madspace 0.3.1__cp314-cp314-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (75) hide show
  1. madspace/__init__.py +1 -0
  2. madspace/_madspace_py.cpython-314-x86_64-linux-gnu.so +0 -0
  3. madspace/_madspace_py.pyi +2189 -0
  4. madspace/_madspace_py_loader.py +111 -0
  5. madspace/include/madspace/constants.h +17 -0
  6. madspace/include/madspace/madcode/function.h +102 -0
  7. madspace/include/madspace/madcode/function_builder_mixin.h +591 -0
  8. madspace/include/madspace/madcode/instruction.h +208 -0
  9. madspace/include/madspace/madcode/opcode_mixin.h +134 -0
  10. madspace/include/madspace/madcode/optimizer.h +31 -0
  11. madspace/include/madspace/madcode/type.h +203 -0
  12. madspace/include/madspace/madcode.h +6 -0
  13. madspace/include/madspace/phasespace/base.h +74 -0
  14. madspace/include/madspace/phasespace/channel_weight_network.h +46 -0
  15. madspace/include/madspace/phasespace/channel_weights.h +51 -0
  16. madspace/include/madspace/phasespace/chili.h +32 -0
  17. madspace/include/madspace/phasespace/cross_section.h +47 -0
  18. madspace/include/madspace/phasespace/cuts.h +34 -0
  19. madspace/include/madspace/phasespace/discrete_flow.h +44 -0
  20. madspace/include/madspace/phasespace/discrete_sampler.h +53 -0
  21. madspace/include/madspace/phasespace/flow.h +53 -0
  22. madspace/include/madspace/phasespace/histograms.h +26 -0
  23. madspace/include/madspace/phasespace/integrand.h +204 -0
  24. madspace/include/madspace/phasespace/invariants.h +26 -0
  25. madspace/include/madspace/phasespace/luminosity.h +41 -0
  26. madspace/include/madspace/phasespace/matrix_element.h +70 -0
  27. madspace/include/madspace/phasespace/mlp.h +37 -0
  28. madspace/include/madspace/phasespace/multichannel.h +49 -0
  29. madspace/include/madspace/phasespace/observable.h +85 -0
  30. madspace/include/madspace/phasespace/pdf.h +78 -0
  31. madspace/include/madspace/phasespace/phasespace.h +67 -0
  32. madspace/include/madspace/phasespace/rambo.h +26 -0
  33. madspace/include/madspace/phasespace/scale.h +52 -0
  34. madspace/include/madspace/phasespace/t_propagator_mapping.h +34 -0
  35. madspace/include/madspace/phasespace/three_particle.h +68 -0
  36. madspace/include/madspace/phasespace/topology.h +116 -0
  37. madspace/include/madspace/phasespace/two_particle.h +63 -0
  38. madspace/include/madspace/phasespace/vegas.h +53 -0
  39. madspace/include/madspace/phasespace.h +27 -0
  40. madspace/include/madspace/runtime/context.h +147 -0
  41. madspace/include/madspace/runtime/discrete_optimizer.h +24 -0
  42. madspace/include/madspace/runtime/event_generator.h +257 -0
  43. madspace/include/madspace/runtime/format.h +68 -0
  44. madspace/include/madspace/runtime/io.h +343 -0
  45. madspace/include/madspace/runtime/lhe_output.h +132 -0
  46. madspace/include/madspace/runtime/logger.h +46 -0
  47. madspace/include/madspace/runtime/runtime_base.h +39 -0
  48. madspace/include/madspace/runtime/tensor.h +603 -0
  49. madspace/include/madspace/runtime/thread_pool.h +101 -0
  50. madspace/include/madspace/runtime/vegas_optimizer.h +26 -0
  51. madspace/include/madspace/runtime.h +12 -0
  52. madspace/include/madspace/umami.h +202 -0
  53. madspace/include/madspace/util.h +142 -0
  54. madspace/lib/libmadspace.so +0 -0
  55. madspace/lib/libmadspace_cpu.so +0 -0
  56. madspace/lib/libmadspace_cpu_avx2.so +0 -0
  57. madspace/lib/libmadspace_cpu_avx512.so +0 -0
  58. madspace/lib/libmadspace_cuda.so +0 -0
  59. madspace/lib/libmadspace_hip.so +0 -0
  60. madspace/madnis/__init__.py +44 -0
  61. madspace/madnis/buffer.py +167 -0
  62. madspace/madnis/channel_grouping.py +85 -0
  63. madspace/madnis/distribution.py +103 -0
