.setter
|
|
1218
|
+
def beam1_energy(self, arg0: typing.SupportsFloat) -> None: ...
|
|
1219
|
+
@property
|
|
1220
|
+
def beam1_pdf_authors(self) -> int: ...
|
|
1221
|
+
@beam1_pdf_authors.setter
|
|
1222
|
+
def beam1_pdf_authors(self, arg0: typing.SupportsInt) -> None: ...
|
|
1223
|
+
@property
|
|
1224
|
+
def beam1_pdf_id(self) -> int: ...
|
|
1225
|
+
@beam1_pdf_id.setter
|
|
1226
|
+
def beam1_pdf_id(self, arg0: typing.SupportsInt) -> None: ...
|
|
1227
|
+
@property
|
|
1228
|
+
def beam1_pdg_id(self) -> int: ...
|
|
1229
|
+
@beam1_pdg_id.setter
|
|
1230
|
+
def beam1_pdg_id(self, arg0: typing.SupportsInt) -> None: ...
|
|
1231
|
+
@property
|
|
1232
|
+
def beam2_energy(self) -> float: ...
|
|
1233
|
+
@beam2_energy.setter
|
|
1234
|
+
def beam2_energy(self, arg0: typing.SupportsFloat) -> None: ...
|
|
1235
|
+
@property
|
|
1236
|
+
def beam2_pdf_authors(self) -> int: ...
|
|
1237
|
+
@beam2_pdf_authors.setter
|
|
1238
|
+
def beam2_pdf_authors(self, arg0: typing.SupportsInt) -> None: ...
|
|
1239
|
+
@property
|
|
1240
|
+
def beam2_pdf_id(self) -> int: ...
|
|
1241
|
+
@beam2_pdf_id.setter
|
|
1242
|
+
def beam2_pdf_id(self, arg0: typing.SupportsInt) -> None: ...
|
|
1243
|
+
@property
|
|
1244
|
+
def beam2_pdg_id(self) -> int: ...
|
|
1245
|
+
@beam2_pdg_id.setter
|
|
1246
|
+
def beam2_pdg_id(self, arg0: typing.SupportsInt) -> None: ...
|
|
1247
|
+
@property
|
|
1248
|
+
def headers(self) -> list[LHEHeader]: ...
|
|
1249
|
+
@headers.setter
|
|
1250
|
+
def headers(self, arg0: collections.abc.Sequence[LHEHeader]) -> None: ...
|
|
1251
|
+
@property
|
|
1252
|
+
def processes(self) -> list[LHEProcess]: ...
|
|
1253
|
+
@processes.setter
|
|
1254
|
+
def processes(self, arg0: collections.abc.Sequence[LHEProcess]) -> None: ...
|
|
1255
|
+
@property
|
|
1256
|
+
def weight_mode(self) -> int: ...
|
|
1257
|
+
@weight_mode.setter
|
|
1258
|
+
def weight_mode(self, arg0: typing.SupportsInt) -> None: ...
|
|
1259
|
+
|
|
1260
|
+
class LHEParticle:
|
|
1261
|
+
status_incoming: typing.ClassVar[int] = -1
|
|
1262
|
+
status_intermediate_resonance: typing.ClassVar[int] = 2
|
|
1263
|
+
status_outgoing: typing.ClassVar[int] = 1
|
|
1264
|
+
def __init__(
|
|
1265
|
+
self,
|
|
1266
|
+
pdg_id: typing.SupportsInt = 0,
|
|
1267
|
+
status_code: typing.SupportsInt = 0,
|
|
1268
|
+
mother1: typing.SupportsInt = 0,
|
|
1269
|
+
mother2: typing.SupportsInt = 0,
|
|
1270
|
+
color: typing.SupportsInt = 0,
|
|
1271
|
+
anti_color: typing.SupportsInt = 0,
|
|
1272
|
+
p_x: typing.SupportsFloat = 0.0,
|
|
1273
|
+
p_y: typing.SupportsFloat = 0.0,
|
|
1274
|
+
p_z: typing.SupportsFloat = 0.0,
|
|
1275
|
+
energy: typing.SupportsFloat = 0.0,
|
|
1276
|
+
mass: typing.SupportsFloat = 0.0,
|
|
1277
|
+
lifetime: typing.SupportsFloat = 0.0,
|
|
1278
|
+
spin: typing.SupportsFloat = 0.0,
|
|
1279
|
+
) -> None: ...
|
|
1280
|
+
@property
|
|
1281
|
+
def anti_color(self) -> int: ...
|
|
1282
|
+
@anti_color.setter
|
|
1283
|
+
def anti_color(self, arg0: typing.SupportsInt) -> None: ...
|
|
1284
|
+
@property
|
|
1285
|
+
def color(self) -> int: ...
|
|
1286
|
+
@color.setter
|
|
1287
|
+
def color(self, arg0: typing.SupportsInt) -> None: ...
|
|
1288
|
+
@property
|
|
1289
|
+
def energy(self) -> float: ...
|
|
1290
|
+
@energy.setter
|
|
1291
|
+
def energy(self, arg0: typing.SupportsFloat) -> None: ...
|
|
1292
|
+
@property
|
|
1293
|
+
def lifetime(self) -> float: ...
|
|
1294
|
+
@lifetime.setter
|
|
1295
|
+
def lifetime(self, arg0: typing.SupportsFloat) -> None: ...
|
|
1296
|
+
@property
|
|
1297
|
+
def mass(self) -> float: ...
|
|
1298
|
+
@mass.setter
|
|
1299
|
+
def mass(self, arg0: typing.SupportsFloat) -> None: ...
|
|
1300
|
+
@property
|
|
1301
|
+
def mother1(self) -> int: ...
|
|
1302
|
+
@mother1.setter
|
|
1303
|
+
def mother1(self, arg0: typing.SupportsInt) -> None: ...
|
|
1304
|
+
@property
|
|
1305
|
+
def mother2(self) -> int: ...
|
|
1306
|
+
@mother2.setter
|
|
1307
|
+
def mother2(self, arg0: typing.SupportsInt) -> None: ...
|
|
1308
|
+
@property
|
|
1309
|
+
def pdg_id(self) -> int: ...
|
|
1310
|
+
@pdg_id.setter
|
|
1311
|
+
def pdg_id(self, arg0: typing.SupportsInt) -> None: ...
|
|
1312
|
+
@property
|
|
1313
|
+
def px(self) -> float: ...
|
|
1314
|
+
@px.setter
|
|
1315
|
+
def px(self, arg0: typing.SupportsFloat) -> None: ...
|
|
1316
|
+
@property
|
|
1317
|
+
def py(self) -> float: ...
|
|
1318
|
+
@py.setter
|
|
1319
|
+
def py(self, arg0: typing.SupportsFloat) -> None: ...
|
|
1320
|
+
@property
|
|
1321
|
+
def pz(self) -> float: ...
|
|
1322
|
+
@pz.setter
|
|
1323
|
+
def pz(self, arg0: typing.SupportsFloat) -> None: ...
|
|
1324
|
+
@property
|
|
1325
|
+
def spin(self) -> float: ...
|
|
1326
|
+
@spin.setter
|
|
1327
|
+
def spin(self, arg0: typing.SupportsFloat) -> None: ...
|
|
1328
|
+
@property
|
|
1329
|
+
def status_code(self) -> int: ...
|
|
1330
|
+
@status_code.setter
|
|
1331
|
+
def status_code(self, arg0: typing.SupportsInt) -> None: ...
|
|
1332
|
+
|
|
1333
|
+
class LHEProcess:
|
|
1334
|
+
@staticmethod
|
|
1335
|
+
def __init__(*args, **kwargs) -> None: ...
|
|
1336
|
+
@property
|
|
1337
|
+
def cross_section(self) -> float: ...