  64. madspace/madnis/integrand.py +175 -0
  65. madspace/madnis/integrator.py +973 -0
  66. madspace/madnis/interface.py +191 -0
  67. madspace/madnis/losses.py +186 -0
  68. madspace/torch.py +82 -0
  69. madspace-0.3.1.dist-info/METADATA +71 -0
  70. madspace-0.3.1.dist-info/RECORD +75 -0
  71. madspace-0.3.1.dist-info/WHEEL +6 -0
  72. madspace-0.3.1.dist-info/licenses/LICENSE +21 -0
  73. madspace.libs/libgfortran-83c28eba.so.5.0.0 +0 -0
  74. madspace.libs/libopenblas-r0-11edc3fa.3.15.so +0 -0
  75. madspace.libs/libquadmath-2284e583.so.0.0.0 +0 -0
@@ -0,0 +1,2189 @@
1
+ from __future__ import annotations
2
+
3
+ import collections.abc
4
+ import typing
5
+
6
+ __all__ = [
7
+ "AlphaSGrid",
8
+ "BatchSize",
9
+ "ChannelWeightNetwork",
10
+ "Context",
11
+ "CutItem",
12
+ "Cuts",
13
+ "DataType",
14
+ "Decay",
15
+ "Device",
16
+ "Diagram",
17
+ "DifferentialCrossSection",
18
+ "DiscreteFlow",
19
+ "DiscreteHistogram",
20
+ "DiscreteOptimizer",
21
+ "DiscreteSampler",
22
+ "EnergyScale",
23
+ "EventGenerator",
24
+ "EventGeneratorConfig",
25
+ "EventGeneratorStatus",
26
+ "EventGeneratorVerbosity",
27
+ "FastRamboMapping",
28
+ "Flow",
29
+ "Function",
30
+ "FunctionBuilder",
31
+ "FunctionGenerator",
32
+ "FunctionRuntime",
33
+ "Instruction",
34
+ "InstructionCall",
35
+ "Integrand",
36
+ "IntegrandProbability",
37
+ "Invariant",
38
+ "LHECompleter",
39
+ "LHEEvent",
40
+ "LHEFileWriter",
41
+ "LHEHeader",
42
+ "LHEMeta",
43
+ "LHEParticle",
44
+ "LHEProcess",
45
+ "LineRef",
46
+ "Logger",
47
+ "Luminosity",
48
+ "MLP",
49
+ "Mapping",
50
+ "MatrixElement",
51
+ "MatrixElementApi",
52
+ "MomentumPreprocessing",
53
+ "MultiChannelFunction",
54
+ "MultiChannelIntegrand",
55
+ "MultiChannelMapping",
56
+ "PartonDensity",
57
+ "PdfGrid",
58
+ "PhaseSpaceMapping",
59
+ "PrettyBox",
60
+ "Propagator",
61
+ "PropagatorChannelWeights",
62
+ "RunningCoupling",
63
+ "SubchannelWeights",
64
+ "SubprocArgs",
65
+ "TPropagatorMapping",
66
+ "Tensor",
67
+ "ThreeBodyDecay",
68
+ "Topology",
69
+ "TwoBodyDecay",
70
+ "TwoToThreeParticleScattering",
71
+ "TwoToTwoParticleScattering",
72
+ "Type",
73
+ "Unweighter",
74
+ "Value",
75
+ "VegasGridOptimizer",
76
+ "VegasHistogram",
77
+ "VegasMapping",
78
+ "batch_float",
79
+ "batch_float_array",
80
+ "batch_four_vec",
81
+ "batch_four_vec_array",
82
+ "batch_int",
83
+ "batch_size",
84
+ "batch_sizes",
85
+ "cpu_device",
86
+ "cuda_device",
87
+ "default_context",
88
+ "default_cuda_context",
89
+ "default_hip_context",
90
+ "float",
91
+ "format_progress",
92
+ "format_si_prefix",
93
+ "format_with_error",
94
+ "hip_device",
95
+ "initialize_vegas_grid",
96
+ "int",
97
+ "log",
98
+ "multichannel_batch_size",
99
+ "pretty",
100
+ "set_lib_path",
101
+ "set_simd_vector_size",
102
+ "set_thread_count",
103
+ "silent",
104
+ "single_float",
105
+ "single_int",
106
+ ]
107
+
108
+ class AlphaSGrid:
109
+ def __init__(self, file: str) -> None: ...
110
+ def coefficients_shape(self, batch_dim: bool = False) -> list[int]: ...
111
+ def initialize_globals(self, context: Context, prefix: str = "") -> None: ...
112
+ def logq2_shape(self, batch_dim: bool = False) -> list[int]: ...
113
+ @property
114
+ def logq2(self) -> list[float]: ...
115
+ @property
116
+ def q(self) -> list[float]: ...
117
+ @property
118
+ def q_count(self) -> int: ...
119
+ @property
120
+ def region_sizes(self) -> list[int]: ...
121
+ @property
122
+ def values(self) -> list[float]: ...
123
+
124
+ class BatchSize:
125
+ one: typing.ClassVar[BatchSize] # value = 1
126
+ @typing.overload
127
+ def __init__(self) -> None: ...
128
+ @typing.overload
129
+ def __init__(self, name: str) -> None: ...
130
+ def __repr__(self) -> str: ...
131
+ def __str__(self) -> str: ...
132
+
133
+ class ChannelWeightNetwork(FunctionGenerator):
134
+ def __init__(
135
+ self,
136
+ channel_count: typing.SupportsInt,
137
+ particle_count: typing.SupportsInt,
138
+ hidden_dim: typing.SupportsInt = 32,
139
+ layers: typing.SupportsInt = 3,
140
+ activation: MLP.Activation = MLP.Activation.Activation.leaky_relu,
141
+ prefix: str = "",
142
+ ) -> None: ...
143
+ def initialize_globals(self, context: Context) -> None: ...
144
+ def mask_name(self) -> str: ...
145
+ def mlp(self) -> MLP: ...
146
+ def preprocessing(self) -> MomentumPreprocessing: ...
147
+
148
+ class Context:
149
+ @typing.overload
150
+ def __init__(self) -> None: ...
151
+ @typing.overload
152
+ def __init__(self, device: Device) -> None: ...
153
+ def define_global(
154
+ self,
155
+ name: str,
156
+ dtype: DataType,
157
+ shape: collections.abc.Sequence[typing.SupportsInt],
158
+ requires_grad: bool = False,
159
+ ) -> Tensor: ...
160
+ def device(self) -> Device: ...
161
+ def get_global(self, name: str) -> Tensor: ...
162
+ def global_exists(self, name: str) -> bool: ...
163
+ def global_requires_grad(self, name: str) -> bool: ...
164
+ def load(self, file: str) -> None: ...
165
+ def load_matrix_element(self, file: str, param_card: str) -> MatrixElementApi: ...
166
+ def matrix_element(self, index: typing.SupportsInt) -> MatrixElementApi: ...
167
+ def save(self, file: str) -> None: ...
168
+
169
+ class CutItem:
170
+ def __init__(
171
+ self,
172
+ observable: Cuts.CutObservable,
173
+ limit_type: Cuts.LimitType,
174
+ value: typing.SupportsFloat,
175
+ pids: collections.abc.Sequence[typing.SupportsInt],
176
+ pids2: collections.abc.Sequence[typing.SupportsInt] = [],
177
+ ) -> None: ...
178
+ @property
179
+ def limit_type(self) -> Cuts.LimitType: ...
180
+ @property
181
+ def observable(self) -> Cuts.CutObservable: ...
182
+ @property
183
+ def pids(self) -> list[int]: ...
184
+ @property
185
+ def pids2(self) -> list[int]: ...
186
+ @property
187
+ def value(self) -> float: ...
188
+
189
+ class Cuts(FunctionGenerator):
190
+ class CutObservable:
191
+ """
192
+ Members:
193
+
194
+ obs_pt
195
+
196
+ obs_eta
197
+
198
+ obs_dr
199
+
200
+ obs_mass
201
+
202
+ obs_sqrt_s
203
+ """
204
+
205
+ __members__: typing.ClassVar[
206
+ dict[str, Cuts.CutObservable]
207
+ ] # value = {'obs_pt': <CutObservable.obs_pt: 0>, 'obs_eta': <CutObservable.obs_eta: 1>, 'obs_dr': <CutObservable.obs_dr: 2>, 'obs_mass': <CutObservable.obs_mass: 3>, 'obs_sqrt_s': <CutObservable.obs_sqrt_s: 4>}
208
+ obs_dr: typing.ClassVar[Cuts.CutObservable] # value = <CutObservable.obs_dr: 2>
209
+ obs_eta: typing.ClassVar[
210
+ Cuts.CutObservable
211
+ ] # value = <CutObservable.obs_eta: 1>
212
+ obs_mass: typing.ClassVar[
213
+ Cuts.CutObservable
214
+ ] # value = <CutObservable.obs_mass: 3>
215
+ obs_pt: typing.ClassVar[Cuts.CutObservable] # value = <CutObservable.obs_pt: 0>
216
+ obs_sqrt_s: typing.ClassVar[
217
+ Cuts.CutObservable
218
+ ] # value = <CutObservable.obs_sqrt_s: 4>
219
+ def __eq__(self, other: typing.Any) -> bool: ...
220
+ def __getstate__(self) -> int: ...
221
+ def __hash__(self) -> int: ...
222
+ def __index__(self) -> int: ...
223
+ @typing.overload
224
+ def __init__(self, value: typing.SupportsInt) -> None: ...
225
+ @typing.overload
226
+ def __init__(self, name: str) -> None: ...
227
+ def __int__(self) -> int: ...
228
+ def __ne__(self, other: typing.Any) -> bool: ...
229
+ def __repr__(self) -> str: ...
230
+ def __setstate__(self, state: typing.SupportsInt) -> None: ...
231
+ def __str__(self) -> str: ...
232
+ @property
233
+ def name(self) -> str: ...