|
|
1338
|
+
@cross_section.setter
|
|
1339
|
+
def cross_section(self, arg0: typing.SupportsFloat) -> None: ...
|
|
1340
|
+
@property
|
|
1341
|
+
def cross_section_error(self) -> float: ...
|
|
1342
|
+
@cross_section_error.setter
|
|
1343
|
+
def cross_section_error(self, arg0: typing.SupportsFloat) -> None: ...
|
|
1344
|
+
@property
|
|
1345
|
+
def max_weight(self) -> float: ...
|
|
1346
|
+
@max_weight.setter
|
|
1347
|
+
def max_weight(self, arg0: typing.SupportsFloat) -> None: ...
|
|
1348
|
+
@property
|
|
1349
|
+
def process_id(self) -> int: ...
|
|
1350
|
+
@process_id.setter
|
|
1351
|
+
def process_id(self, arg0: typing.SupportsInt) -> None: ...
|
|
1352
|
+
|
|
1353
|
+
class LineRef:
|
|
1354
|
+
def __init__(self, str: str) -> None: ...
|
|
1355
|
+
def __repr__(self) -> str: ...
|
|
1356
|
+
|
|
1357
|
+
class Logger:
|
|
1358
|
+
class LogLevel:
|
|
1359
|
+
"""
|
|
1360
|
+
Members:
|
|
1361
|
+
|
|
1362
|
+
level_debug
|
|
1363
|
+
|
|
1364
|
+
level_info
|
|
1365
|
+
|
|
1366
|
+
level_warning
|
|
1367
|
+
|
|
1368
|
+
level_error
|
|
1369
|
+
"""
|
|
1370
|
+
|
|
1371
|
+
__members__: typing.ClassVar[
|
|
1372
|
+
dict[str, Logger.LogLevel]
|
|
1373
|
+
] # value = {'level_debug': <LogLevel.level_debug: 0>, 'level_info': <LogLevel.level_info: 1>, 'level_warning': <LogLevel.level_warning: 2>, 'level_error': <LogLevel.level_error: 3>}
|
|
1374
|
+
level_debug: typing.ClassVar[
|
|
1375
|
+
Logger.LogLevel
|
|
1376
|
+
] # value = <LogLevel.level_debug: 0>
|
|
1377
|
+
level_error: typing.ClassVar[
|
|
1378
|
+
Logger.LogLevel
|
|
1379
|
+
] # value = <LogLevel.level_error: 3>
|
|
1380
|
+
level_info: typing.ClassVar[Logger.LogLevel] # value = <LogLevel.level_info: 1>
|
|
1381
|
+
level_warning: typing.ClassVar[
|
|
1382
|
+
Logger.LogLevel
|
|
1383
|
+
] # value = <LogLevel.level_warning: 2>
|
|
1384
|
+
def __eq__(self, other: typing.Any) -> bool: ...
|
|
1385
|
+
def __getstate__(self) -> int: ...
|
|
1386
|
+
def __hash__(self) -> int: ...
|
|
1387
|
+
def __index__(self) -> int: ...
|
|
1388
|
+
@typing.overload
|
|
1389
|
+
def __init__(self, value: typing.SupportsInt) -> None: ...
|
|
1390
|
+
@typing.overload
|
|
1391
|
+
def __init__(self, name: str) -> None: ...
|
|
1392
|
+
def __int__(self) -> int: ...
|
|
1393
|
+
def __ne__(self, other: typing.Any) -> bool: ...
|
|
1394
|
+
def __repr__(self) -> str: ...
|
|
1395
|
+
def __setstate__(self, state: typing.SupportsInt) -> None: ...
|
|
1396
|
+
def __str__(self) -> str: ...
|
|
1397
|
+
@property
|
|
1398
|
+
def name(self) -> str: ...
|
|
1399
|
+
@property
|
|
1400
|
+
def value(self) -> int: ...
|
|
1401
|
+
|
|
1402
|
+
level_debug: typing.ClassVar[Logger.LogLevel] # value = <LogLevel.level_debug: 0>
|
|
1403
|
+
level_error: typing.ClassVar[Logger.LogLevel] # value = <LogLevel.level_error: 3>
|
|
1404
|
+
level_info: typing.ClassVar[Logger.LogLevel] # value = <LogLevel.level_info: 1>
|
|
1405
|
+
level_warning: typing.ClassVar[
|
|
1406
|
+
Logger.LogLevel
|
|
1407
|
+
] # value = <LogLevel.level_warning: 2>
|
|
1408
|
+
@staticmethod
|
|
1409
|
+
def debug(message: str) -> None: ...
|
|
1410
|
+
@staticmethod
|
|
1411
|
+
def error(message: str) -> None: ...
|
|
1412
|
+
@staticmethod
|
|
1413
|
+
def info(message: str) -> None: ...
|
|
1414
|
+
@staticmethod
|
|
1415
|
+
def log(level: Logger.LogLevel, message: str) -> None: ...
|
|
1416
|
+
@staticmethod
|
|
1417
|
+
def set_log_handler(
|
|
1418
|
+
func: collections.abc.Callable[[Logger.LogLevel, str], None],
|
|
1419
|
+
) -> None: ...
|
|
1420
|
+
@staticmethod
|
|
1421
|
+
def warning(message: str) -> None: ...
|
|
1422
|
+
|
|
1423
|
+
class Luminosity(Mapping):
|
|
1424
|
+
def __init__(
|
|
1425
|
+
self,
|
|
1426
|
+
s_lab: typing.SupportsFloat,
|
|
1427
|
+
s_hat_min: typing.SupportsFloat,
|
|
1428
|
+
s_hat_max: typing.SupportsFloat = 0.0,
|
|
1429
|
+
invariant_power: typing.SupportsFloat = 0.0,
|
|
1430
|
+
mass: typing.SupportsFloat = 0.0,
|
|
1431
|
+
width: typing.SupportsFloat = 0.0,
|
|
1432
|
+
) -> None: ...
|
|
1433
|
+
|
|
1434
|
+
class MLP(FunctionGenerator):
|
|
1435
|
+
class Activation:
|
|
1436
|
+
"""
|
|
1437
|
+
Members:
|
|
1438
|
+
|
|
1439
|
+
relu
|
|
1440
|
+
|
|
1441
|
+
leaky_relu
|
|
1442
|
+
|
|
1443
|
+
elu
|
|
1444
|
+
|
|
1445
|
+
gelu
|
|
1446
|
+
|
|
1447
|
+
sigmoid
|
|
1448
|
+
|
|
1449
|
+
softplus
|
|
1450
|
+
|
|
1451
|
+
linear
|
|
1452
|
+
"""
|
|
1453
|
+
|
|
1454
|
+
__members__: typing.ClassVar[
|
|
1455
|
+
dict[str, MLP.Activation]
|
|
1456
|
+
] # value = {'relu': <Activation.relu: 0>, 'leaky_relu': <Activation.leaky_relu: 1>, 'elu': <Activation.elu: 2>, 'gelu': <Activation.gelu: 3>, 'sigmoid': <Activation.sigmoid: 4>, 'softplus': <Activation.softplus: 5>, 'linear': <Activation.linear: 6>}
|
|
1457
|
+
elu: typing.ClassVar[MLP.Activation] # value = <Activation.elu: 2>
|
|
1458
|
+
gelu: typing.ClassVar[MLP.Activation] # value = <Activation.gelu: 3>
|
|
1459
|
+
leaky_relu: typing.ClassVar[
|
|
1460
|
+
MLP.Activation
|
|
1461
|
+
] # value = <Activation.leaky_relu: 1>
|
|
1462
|
+
linear: typing.ClassVar[MLP.Activation] # value = <Activation.linear: 6>
|
|
1463
|
+
relu: typing.ClassVar[MLP.Activation] # value = <Activation.relu: 0>
|
|
1464
|
+
sigmoid: typing.ClassVar[MLP.Activation] # value = <Activation.sigmoid: 4>
|
|
1465
|
+
softplus: typing.ClassVar[MLP.Activation] # value = <Activation.softplus: 5>
|
|
1466
|
+
def __eq__(self, other: typing.Any) -> bool: ...
|
|
1467
|
+
def __getstate__(self) -> int: ...
|
|
1468
|
+
def __hash__(self) -> int: ...
|
|
1469
|
+
def __index__(self) -> int: ...
|
|
1470
|
+
@typing.overload
|
|
1471
|
+
def __init__(self, value: typing.SupportsInt) -> None: ...
|
|
1472
|
+
@typing.overload
|
|
1473
|
+
def __init__(self, name: str) -> None: ...
|
|
1474
|
+
def __int__(self) -> int: ...
|
|
1475
|
+
def __ne__(self, other: typing.Any) -> bool: ...
|
|
1476
|
+
def __repr__(self) -> str: ...
|
|
1477
|
+
def __setstate__(self, state: typing.SupportsInt) -> None: ...
|
|
1478
|
+
def __str__(self) -> str: ...
|
|
1479
|
+
@property
|
|
1480
|
+
def name(self) -> str: ...
|
|
1481
|
+
@property
|
|
1482
|
+
def value(self) -> int: ...
|
|
1483
|
+
|
|
1484
|
+
elu: typing.ClassVar[MLP.Activation] # value = <Activation.elu: 2>
|
|
1485
|
+
gelu: typing.ClassVar[MLP.Activation] # value = <Activation.gelu: 3>
|
|
1486
|
+
leaky_relu: typing.ClassVar[MLP.Activation] # value = <Activation.leaky_relu: 1>
|
|
1487
|
+
linear: typing.ClassVar[MLP.Activation] # value = <Activation.linear: 6>
|
|
1488
|
+
relu: typing.ClassVar[MLP.Activation] # value = <Activation.relu: 0>
|
|
1489
|
+
sigmoid: typing.ClassVar[MLP.Activation] # value = <Activation.sigmoid: 4>
|
|
1490
|
+
softplus: typing.ClassVar[MLP.Activation] # value = <Activation.softplus: 5>
|
|
1491
|
+
def __init__(
|
|
1492
|
+
self,
|
|
1493
|
+
input_dim: typing.SupportsInt,
|
|
1494
|
+
output_dim: typing.SupportsInt,
|
|
1495
|
+
hidden_dim: typing.SupportsInt = 32,
|
|
1496
|
+
layers: typing.SupportsInt = 3,
|
|
1497
|
+
activation: MLP.Activation = MLP.Activation.Activation.leaky_relu,
|
|
1498
|
+
prefix: str = "",
|
|
1499
|
+
) -> None: ...
|
|
1500
|
+
def initialize_globals(self, context: Context) -> None: ...
|
|
1501
|
+
def input_dim(self) -> int: ...
|
|
1502
|
+
def output_dim(self) -> int: ...
|
|
1503
|
+
|
|
1504
|
+
class Mapping:
|
|
1505
|
+
def __init__(
|
|
1506
|
+
self,
|
|
1507
|
+
name: str,
|
|
1508
|
+
input_types: collections.abc.Sequence[Type],
|
|
1509
|
+
output_types: collections.abc.Sequence[Type],
|
|
1510
|
+
condition_types: collections.abc.Sequence[Type],
|
|
1511
|
+
) -> None: ...
|
|
1512
|
+
def build_forward(
|
|
1513
|
+
self,
|
|
1514
|
+
builder: FunctionBuilder,
|
|
1515
|
+
inputs: collections.abc.Sequence[Value],
|
|
1516
|
+
conditions: collections.abc.Sequence[Value],
|
|
1517
|
+
) -> tuple[list[Value], Value]: ...
|
|
1518
|
+
def build_inverse(
|
|
1519
|
+
self,
|
|
1520
|
+
builder: FunctionBuilder,
|
|
1521
|
+
inputs: collections.abc.Sequence[Value],
|
|
1522
|
+
conditions: collections.abc.Sequence[Value],
|
|
1523
|
+
) -> tuple[list[Value], Value]: ...
|
|
1524
|
+
def forward_function(self) -> Function: ...
|
|
1525
|
+
def inverse_function(self) -> Function: ...
|
|
1526
|
+
def map_forward(self, inputs, conditions=list()): ...
|
|
1527
|
+
def map_inverse(self, inputs, conditions=list()): ...
|
|
1528
|
+
|
|
1529
|
+
class MatrixElement(FunctionGenerator):
|
|
1530
|
+
class MatrixElementInput:
|
|
1531
|
+
"""
|
|
1532
|
+
Members:
|
|
1533
|
+
|
|
1534
|
+
momenta_in
|
|
1535
|
+
|
|
1536
|
+
alpha_s_in
|
|
1537
|
+
|
|
1538
|
+
flavor_in
|
|
1539
|
+
|
|
1540
|
+
random_color_in
|
|
1541
|
+
|
|
1542
|
+
random_helicity_in
|
|
1543
|
+
|
|
1544
|
+
random_diagram_in
|
|
1545
|
+
|
|
1546
|
+
helicity_in
|
|
1547
|
+
|
|
1548
|
+
diagram_in
|
|
1549
|
+
"""
|
|
1550
|
+
|
|
1551
|
+
__members__: typing.ClassVar[
|
|
1552
|
+
dict[str, MatrixElement.MatrixElementInput]
|
|
1553
|
+
] # value = {'momenta_in': <MatrixElementInput.momenta_in: 0>, 'alpha_s_in': <MatrixElementInput.alpha_s_in: 1>, 'flavor_in': <MatrixElementInput.flavor_in: 2>, 'random_color_in': <MatrixElementInput.random_color_in: 3>, 'random_helicity_in': <MatrixElementInput.random_helicity_in: 4>, 'random_diagram_in': <MatrixElementInput.random_diagram_in: 5>, 'helicity_in': <MatrixElementInput.helicity_in: 6>, 'diagram_in': <MatrixElementInput.diagram_in: 7>}
|
|
1554
|
+
alpha_s_in: typing.ClassVar[
|
|
1555
|
+
MatrixElement.MatrixElementInput
|
|
1556
|
+
] # value = <MatrixElementInput.alpha_s_in: 1>
|
|
1557
|
+
diagram_in: typing.ClassVar[
|
|
1558
|
+
MatrixElement.MatrixElementInput
|
|
1559
|
+
] # value = <MatrixElementInput.diagram_in: 7>
|
|
1560
|
+
flavor_in: typing.ClassVar[
|
|
1561
|
+
MatrixElement.MatrixElementInput
|
|
1562
|
+
] # value = <MatrixElementInput.flavor_in: 2>
|
|
1563
|
+
helicity_in: typing.ClassVar[
|
|
1564
|
+
MatrixElement.MatrixElementInput
|
|
1565
|
+
] # value = <MatrixElementInput.helicity_in: 6>
|
|
1566
|
+
momenta_in: typing.ClassVar[
|
|
1567
|
+
MatrixElement.MatrixElementInput
|
|
1568
|
+
] # value = <MatrixElementInput.momenta_in: 0>
|
|
1569
|
+
random_color_in: typing.ClassVar[
|
|
1570
|
+
MatrixElement.MatrixElementInput
|
|
1571
|
+
] # value = <MatrixElementInput.random_color_in: 3>
|
|
1572
|
+
random_diagram_in: typing.ClassVar[
|
|
1573
|
+
MatrixElement.MatrixElementInput
|
|
1574
|
+
] # value = <MatrixElementInput.random_diagram_in: 5>
|
|
1575
|
+
random_helicity_in: typing.ClassVar[
|
|
1576
|
+
MatrixElement.MatrixElementInput
|
|
1577
|
+
] # value = <MatrixElementInput.random_helicity_in: 4>
|
|
1578
|
+
def __eq__(self, other: typing.Any) -> bool: ...