234
+ @property
235
+ def value(self) -> int: ...
236
+
237
+ class LimitType:
238
+ """
239
+ Members:
240
+
241
+ min
242
+
243
+ max
244
+ """
245
+
246
+ __members__: typing.ClassVar[
247
+ dict[str, Cuts.LimitType]
248
+ ] # value = {'min': <LimitType.min: 0>, 'max': <LimitType.max: 1>}
249
+ max: typing.ClassVar[Cuts.LimitType] # value = <LimitType.max: 1>
250
+ min: typing.ClassVar[Cuts.LimitType] # value = <LimitType.min: 0>
251
+ def __eq__(self, other: typing.Any) -> bool: ...
252
+ def __getstate__(self) -> int: ...
253
+ def __hash__(self) -> int: ...
254
+ def __index__(self) -> int: ...
255
+ @typing.overload
256
+ def __init__(self, value: typing.SupportsInt) -> None: ...
257
+ @typing.overload
258
+ def __init__(self, name: str) -> None: ...
259
+ def __int__(self) -> int: ...
260
+ def __ne__(self, other: typing.Any) -> bool: ...
261
+ def __repr__(self) -> str: ...
262
+ def __setstate__(self, state: typing.SupportsInt) -> None: ...
263
+ def __str__(self) -> str: ...
264
+ @property
265
+ def name(self) -> str: ...
266
+ @property
267
+ def value(self) -> int: ...
268
+
269
+ bottom_pids: typing.ClassVar[list] = [-5, 5]
270
+ jet_pids: typing.ClassVar[list] = [1, 2, 3, 4, -1, -2, -3, -4, 21]
271
+ lepton_pids: typing.ClassVar[list] = [11, 13, 15, -11, -13, -15]
272
+ max: typing.ClassVar[Cuts.LimitType] # value = <LimitType.max: 1>
273
+ min: typing.ClassVar[Cuts.LimitType] # value = <LimitType.min: 0>
274
+ missing_pids: typing.ClassVar[list] = [12, 14, 16, -12, -14, -16]
275
+ obs_dr: typing.ClassVar[Cuts.CutObservable] # value = <CutObservable.obs_dr: 2>
276
+ obs_eta: typing.ClassVar[Cuts.CutObservable] # value = <CutObservable.obs_eta: 1>
277
+ obs_mass: typing.ClassVar[Cuts.CutObservable] # value = <CutObservable.obs_mass: 3>
278
+ obs_pt: typing.ClassVar[Cuts.CutObservable] # value = <CutObservable.obs_pt: 0>
279
+ obs_sqrt_s: typing.ClassVar[
280
+ Cuts.CutObservable
281
+ ] # value = <CutObservable.obs_sqrt_s: 4>
282
+ photon_pids: typing.ClassVar[list] = [22]
283
+ def __init__(
284
+ self,
285
+ pids: collections.abc.Sequence[typing.SupportsInt],
286
+ cut_data: collections.abc.Sequence[CutItem],
287
+ ) -> None: ...
288
+ def eta_max(self) -> list[float]: ...
289
+ def pt_min(self) -> list[float]: ...
290
+ def sqrt_s_min(self) -> float: ...
291
+
292
+ class DataType:
293
+ """
294
+ Members:
295
+
296
+ int
297
+
298
+ float
299
+
300
+ batch_sizes
301
+ """
302
+
303
+ __members__: typing.ClassVar[
304
+ dict[str, DataType]
305
+ ] # value = {'int': <DataType.int: 0>, 'float': <DataType.float: 1>, 'batch_sizes': <DataType.batch_sizes: 2>}
306
+ batch_sizes: typing.ClassVar[DataType] # value = <DataType.batch_sizes: 2>
307
+ float: typing.ClassVar[DataType] # value = <DataType.float: 1>
308
+ int: typing.ClassVar[DataType] # value = <DataType.int: 0>
309
+ def __eq__(self, other: typing.Any) -> bool: ...
310
+ def __getstate__(self) -> int: ...
311
+ def __hash__(self) -> int: ...
312
+ def __index__(self) -> int: ...
313
+ @typing.overload
314
+ def __init__(self, value: typing.SupportsInt) -> None: ...
315
+ @typing.overload
316
+ def __init__(self, name: str) -> None: ...
317
+ def __int__(self) -> int: ...
318
+ def __ne__(self, other: typing.Any) -> bool: ...
319
+ def __repr__(self) -> str: ...
320
+ def __setstate__(self, state: typing.SupportsInt) -> None: ...
321
+ def __str__(self) -> str: ...
322
+ @property
323
+ def name(self) -> str: ...
324
+ @property
325
+ def value(self) -> int: ...
326
+
327
+ class Decay:
328
+ @property
329
+ def child_indices(self) -> list[int]: ...
330
+ @property
331
+ def e_max(self) -> float: ...
332
+ @property
333
+ def e_min(self) -> float: ...
334
+ @property
335
+ def index(self) -> int: ...
336
+ @property
337
+ def mass(self) -> float: ...
338
+ @property
339
+ def on_shell(self) -> bool: ...
340
+ @property
341
+ def parent_index(self) -> int: ...
342
+ @property
343
+ def pdg_id(self) -> int: ...
344
+ @property
345
+ def width(self) -> float: ...
346
+
347
+ class Device:
348
+ pass
349
+
350
+ class Diagram:
351
+ def __init__(
352
+ self,
353
+ incoming_masses: collections.abc.Sequence[typing.SupportsFloat],
354
+ outgoing_masses: collections.abc.Sequence[typing.SupportsFloat],
355
+ propagators: collections.abc.Sequence[Propagator],
356
+ vertices: collections.abc.Sequence[collections.abc.Sequence[LineRef]],
357
+ ) -> None: ...
358
+ @property
359
+ def incoming_masses(self) -> list[float]: ...
360
+ @property
361
+ def incoming_vertices(self) -> typing.Annotated[list[int], "FixedSize(2)"]: ...
362
+ @property
363
+ def outgoing_masses(self) -> list[float]: ...
364
+ @property
365
+ def outgoing_vertices(self) -> list[int]: ...
366
+ @property
367
+ def propagator_vertices(self) -> list[list[int]]: ...
368
+ @property
369
+ def propagators(self) -> list[Propagator]: ...
370
+ @property
371
+ def vertices(self) -> list[list[LineRef]]: ...
372
+
373
+ class DifferentialCrossSection(FunctionGenerator):
374
+ def __init__(
375
+ self,
376
+ matrix_element: MatrixElement,
377
+ cm_energy: typing.SupportsFloat,
378
+ running_coupling: RunningCoupling,
379
+ energy_scale: EnergyScale,
380
+ pid_options: collections.abc.Sequence[
381
+ collections.abc.Sequence[typing.SupportsInt]
382
+ ] = [],
383
+ has_pdf1: bool = False,
384
+ has_pdf2: bool = False,
385
+ pdf_grid1: madspace._madspace_py.PdfGrid | None = None,
386
+ pdf_grid2: madspace._madspace_py.PdfGrid | None = None,
387
+ has_mirror: bool = False,
388
+ input_momentum_fraction: bool = True,
389
+ ) -> None: ...
390
+ def has_mirror(self) -> bool: ...
391
+ def matrix_element(self) -> MatrixElement: ...
392
+ def pid_options(self) -> list[list[int]]: ...
393
+
394
+ class DiscreteFlow(Mapping):
395
+ def __init__(
396
+ self,
397
+ option_counts: collections.abc.Sequence[typing.SupportsInt],
398
+ prefix: str = "",
399
+ dims_with_prior: collections.abc.Sequence[typing.SupportsInt] = [],
400
+ condition_dim: typing.SupportsInt = 0,
401
+ subnet_hidden_dim: typing.SupportsInt = 32,
402
+ subnet_layers: typing.SupportsInt = 3,
403
+ subnet_activation: MLP.Activation = MLP.Activation.Activation.leaky_relu,
404
+ ) -> None: ...
405
+ def condition_dim(self) -> int: ...
406
+ def initialize_globals(self, context: Context) -> None: ...
407
+ def option_counts(self) -> list[int]: ...
408
+
409
+ class DiscreteHistogram(FunctionGenerator):
410
+ def __init__(
411
+ self, option_counts: collections.abc.Sequence[typing.SupportsInt]
412
+ ) -> None: ...
413
+
414
+ class DiscreteOptimizer:
415
+ def __init__(
416
+ self, context: Context, prob_names: collections.abc.Sequence[str]
417
+ ) -> None: ...
418
+ def add_data(
419
+ self, values_and_counts: collections.abc.Sequence[typing.Any]
420
+ ) -> None: ...
421
+ def optimize(self) -> None: ...
422
+
423
+ class DiscreteSampler(Mapping):
424
+ def __init__(
425
+ self,
426
+ option_counts: collections.abc.Sequence[typing.SupportsInt],
427
+ prefix: str = "",
428
+ dims_with_prior: collections.abc.Sequence[typing.SupportsInt] = [],
429
+ ) -> None: ...
430
+ def initialize_globals(self, context: Context) -> None: ...
431
+ def option_counts(self) -> list[int]: ...
432
+ def prob_names(self) -> list[str]: ...