|
|
1579
|
+
def __getstate__(self) -> int: ...
|
|
1580
|
+
def __hash__(self) -> int: ...
|
|
1581
|
+
def __index__(self) -> int: ...
|
|
1582
|
+
@typing.overload
|
|
1583
|
+
def __init__(self, value: typing.SupportsInt) -> None: ...
|
|
1584
|
+
@typing.overload
|
|
1585
|
+
def __init__(self, name: str) -> None: ...
|
|
1586
|
+
def __int__(self) -> int: ...
|
|
1587
|
+
def __ne__(self, other: typing.Any) -> bool: ...
|
|
1588
|
+
def __repr__(self) -> str: ...
|
|
1589
|
+
def __setstate__(self, state: typing.SupportsInt) -> None: ...
|
|
1590
|
+
def __str__(self) -> str: ...
|
|
1591
|
+
@property
|
|
1592
|
+
def name(self) -> str: ...
|
|
1593
|
+
@property
|
|
1594
|
+
def value(self) -> int: ...
|
|
1595
|
+
|
|
1596
|
+
class MatrixElementOutput:
|
|
1597
|
+
"""
|
|
1598
|
+
Members:
|
|
1599
|
+
|
|
1600
|
+
matrix_element_out
|
|
1601
|
+
|
|
1602
|
+
diagram_amp2_out
|
|
1603
|
+
|
|
1604
|
+
color_index_out
|
|
1605
|
+
|
|
1606
|
+
helicity_index_out
|
|
1607
|
+
|
|
1608
|
+
diagram_index_out
|
|
1609
|
+
"""
|
|
1610
|
+
|
|
1611
|
+
__members__: typing.ClassVar[
|
|
1612
|
+
dict[str, MatrixElement.MatrixElementOutput]
|
|
1613
|
+
] # value = {'matrix_element_out': <MatrixElementOutput.matrix_element_out: 0>, 'diagram_amp2_out': <MatrixElementOutput.diagram_amp2_out: 1>, 'color_index_out': <MatrixElementOutput.color_index_out: 2>, 'helicity_index_out': <MatrixElementOutput.helicity_index_out: 3>, 'diagram_index_out': <MatrixElementOutput.diagram_index_out: 4>}
|
|
1614
|
+
color_index_out: typing.ClassVar[
|
|
1615
|
+
MatrixElement.MatrixElementOutput
|
|
1616
|
+
] # value = <MatrixElementOutput.color_index_out: 2>
|
|
1617
|
+
diagram_amp2_out: typing.ClassVar[
|
|
1618
|
+
MatrixElement.MatrixElementOutput
|
|
1619
|
+
] # value = <MatrixElementOutput.diagram_amp2_out: 1>
|
|
1620
|
+
diagram_index_out: typing.ClassVar[
|
|
1621
|
+
MatrixElement.MatrixElementOutput
|
|
1622
|
+
] # value = <MatrixElementOutput.diagram_index_out: 4>
|
|
1623
|
+
helicity_index_out: typing.ClassVar[
|
|
1624
|
+
MatrixElement.MatrixElementOutput
|
|
1625
|
+
] # value = <MatrixElementOutput.helicity_index_out: 3>
|
|
1626
|
+
matrix_element_out: typing.ClassVar[
|
|
1627
|
+
MatrixElement.MatrixElementOutput
|
|
1628
|
+
] # value = <MatrixElementOutput.matrix_element_out: 0>
|
|
1629
|
+
def __eq__(self, other: typing.Any) -> bool: ...
|
|
1630
|
+
def __getstate__(self) -> int: ...
|
|
1631
|
+
def __hash__(self) -> int: ...
|
|
1632
|
+
def __index__(self) -> int: ...
|
|
1633
|
+
@typing.overload
|
|
1634
|
+
def __init__(self, value: typing.SupportsInt) -> None: ...
|
|
1635
|
+
@typing.overload
|
|
1636
|
+
def __init__(self, name: str) -> None: ...
|
|
1637
|
+
def __int__(self) -> int: ...
|
|
1638
|
+
def __ne__(self, other: typing.Any) -> bool: ...
|
|
1639
|
+
def __repr__(self) -> str: ...
|
|
1640
|
+
def __setstate__(self, state: typing.SupportsInt) -> None: ...
|
|
1641
|
+
def __str__(self) -> str: ...
|
|
1642
|
+
@property
|
|
1643
|
+
def name(self) -> str: ...
|
|
1644
|
+
@property
|
|
1645
|
+
def value(self) -> int: ...
|
|
1646
|
+
|
|
1647
|
+
alpha_s_in: typing.ClassVar[
|
|
1648
|
+
MatrixElement.MatrixElementInput
|
|
1649
|
+
] # value = <MatrixElementInput.alpha_s_in: 1>
|
|
1650
|
+
color_index_out: typing.ClassVar[
|
|
1651
|
+
MatrixElement.MatrixElementOutput
|
|
1652
|
+
] # value = <MatrixElementOutput.color_index_out: 2>
|
|
1653
|
+
diagram_amp2_out: typing.ClassVar[
|
|
1654
|
+
MatrixElement.MatrixElementOutput
|
|
1655
|
+
] # value = <MatrixElementOutput.diagram_amp2_out: 1>
|
|
1656
|
+
diagram_in: typing.ClassVar[
|
|
1657
|
+
MatrixElement.MatrixElementInput
|
|
1658
|
+
] # value = <MatrixElementInput.diagram_in: 7>
|
|
1659
|
+
diagram_index_out: typing.ClassVar[
|
|
1660
|
+
MatrixElement.MatrixElementOutput
|
|
1661
|
+
] # value = <MatrixElementOutput.diagram_index_out: 4>
|
|
1662
|
+
flavor_in: typing.ClassVar[
|
|
1663
|
+
MatrixElement.MatrixElementInput
|
|
1664
|
+
] # value = <MatrixElementInput.flavor_in: 2>
|
|
1665
|
+
helicity_in: typing.ClassVar[
|
|
1666
|
+
MatrixElement.MatrixElementInput
|
|
1667
|
+
] # value = <MatrixElementInput.helicity_in: 6>
|
|
1668
|
+
helicity_index_out: typing.ClassVar[
|
|
1669
|
+
MatrixElement.MatrixElementOutput
|
|
1670
|
+
] # value = <MatrixElementOutput.helicity_index_out: 3>
|
|
1671
|
+
matrix_element_out: typing.ClassVar[
|
|
1672
|
+
MatrixElement.MatrixElementOutput
|
|
1673
|
+
] # value = <MatrixElementOutput.matrix_element_out: 0>
|
|
1674
|
+
momenta_in: typing.ClassVar[
|
|
1675
|
+
MatrixElement.MatrixElementInput
|
|
1676
|
+
] # value = <MatrixElementInput.momenta_in: 0>
|
|
1677
|
+
random_color_in: typing.ClassVar[
|
|
1678
|
+
MatrixElement.MatrixElementInput
|
|
1679
|
+
] # value = <MatrixElementInput.random_color_in: 3>
|
|
1680
|
+
random_diagram_in: typing.ClassVar[
|
|
1681
|
+
MatrixElement.MatrixElementInput
|
|
1682
|
+
] # value = <MatrixElementInput.random_diagram_in: 5>
|
|
1683
|
+
random_helicity_in: typing.ClassVar[
|
|
1684
|
+
MatrixElement.MatrixElementInput
|
|
1685
|
+
] # value = <MatrixElementInput.random_helicity_in: 4>
|
|
1686
|
+
@typing.overload
|
|
1687
|
+
def __init__(
|
|
1688
|
+
self,
|
|
1689
|
+
matrix_element_index: typing.SupportsInt,
|
|
1690
|
+
particle_count: typing.SupportsInt,
|
|
1691
|
+
inputs: collections.abc.Sequence[MatrixElement.MatrixElementInput],
|
|
1692
|
+
outputs: collections.abc.Sequence[MatrixElement.MatrixElementOutput],
|
|
1693
|
+
diagram_count: typing.SupportsInt = 1,
|
|
1694
|
+
sample_random_inputs: bool = False,
|
|
1695
|
+
) -> None: ...