433
+
434
+ class EnergyScale(FunctionGenerator):
435
+ class DynamicalScaleType:
436
+ """
437
+ Members:
438
+
439
+ transverse_energy
440
+
441
+ transverse_mass
442
+
443
+ half_transverse_mass
444
+
445
+ partonic_energy
446
+ """
447
+
448
+ __members__: typing.ClassVar[
449
+ dict[str, EnergyScale.DynamicalScaleType]
450
+ ] # value = {'transverse_energy': <DynamicalScaleType.transverse_energy: 0>, 'transverse_mass': <DynamicalScaleType.transverse_mass: 1>, 'half_transverse_mass': <DynamicalScaleType.half_transverse_mass: 2>, 'partonic_energy': <DynamicalScaleType.partonic_energy: 3>}
451
+ half_transverse_mass: typing.ClassVar[
452
+ EnergyScale.DynamicalScaleType
453
+ ] # value = <DynamicalScaleType.half_transverse_mass: 2>
454
+ partonic_energy: typing.ClassVar[
455
+ EnergyScale.DynamicalScaleType
456
+ ] # value = <DynamicalScaleType.partonic_energy: 3>
457
+ transverse_energy: typing.ClassVar[
458
+ EnergyScale.DynamicalScaleType
459
+ ] # value = <DynamicalScaleType.transverse_energy: 0>
460
+ transverse_mass: typing.ClassVar[
461
+ EnergyScale.DynamicalScaleType
462
+ ] # value = <DynamicalScaleType.transverse_mass: 1>
463
+ def __eq__(self, other: typing.Any) -> bool: ...
464
+ def __getstate__(self) -> int: ...
465
+ def __hash__(self) -> int: ...
466
+ def __index__(self) -> int: ...
467
+ @typing.overload
468
+ def __init__(self, value: typing.SupportsInt) -> None: ...
469
+ @typing.overload
470
+ def __init__(self, name: str) -> None: ...
471
+ def __int__(self) -> int: ...
472
+ def __ne__(self, other: typing.Any) -> bool: ...
473
+ def __repr__(self) -> str: ...
474
+ def __setstate__(self, state: typing.SupportsInt) -> None: ...
475
+ def __str__(self) -> str: ...
476
+ @property
477
+ def name(self) -> str: ...
478
+ @property
479
+ def value(self) -> int: ...
480
+
481
+ half_transverse_mass: typing.ClassVar[
482
+ EnergyScale.DynamicalScaleType
483
+ ] # value = <DynamicalScaleType.half_transverse_mass: 2>
484
+ partonic_energy: typing.ClassVar[
485
+ EnergyScale.DynamicalScaleType
486
+ ] # value = <DynamicalScaleType.partonic_energy: 3>
487
+ transverse_energy: typing.ClassVar[
488
+ EnergyScale.DynamicalScaleType
489
+ ] # value = <DynamicalScaleType.transverse_energy: 0>
490
+ transverse_mass: typing.ClassVar[
491
+ EnergyScale.DynamicalScaleType
492
+ ] # value = <DynamicalScaleType.transverse_mass: 1>
493
+ @typing.overload
494
+ def __init__(self, particle_count: typing.SupportsInt) -> None: ...
495
+ @typing.overload
496
+ def __init__(
497
+ self, particle_count: typing.SupportsInt, type: EnergyScale.DynamicalScaleType
498
+ ) -> None: ...
499
+ @typing.overload
500
+ def __init__(
501
+ self, particle_count: typing.SupportsInt, fixed_scale: typing.SupportsFloat
502
+ ) -> None: ...
503
+ @typing.overload
504
+ def __init__(
505
+ self,
506
+ particle_count: typing.SupportsInt,
507
+ dynamical_scale_type: EnergyScale.DynamicalScaleType,
508
+ ren_scale_fixed: bool,
509
+ fact_scale_fixed: bool,
510
+ ren_scale: typing.SupportsFloat,
511
+ fact_scale1: typing.SupportsFloat,
512
+ fact_scale2: typing.SupportsFloat,
513
+ ) -> None: ...
514
+
515
+ class EventGenerator:
516
+ default_config: typing.ClassVar[
517
+ EventGeneratorConfig
518
+ ] # value = <madspace._madspace_py.EventGeneratorConfig object>
519
+ integrand_flags: typing.ClassVar[int] = 1077
520
+ def __init__(
521
+ self,
522
+ context: Context,
523
+ channels: collections.abc.Sequence[Integrand],
524
+ temp_file_prefix: str,
525
+ status_file: str = "",
526
+ default_config: EventGeneratorConfig = ...,
527
+ channel_subprocesses: collections.abc.Sequence[typing.SupportsInt] = [],
528
+ channel_names: collections.abc.Sequence[str] = [],
529
+ ) -> None: ...
530
+ def channel_status(self) -> list[EventGeneratorStatus]: ...
531
+ def combine_to_compact_npy(self, file_name: str) -> None: ...
532
+ def combine_to_lhe(self, file_name: str, lhe_completer: ...) -> None: ...
533
+ def combine_to_lhe_npy(self, file_name: str, lhe_completer: ...) -> None: ...
534
+ def generate(self) -> None: ...
535
+ def status(self) -> EventGeneratorStatus: ...
536
+ def survey(self) -> None: ...
537
+
538
+ class EventGeneratorConfig:
539
+ verbosity: EventGeneratorVerbosity
540
+ def __init__(self) -> None: ...
541
+ @property
542
+ def batch_size(self) -> int: ...
543
+ @batch_size.setter
544
+ def batch_size(self, arg0: typing.SupportsInt) -> None: ...
545
+ @property
546
+ def freeze_max_weight_after(self) -> int: ...
547
+ @freeze_max_weight_after.setter
548
+ def freeze_max_weight_after(self, arg0: typing.SupportsInt) -> None: ...
549
+ @property
550
+ def max_batch_size(self) -> int: ...
551
+ @max_batch_size.setter
552
+ def max_batch_size(self, arg0: typing.SupportsInt) -> None: ...
553
+ @property
554
+ def max_overweight_truncation(self) -> float: ...
555
+ @max_overweight_truncation.setter
556
+ def max_overweight_truncation(self, arg0: typing.SupportsFloat) -> None: ...
557
+ @property
558
+ def optimization_patience(self) -> int: ...
559
+ @optimization_patience.setter
560
+ def optimization_patience(self, arg0: typing.SupportsInt) -> None: ...
561
+ @property
562
+ def optimization_threshold(self) -> float: ...
563
+ @optimization_threshold.setter
564
+ def optimization_threshold(self, arg0: typing.SupportsFloat) -> None: ...
565
+ @property
566
+ def start_batch_size(self) -> int: ...
567
+ @start_batch_size.setter
568
+ def start_batch_size(self, arg0: typing.SupportsInt) -> None: ...
569
+ @property
570
+ def survey_max_iters(self) -> int: ...
571
+ @survey_max_iters.setter
572
+ def survey_max_iters(self, arg0: typing.SupportsInt) -> None: ...
573
+ @property
574
+ def survey_min_iters(self) -> int: ...
575
+ @survey_min_iters.setter
576
+ def survey_min_iters(self, arg0: typing.SupportsInt) -> None: ...
577
+ @property
578
+ def survey_target_precision(self) -> float: ...
579
+ @survey_target_precision.setter
580
+ def survey_target_precision(self, arg0: typing.SupportsFloat) -> None: ...
581
+ @property
582
+ def target_count(self) -> int: ...
583
+ @target_count.setter
584
+ def target_count(self, arg0: typing.SupportsInt) -> None: ...
585
+ @property
586
+ def vegas_damping(self) -> float: ...
587
+ @vegas_damping.setter
588
+ def vegas_damping(self, arg0: typing.SupportsFloat) -> None: ...
589
+
590
+ class EventGeneratorStatus:
591
+ done: bool
592
+ def __init__(self) -> None: ...
593
+ @property
594
+ def count(self) -> int: ...
595
+ @count.setter
596
+ def count(self, arg0: typing.SupportsInt) -> None: ...
597
+ @property
598
+ def count_after_cuts(self) -> int: ...
599
+ @count_after_cuts.setter
600
+ def count_after_cuts(self, arg0: typing.SupportsInt) -> None: ...
601
+ @property
602
+ def count_after_cuts_opt(self) -> int: ...
603
+ @count_after_cuts_opt.setter
604
+ def count_after_cuts_opt(self, arg0: typing.SupportsInt) -> None: ...
605
+ @property
606
+ def count_opt(self) -> int: ...
607
+ @count_opt.setter
608
+ def count_opt(self, arg0: typing.SupportsInt) -> None: ...
609
+ @property
610
+ def count_target(self) -> float: ...
611
+ @count_target.setter
612
+ def count_target(self, arg0: typing.SupportsFloat) -> None: ...
613
+ @property
614
+ def count_unweighted(self) -> float: ...
615
+ @count_unweighted.setter
616
+ def count_unweighted(self, arg0: typing.SupportsFloat) -> None: ...
617
+ @property
618
+ def error(self) -> float: ...
619
+ @error.setter
620
+ def error(self, arg0: typing.SupportsFloat) -> None: ...
621
+ @property
622
+ def index(self) -> int: ...
623
+ @index.setter
624
+ def index(self, arg0: typing.SupportsInt) -> None: ...
625
+ @property
626
+ def iterations(self) -> int: ...
627
+ @iterations.setter
628
+ def iterations(self, arg0: typing.SupportsInt) -> None: ...
629
+ @property
630
+ def mean(self) -> float: ...
631
+ @mean.setter
632
+ def mean(self, arg0: typing.SupportsFloat) -> None: ...
633
+ @property
634
+ def rel_std_dev(self) -> float: ...
635
+ @rel_std_dev.setter
636
+ def rel_std_dev(self, arg0: typing.SupportsFloat) -> None: ...