|
|
1696
|
+
@typing.overload
|
|
1697
|
+
def __init__(
|
|
1698
|
+
self,
|
|
1699
|
+
matrix_element_api: MatrixElementApi,
|
|
1700
|
+
inputs: collections.abc.Sequence[MatrixElement.MatrixElementInput],
|
|
1701
|
+
outputs: collections.abc.Sequence[MatrixElement.MatrixElementOutput],
|
|
1702
|
+
sample_random_inputs: bool = False,
|
|
1703
|
+
) -> None: ...
|
|
1704
|
+
def diagram_count(self) -> int: ...
|
|
1705
|
+
def matrix_element_index(self) -> int: ...
|
|
1706
|
+
def particle_count(self) -> int: ...
|
|
1707
|
+
|
|
1708
|
+
class MatrixElementApi:
|
|
1709
|
+
def __init__(
|
|
1710
|
+
self, file: str, param_card: str, index: typing.SupportsInt = 0
|
|
1711
|
+
) -> None: ...
|
|
1712
|
+
def device(self) -> Device: ...
|
|
1713
|
+
def diagram_count(self) -> int: ...
|
|
1714
|
+
def helicity_count(self) -> int: ...
|
|
1715
|
+
def index(self) -> int: ...
|
|
1716
|
+
def particle_count(self) -> int: ...
|
|
1717
|
+
|
|
1718
|
+
class MomentumPreprocessing(FunctionGenerator):
|
|
1719
|
+
def __init__(self, particle_count: typing.SupportsInt) -> None: ...
|
|
1720
|
+
def output_dim(self) -> int: ...
|
|
1721
|
+
|
|
1722
|
+
class MultiChannelFunction(FunctionGenerator):
|
|
1723
|
+
def __init__(
|
|
1724
|
+
self, functions: collections.abc.Sequence[FunctionGenerator]
|
|
1725
|
+
) -> None: ...
|
|
1726
|
+
|
|
1727
|
+
class MultiChannelIntegrand(FunctionGenerator):
|
|
1728
|
+
def __init__(self, integrands: collections.abc.Sequence[Integrand]) -> None: ...
|
|
1729
|
+
|
|
1730
|
+
class MultiChannelMapping(Mapping):
|
|
1731
|
+
def __init__(self, mappings: collections.abc.Sequence[Mapping]) -> None: ...
|
|
1732
|
+
|
|
1733
|
+
class PartonDensity(FunctionGenerator):
|
|
1734
|
+
def __init__(
|
|
1735
|
+
self,
|
|
1736
|
+
grid: PdfGrid,
|
|
1737
|
+
pids: collections.abc.Sequence[typing.SupportsInt],
|
|
1738
|
+
dynamic_pid: bool = False,
|
|
1739
|
+
prefix: str = "",
|
|
1740
|
+
) -> None: ...
|
|
1741
|
+
|
|
1742
|
+
class PdfGrid:
|
|
1743
|
+
def __init__(self, file: str) -> None: ...
|
|
1744
|
+
def coefficients_shape(self, batch_dim: bool = False) -> list[int]: ...
|
|
1745
|
+
def initialize_globals(self, context: Context, prefix: str = "") -> None: ...
|
|
1746
|
+
def logq2_shape(self, batch_dim: bool = False) -> list[int]: ...
|
|
1747
|
+
def logx_shape(self, batch_dim: bool = False) -> list[int]: ...
|
|
1748
|
+
@property
|
|
1749
|
+
def grid_point_count(self) -> int: ...
|
|
1750
|
+
@property
|
|
1751
|
+
def logq2(self) -> list[float]: ...
|
|
1752
|
+
@property
|
|
1753
|
+
def logx(self) -> list[float]: ...
|
|
1754
|
+
@property
|
|
1755
|
+
def pids(self) -> list[int]: ...
|
|
1756
|
+
@property
|
|
1757
|
+
def q(self) -> list[float]: ...
|
|
1758
|
+
@property
|
|
1759
|
+
def q_count(self) -> int: ...
|
|
1760
|
+
@property
|
|
1761
|
+
def region_sizes(self) -> list[int]: ...
|
|
1762
|
+
@property
|
|
1763
|
+
def values(self) -> list[list[float]]: ...
|
|
1764
|
+
@property
|
|
1765
|
+
def x(self) -> list[float]: ...
|
|
1766
|
+
|
|
1767
|
+
class PhaseSpaceMapping(Mapping):
|
|
1768
|
+
class TChannelMode:
|
|
1769
|
+
"""
|
|
1770
|
+
Members:
|
|
1771
|
+
|
|
1772
|
+
propagator
|
|
1773
|
+
|
|
1774
|
+
rambo
|
|
1775
|
+
|
|
1776
|
+
chili
|
|
1777
|
+
"""
|
|
1778
|
+
|
|
1779
|
+
__members__: typing.ClassVar[
|
|
1780
|
+
dict[str, PhaseSpaceMapping.TChannelMode]
|
|
1781
|
+
] # value = {'propagator': <TChannelMode.propagator: 0>, 'rambo': <TChannelMode.rambo: 1>, 'chili': <TChannelMode.chili: 2>}
|
|
1782
|
+
chili: typing.ClassVar[
|
|
1783
|
+
PhaseSpaceMapping.TChannelMode
|
|
1784
|
+
] # value = <TChannelMode.chili: 2>
|
|
1785
|
+
propagator: typing.ClassVar[
|
|
1786
|
+
PhaseSpaceMapping.TChannelMode
|
|
1787
|
+
] # value = <TChannelMode.propagator: 0>
|
|
1788
|
+
rambo: typing.ClassVar[
|
|
1789
|
+
PhaseSpaceMapping.TChannelMode
|
|
1790
|
+
] # value = <TChannelMode.rambo: 1>
|
|
1791
|
+
def __eq__(self, other: typing.Any) -> bool: ...
|
|
1792
|
+
def __getstate__(self) -> int: ...
|
|
1793
|
+
def __hash__(self) -> int: ...
|
|
1794
|
+
def __index__(self) -> int: ...
|
|
1795
|
+
@typing.overload
|
|
1796
|
+
def __init__(self, value: typing.SupportsInt) -> None: ...
|
|
1797
|
+
@typing.overload
|
|
1798
|
+
def __init__(self, name: str) -> None: ...
|
|
1799
|
+
def __int__(self) -> int: ...
|
|
1800
|
+
def __ne__(self, other: typing.Any) -> bool: ...
|
|
1801
|
+
def __repr__(self) -> str: ...
|
|
1802
|
+
def __setstate__(self, state: typing.SupportsInt) -> None: ...
|
|
1803
|
+
def __str__(self) -> str: ...
|
|
1804
|
+
@property
|
|
1805
|
+
def name(self) -> str: ...
|
|
1806
|
+
@property
|
|
1807
|
+
def value(self) -> int: ...
|
|
1808
|
+
|
|
1809
|
+
chili: typing.ClassVar[
|
|
1810
|
+
PhaseSpaceMapping.TChannelMode
|
|
1811
|
+
] # value = <TChannelMode.chili: 2>
|
|
1812
|
+
propagator: typing.ClassVar[
|
|
1813
|
+
PhaseSpaceMapping.TChannelMode
|
|
1814
|
+
] # value = <TChannelMode.propagator: 0>
|
|
1815
|
+
rambo: typing.ClassVar[
|
|
1816
|
+
PhaseSpaceMapping.TChannelMode
|
|
1817
|
+
] # value = <TChannelMode.rambo: 1>
|
|
1818
|
+
@typing.overload
|
|
1819
|
+
def __init__(
|
|
1820
|
+
self,
|
|
1821
|
+
topology: Topology,
|
|
1822
|
+
cm_energy: typing.SupportsFloat,
|
|
1823
|
+
leptonic: bool = False,
|
|
1824
|
+
invariant_power: typing.SupportsFloat = 0.8,
|
|
1825
|
+
t_channel_mode: PhaseSpaceMapping.TChannelMode = PhaseSpaceMapping.TChannelMode.TChannelMode.propagator,
|
|
1826
|
+
cuts: madspace._madspace_py.Cuts | None = None,
|
|
1827
|
+
permutations: collections.abc.Sequence[
|
|
1828
|
+
collections.abc.Sequence[typing.SupportsInt]
|
|
1829
|
+
] = [],
|
|
1830
|
+
) -> None: ...
|
|
1831
|
+
@typing.overload
|
|
1832
|
+
def __init__(
|
|
1833
|
+
self,
|
|
1834
|
+
masses: collections.abc.Sequence[typing.SupportsFloat],
|
|
1835
|
+
cm_energy: typing.SupportsFloat,
|
|
1836
|
+
leptonic: bool = False,
|
|
1837
|
+
invariant_power: typing.SupportsFloat = 0.8,
|
|
1838
|
+
mode: PhaseSpaceMapping.TChannelMode = PhaseSpaceMapping.TChannelMode.TChannelMode.rambo,
|
|
1839
|
+
cuts: madspace._madspace_py.Cuts | None = None,
|
|
1840
|
+
) -> None: ...
|
|
1841
|
+
def channel_count(self) -> int: ...
|
|
1842
|
+
def particle_count(self) -> int: ...
|
|
1843
|
+
def random_dim(self) -> int: ...
|
|
1844
|
+
|
|
1845
|
+
class PrettyBox:
|
|
1846
|
+
def __init__(
|
|
1847
|
+
self,
|
|
1848
|
+
title: str,
|
|
1849
|
+
rows: typing.SupportsInt,
|
|
1850
|
+
columns: collections.abc.Sequence[typing.SupportsInt],
|
|
1851
|
+
offset: typing.SupportsInt = 0,
|
|
1852
|
+
box_width: typing.SupportsInt = 91,
|
|
1853
|
+
) -> None: ...
|
|
1854
|
+
def print_first(self) -> None: ...
|
|
1855
|
+
def print_update(self) -> None: ...
|
|
1856
|
+
def set_cell(
|
|
1857
|
+
self, row: typing.SupportsInt, column: typing.SupportsInt, value: str
|
|
1858
|
+
) -> None: ...
|
|
1859
|
+
def set_column(
|
|
1860
|
+
self, column: typing.SupportsInt, values: collections.abc.Sequence[str]
|
|
1861
|
+
) -> None: ...
|
|
1862
|
+
def set_row(
|
|
1863
|
+
self, row: typing.SupportsInt, values: collections.abc.Sequence[str]
|
|
1864
|
+
) -> None: ...
|
|
1865
|
+
@property
|
|
1866
|
+
def line_count(self) -> int: ...
|
|
1867
|
+
|
|
1868
|
+
class Propagator:
|
|
1869
|
+
def __init__(
|
|
1870
|
+
self,
|
|
1871
|
+
mass: typing.SupportsFloat = 0.0,
|
|
1872
|
+
width: typing.SupportsFloat = 0.0,
|
|
1873
|
+
integration_order: typing.SupportsInt = 0,
|
|
1874
|
+
e_min: typing.SupportsFloat = 0.0,
|
|
1875
|
+
e_max: typing.SupportsFloat = 0.0,
|
|
1876
|
+
pdg_id: typing.SupportsInt = 0,
|
|
1877
|
+
) -> None: ...
|
|
1878
|
+
@property
|
|
1879
|
+
def e_max(self) -> float: ...
|
|
1880
|
+
@property
|
|
1881
|
+
def e_min(self) -> float: ...
|
|
1882
|
+
@property
|
|
1883
|
+
def integration_order(self) -> int: ...
|
|
1884
|
+
@property
|
|
1885
|
+
def mass(self) -> float: ...
|
|
1886
|
+
@property
|
|
1887
|
+
def pdg_id(self) -> int: ...
|
|
1888
|
+
@property
|
|
1889
|
+
def width(self) -> float: ...
|
|
1890
|
+
|
|
1891
|
+
class PropagatorChannelWeights(FunctionGenerator):
|
|
1892
|
+
def __init__(
|
|
1893
|
+
self,
|
|
1894
|
+
topologies: collections.abc.Sequence[Topology],
|
|
1895
|
+
permutations: collections.abc.Sequence[
|
|
1896
|
+
collections.abc.Sequence[collections.abc.Sequence[typing.SupportsInt]]
|
|
1897
|
+
],
|
|
1898
|
+
channel_indices: collections.abc.Sequence[
|
|
1899
|
+
collections.abc.Sequence[typing.SupportsInt]
|
|
1900
|
+
],
|
|
1901
|
+
) -> None: ...
|
|
1902
|
+
|
|
1903
|
+
class RunningCoupling(FunctionGenerator):
|
|
1904
|
+
def __init__(self, grid: AlphaSGrid, prefix: str = "") -> None: ...
|
|
1905
|
+
|
|
1906
|
+
class SubchannelWeights(FunctionGenerator):
|
|
1907
|
+
def __init__(
|
|
1908
|
+
self,
|
|
1909
|
+
topologies: collections.abc.Sequence[collections.abc.Sequence[Topology]],
|
|
1910
|
+
permutations: collections.abc.Sequence[
|
|
1911
|
+
collections.abc.Sequence[collections.abc.Sequence[typing.SupportsInt]]
|
|
1912
|
+
],
|
|
1913
|
+
channel_indices: collections.abc.Sequence[
|
|
1914
|
+
collections.abc.Sequence[typing.SupportsInt]
|
|
1915
|
+
],
|
|
1916
|
+
) -> None: ...
|
|
1917
|
+
def channel_count(self) -> int: ...
|
|
1918
|
+
|
|
1919
|
+
class SubprocArgs:
|
|
1920
|
+
def __init__(
|
|
1921
|
+
self,
|
|
1922
|
+
process_id: typing.SupportsInt = 0,
|
|
1923
|
+
topologies: collections.abc.Sequence[Topology] = [],
|
|
1924
|
+
permutations: collections.abc.Sequence[
|
|
1925
|
+
collections.abc.Sequence[collections.abc.Sequence[typing.SupportsInt]]
|
|
1926
|
+
] = [],
|
|
1927
|
+
diagram_indices: collections.abc.Sequence[
|
|
1928
|
+
collections.abc.Sequence[typing.SupportsInt]
|
|
1929
|
+
] = [],
|
|
1930
|
+
diagram_color_indices: collections.abc.Sequence[
|
|
1931
|
+
collections.abc.Sequence[collections.abc.Sequence[typing.SupportsInt]]
|
|
1932
|
+
] = [],
|
|
1933
|
+
color_flows: collections.abc.Sequence[
|
|
1934
|
+
collections.abc.Sequence[
|
|
1935
|
+
collections.abc.Sequence[tuple[typing.SupportsInt, typing.SupportsInt]]
|
|
1936
|
+
]
|
|
1937
|
+
] = [],
|
|
1938
|
+
pdg_color_types: collections.abc.Mapping[
|
|
1939
|
+
typing.SupportsInt, typing.SupportsInt
|
|
1940
|
+
] = {},
|
|
1941
|
+
helicities: collections.abc.Sequence[
|
|
1942
|
+
collections.abc.Sequence[typing.SupportsFloat]
|
|
1943
|
+
] = [],
|
|
1944
|
+
pdg_ids: collections.abc.Sequence[
|
|
1945
|
+
collections.abc.Sequence[collections.abc.Sequence[typing.SupportsInt]]
|
|
1946
|
+
] = [],
|
|
1947
|
+
matrix_flavor_indices: collections.abc.Sequence[typing.SupportsInt] = [],
|
|
1948
|
+
) -> None: ...
|
|
1949
|
+
@property
|
|
1950
|
+
def color_flows(self) -> list[list[list[tuple[int, int]]]]: ...
|
|
1951
|
+
@color_flows.setter
|
|
1952
|
+
def color_flows(
|
|
1953
|
+
self,
|
|
1954
|
+
arg0: collections.abc.Sequence[
|
|
1955
|
+
collections.abc.Sequence[
|
|
1956
|
+
collections.abc.Sequence[tuple[typing.SupportsInt, typing.SupportsInt]]
|
|
1957
|
+
]
|
|
1958
|
+
],
|
|
1959
|
+
) -> None: ...
|
|
1960
|
+
@property
|
|
1961
|
+
def diagram_color_indices(self) -> list[list[list[int]]]: ...
|
|
1962
|
+
@diagram_color_indices.setter
|
|
1963
|
+
def diagram_color_indices(
|
|
1964
|
+
self,
|
|
1965
|
+
arg0: collections.abc.Sequence[
|
|
1966
|
+
collections.abc.Sequence[collections.abc.Sequence[typing.SupportsInt]]
|
|
1967
|
+
],
|
|
1968
|
+
) -> None: ...
|
|
1969
|
+
@property
|
|
1970
|
+
def diagram_indices(self) -> list[list[int]]: ...
|
|
1971
|
+
@diagram_indices.setter
|
|
1972
|
+
def diagram_indices(
|
|
1973
|
+
self,
|
|
1974
|
+
arg0: collections.abc.Sequence[collections.abc.Sequence[typing.SupportsInt]],
|
|
1975
|
+
) -> None: ...
|
|
1976
|
+
@property
|
|
1977
|
+
def helicities(self) -> list[list[float]]: ...
|
|
1978
|
+
@helicities.setter
|
|
1979
|
+
def helicities(
|
|
1980
|
+
self,
|
|
1981
|
+
arg0: collections.abc.Sequence[collections.abc.Sequence[typing.SupportsFloat]],
|
|
1982
|
+
) -> None: ...
|
|
1983
|
+
@property
|
|
1984
|
+
def matrix_flavor_indices(self) -> list[int]: ...
|
|
1985
|
+
@matrix_flavor_indices.setter
|
|
1986
|
+
def matrix_flavor_indices(
|
|
1987
|
+
self, arg0: collections.abc.Sequence[typing.SupportsInt]
|
|
1988
|
+
) -> None: ...
|
|
1989
|
+
@property
|
|
1990
|
+
def pdg_color_types(self) -> dict[int, int]: ...
|
|
1991
|
+
@pdg_color_types.setter
|
|
1992
|
+
def pdg_color_types(
|
|
1993
|
+
self, arg0: collections.abc.Mapping[typing.SupportsInt, typing.SupportsInt]
|
|
1994
|
+
) -> None: ...
|
|
1995
|
+
@property
|
|
1996
|
+
def pdg_ids(self) -> list[list[list[int]]]: ...
|
|
1997
|
+
@pdg_ids.setter
|
|
1998
|
+
def pdg_ids(
|
|
1999
|
+
self,
|
|
2000
|
+
arg0: collections.abc.Sequence[
|
|
2001
|
+
collections.abc.Sequence[collections.abc.Sequence[typing.SupportsInt]]
|
|
2002
|
+
],
|
|
2003
|
+
) -> None: ...
|
|
2004
|
+
@property
|
|
2005
|
+
def permutations(self) -> list[list[list[int]]]: ...
|
|
2006
|
+
@permutations.setter
|
|
2007
|
+
def permutations(
|
|
2008
|
+
self,
|
|
2009
|
+
arg0: collections.abc.Sequence[
|
|
2010
|
+
collections.abc.Sequence[collections.abc.Sequence[typing.SupportsInt]]
|
|
2011
|
+
],
|
|
2012
|
+
) -> None: ...
|
|
2013
|
+
@property
|
|
2014
|
+
def process_id(self) -> int: ...
|
|
2015
|
+
@process_id.setter
|
|
2016
|
+
def process_id(self, arg0: typing.SupportsInt) -> None: ...
|
|
2017
|
+
@property
|
|
2018
|
+
def topologies(self) -> list[Topology]: ...
|
|
2019
|
+
@topologies.setter
|
|
2020
|
+
def topologies(self, arg0: collections.abc.Sequence[Topology]) -> None: ...
|
|
2021
|
+
|
|
2022
|
+
class TPropagatorMapping(Mapping):
|
|
2023
|
+
def __init__(
|
|
2024
|
+
self,
|
|
2025
|
+
integration_order: collections.abc.Sequence[typing.SupportsInt],
|
|
2026
|
+
invariant_power: typing.SupportsFloat = 0.0,
|
|
2027
|
+
) -> None: ...
|
|
2028
|
+
|
|
2029
|
+
class Tensor:
|
|
2030
|
+
@staticmethod
|
|
2031
|
+
def numpy(tensor): ...
|
|
2032
|
+
@staticmethod
|
|
2033
|
+
def torch(tensor): ...
|
|
2034
|
+
def __dlpack__(
|
|
2035
|
+
self,
|
|
2036
|
+
stream: typing.SupportsInt | None = None,
|
|
2037
|
+
max_version: tuple[typing.SupportsInt, typing.SupportsInt] | None = None,
|
|
2038
|
+
dl_device: typing.SupportsInt | None = None,
|
|
2039
|
+
copy: bool | None = None,
|
|
2040
|
+
) -> typing.Any: ...
|
|
2041
|
+
def __dlpack_device__(self) -> tuple[int, int]: ...
|
|
2042
|
+
|
|
2043
|
+
class ThreeBodyDecay(Mapping):
|
|
2044
|
+
def __init__(self, com: bool) -> None: ...
|
|
2045
|
+
|
|
2046
|
+
class Topology:
|
|
2047
|
+
@staticmethod
|
|
2048
|
+
def topologies(diagram: Diagram) -> list[Topology]: ...
|
|
2049
|
+
def __init__(self, diagram: Diagram) -> None: ...
|
|
2050
|
+
def propagator_momentum_terms(
|
|
2051
|
+
self, arg0: bool
|
|
2052
|
+
) -> list[tuple[list[int], float, float]]: ...
|
|
2053
|
+
@property
|
|
2054
|
+
def decay_integration_order(self) -> list[int]: ...
|
|
2055
|
+
@property
|
|
2056
|
+
def decays(self) -> list[Decay]: ...
|
|
2057
|
+
@property
|
|
2058
|
+
def incoming_masses(self) -> list[float]: ...
|
|
2059
|
+
@property
|
|
2060
|
+
def outgoing_indices(self) -> list[int]: ...
|
|
2061
|
+
@property
|
|
2062
|
+
def outgoing_masses(self) -> list[float]: ...
|
|
2063
|
+
@property
|
|
2064
|
+
def t_integration_order(self) -> list[int]: ...
|
|
2065
|
+
@property
|
|
2066
|
+
def t_propagator_count(self) -> int: ...
|
|
2067
|
+
@property
|
|
2068
|
+
def t_propagator_masses(self) -> list[float]: ...
|
|
2069
|
+
@property
|
|
2070
|
+
def t_propagator_widths(self) -> list[float]: ...
|
|
2071
|
+
|
|
2072
|
+
class TwoBodyDecay(Mapping):
|
|
2073
|
+
def __init__(self, com: bool) -> None: ...
|
|
2074
|
+
|
|
2075
|
+
class TwoToThreeParticleScattering(Mapping):
|
|
2076
|
+
def __init__(
|
|
2077
|
+
self,
|
|
2078
|
+
t_invariant_power: typing.SupportsFloat = 0.0,
|
|
2079
|
+
t_mass: typing.SupportsFloat = 0.0,
|
|
2080
|
+
t_width: typing.SupportsFloat = 0.0,
|
|
2081
|
+
s_invariant_power: typing.SupportsFloat = 0.0,
|
|
2082
|
+
s_mass: typing.SupportsFloat = 0.0,
|
|
2083
|
+
s_width: typing.SupportsFloat = 0.0,
|
|
2084
|
+
) -> None: ...
|
|
2085
|
+
|
|
2086
|
+
class TwoToTwoParticleScattering(Mapping):
|
|
2087
|
+
def __init__(
|
|
2088
|
+
self,
|
|
2089
|
+
com: bool,
|
|
2090
|
+
invariant_power: typing.SupportsFloat = 0.0,
|
|
2091
|
+
mass: typing.SupportsFloat = 0.0,
|
|
2092
|
+
width: typing.SupportsFloat = 0.0,
|
|
2093
|
+
) -> None: ...
|
|
2094
|
+
|
|
2095
|
+
class Type:
|
|
2096
|
+
@typing.overload
|
|
2097
|
+
def __init__(
|
|
2098
|
+
self,
|
|
2099
|
+
dtype: DataType,
|
|
2100
|
+
batch_size: BatchSize,
|
|
2101
|
+
shape: collections.abc.Sequence[typing.SupportsInt],
|
|
2102
|
+
) -> None: ...
|
|
2103
|
+
@typing.overload
|
|
2104
|
+
def __init__(
|
|
2105
|
+
self, batch_size_list: collections.abc.Sequence[BatchSize]
|
|
2106
|
+
) -> None: ...
|
|
2107
|
+
def __repr__(self) -> str: ...
|
|
2108
|
+
def __str__(self) -> str: ...
|
|
2109
|
+
@property
|
|
2110
|
+
def batch_size(self) -> BatchSize: ...
|
|
2111
|
+
@property
|
|
2112
|
+
def dtype(self) -> DataType: ...
|
|
2113
|
+
@property
|
|
2114
|
+
def shape(self) -> list[int]: ...
|
|
2115
|
+
|
|
2116
|
+
class Unweighter(FunctionGenerator):
|
|
2117
|
+
def __init__(self, types: collections.abc.Sequence[Type]) -> None: ...
|
|
2118
|
+
|
|
2119
|
+
class Value:
|
|
2120
|
+
@typing.overload
|
|
2121
|
+
def __init__(self, value: typing.SupportsInt) -> None: ...
|
|
2122
|
+
@typing.overload
|
|
2123
|
+
def __init__(self, value: typing.SupportsFloat) -> None: ...
|
|
2124
|
+
def __repr__(self) -> str: ...
|
|
2125
|
+
def __str__(self) -> str: ...
|
|
2126
|
+
@property
|
|
2127
|
+
def literal_value(
|
|
2128
|
+
self,
|
|
2129
|
+
) -> int | float | tuple[list[int], list[int] | list[float]] | None: ...
|
|
2130
|
+
@property
|
|
2131
|
+
def local_index(self) -> int: ...
|
|
2132
|
+
@property
|
|
2133
|
+
def type(self) -> Type: ...
|
|
2134
|
+
|
|
2135
|
+
class VegasGridOptimizer:
|
|
2136
|
+
def __init__(
|
|
2137
|
+
self, context: Context, grid_name: str, damping: typing.SupportsFloat
|
|
2138
|
+
) -> None: ...
|
|
2139
|
+
def add_data(self, values: typing.Any, counts: typing.Any) -> None: ...
|
|
2140
|
+
def optimize(self) -> None: ...
|
|
2141
|
+
|
|
2142
|
+
class VegasHistogram(FunctionGenerator):
|
|
2143
|
+
def __init__(
|
|
2144
|
+
self, dimension: typing.SupportsInt, bin_count: typing.SupportsInt
|
|
2145
|
+
) -> None: ...
|
|
2146
|
+
|
|
2147
|
+
class VegasMapping(Mapping):
|
|
2148
|
+
def __init__(
|
|
2149
|
+
self,
|
|
2150
|
+
dimension: typing.SupportsInt,
|
|
2151
|
+
bin_count: typing.SupportsInt,
|
|
2152
|
+
prefix: str = "",
|
|
2153
|
+
) -> None: ...
|
|
2154
|
+
def grid_name(self) -> str: ...
|
|
2155
|
+
def initialize_globals(self, context: Context) -> None: ...
|
|
2156
|
+
|
|
2157
|
+
def batch_float_array(count: typing.SupportsInt) -> Type: ...
|
|
2158
|
+
def batch_four_vec_array(count: typing.SupportsInt) -> Type: ...
|
|
2159
|
+
def cpu_device() -> Device: ...
|
|
2160
|
+
def cuda_device() -> Device: ...
|
|
2161
|
+
def default_context() -> Context: ...
|
|
2162
|
+
def default_cuda_context() -> Context: ...
|
|
2163
|
+
def default_hip_context() -> Context: ...
|
|
2164
|
+
def format_progress(
|
|
2165
|
+
progress: typing.SupportsFloat, width: typing.SupportsInt
|
|
2166
|
+
) -> str: ...
|
|
2167
|
+
def format_si_prefix(value: typing.SupportsFloat) -> str: ...
|
|
2168
|
+
def format_with_error(
|
|
2169
|
+
value: typing.SupportsFloat, error: typing.SupportsFloat
|
|
2170
|
+
) -> str: ...
|
|
2171
|
+
def hip_device() -> Device: ...
|
|
2172
|
+
def initialize_vegas_grid(context: Context, grid_name: str) -> None: ...
|
|
2173
|
+
def multichannel_batch_size(count: typing.SupportsInt) -> Type: ...
|
|
2174
|
+
def set_lib_path(lib_path: str) -> None: ...
|
|
2175
|
+
def set_simd_vector_size(vector_size: typing.SupportsInt) -> None: ...
|
|
2176
|
+
def set_thread_count(new_count: typing.SupportsInt) -> None: ...
|
|
2177
|
+
|
|
2178
|
+
batch_float: Type # value = float[batch_size]
|
|
2179
|
+
batch_four_vec: Type # value = float[batch_size, 4]
|
|
2180
|
+
batch_int: Type # value = int[batch_size]
|
|
2181
|
+
batch_size: BatchSize # value = batch_size
|
|
2182
|
+
batch_sizes: DataType # value = <DataType.batch_sizes: 2>
|
|
2183
|
+
float: DataType # value = <DataType.float: 1>
|
|
2184
|
+
int: DataType # value = <DataType.int: 0>
|
|
2185
|
+
log: EventGeneratorVerbosity # value = <EventGeneratorVerbosity.log: 1>
|
|
2186
|
+
pretty: EventGeneratorVerbosity # value = <EventGeneratorVerbosity.pretty: 2>
|
|
2187
|
+
silent: EventGeneratorVerbosity # value = <EventGeneratorVerbosity.silent: 0>
|
|
2188
|
+
single_float: Type # value = float[1]
|
|
2189
|
+
single_int: Type # value = int[1]
|