637
+
638
+ class EventGeneratorVerbosity:
639
+ """
640
+ Members:
641
+
642
+ silent
643
+
644
+ log
645
+
646
+ pretty
647
+ """
648
+
649
+ __members__: typing.ClassVar[
650
+ dict[str, EventGeneratorVerbosity]
651
+ ] # value = {'silent': <EventGeneratorVerbosity.silent: 0>, 'log': <EventGeneratorVerbosity.log: 1>, 'pretty': <EventGeneratorVerbosity.pretty: 2>}
652
+ log: typing.ClassVar[
653
+ EventGeneratorVerbosity
654
+ ] # value = <EventGeneratorVerbosity.log: 1>
655
+ pretty: typing.ClassVar[
656
+ EventGeneratorVerbosity
657
+ ] # value = <EventGeneratorVerbosity.pretty: 2>
658
+ silent: typing.ClassVar[
659
+ EventGeneratorVerbosity
660
+ ] # value = <EventGeneratorVerbosity.silent: 0>
661
+ def __eq__(self, other: typing.Any) -> bool: ...
662
+ def __getstate__(self) -> int: ...
663
+ def __hash__(self) -> int: ...
664
+ def __index__(self) -> int: ...
665
+ @typing.overload
666
+ def __init__(self, value: typing.SupportsInt) -> None: ...
667
+ @typing.overload
668
+ def __init__(self, name: str) -> None: ...
669
+ def __int__(self) -> int: ...
670
+ def __ne__(self, other: typing.Any) -> bool: ...
671
+ def __repr__(self) -> str: ...
672
+ def __setstate__(self, state: typing.SupportsInt) -> None: ...
673
+ def __str__(self) -> str: ...
674
+ @property
675
+ def name(self) -> str: ...
676
+ @property
677
+ def value(self) -> int: ...
678
+
679
+ class FastRamboMapping(Mapping):
680
+ def __init__(self, n_particles: typing.SupportsInt, massless: bool) -> None: ...
681
+
682
+ class Flow(Mapping):
683
+ def __init__(
684
+ self,
685
+ input_dim: typing.SupportsInt,
686
+ condition_dim: typing.SupportsInt = 0,
687
+ prefix: str = "",
688
+ bin_count: typing.SupportsInt = 10,
689
+ subnet_hidden_dim: typing.SupportsInt = 32,
690
+ subnet_layers: typing.SupportsInt = 3,
691
+ subnet_activation: MLP.Activation = MLP.Activation.Activation.leaky_relu,
692
+ invert_spline: bool = True,
693
+ ) -> None: ...
694
+ def condition_dim(self) -> int: ...
695
+ def initialize_from_vegas(self, context: Context, grid_name: str) -> None: ...
696
+ def initialize_globals(self, context: Context) -> None: ...
697
+ def input_dim(self) -> int: ...
698
+
699
+ class Function:
700
+ @staticmethod
701
+ def load(file: str) -> Function: ...
702
+ def __call__(self, *args): ...
703
+ def __repr__(self) -> str: ...
704
+ def __str__(self) -> str: ...
705
+ def save(self, file: str) -> None: ...
706
+ @property
707
+ def globals(self) -> dict[str, Value]: ...
708
+ @property
709
+ def inputs(self) -> list[Value]: ...
710
+ @property
711
+ def instructions(self) -> list[InstructionCall]: ...
712
+ @property
713
+ def locals(self) -> list[Value]: ...
714
+ @property
715
+ def outputs(self) -> list[Value]: ...
716
+
717
+ class FunctionBuilder:
718
+ def __init__(
719
+ self,
720
+ input_types: collections.abc.Sequence[Type],
721
+ output_types: collections.abc.Sequence[Type],
722
+ ) -> None: ...
723
+ def add(self, in1: Value, in2: Value) -> Value: ...
724
+ def add_int(self, in1: Value, in2: Value) -> Value: ...
725
+ def apply_subchannel_weights(
726
+ self,
727
+ channel_weights_in: Value,
728
+ subchannel_weights: Value,
729
+ channel_indices: Value,
730
+ subchannel_indices: Value,
731
+ ) -> Value: ...
732
+ def batch_cat(
733
+ self, args: collections.abc.Sequence[Value]
734
+ ) -> typing.Annotated[list[Value], "FixedSize(2)"]: ...
735
+ def batch_gather(self, indices: Value, values: Value) -> Value: ...
736
+ def batch_scatter(self, indices: Value, target: Value, source: Value) -> Value: ...
737
+ def batch_size(self, args: collections.abc.Sequence[Value]) -> Value: ...
738
+ def batch_split(self, in1: Value, counts: Value) -> list[Value]: ...
739
+ def boost_beam(self, p1: Value, x1: Value, x2: Value) -> Value: ...
740
+ def boost_beam_inverse(self, p1: Value, x1: Value, x2: Value) -> Value: ...
741
+ def breit_wigner_invariant(
742
+ self, r: Value, mass: Value, width: Value, s_min: Value, s_max: Value
743
+ ) -> typing.Annotated[list[Value], "FixedSize(2)"]: ...
744
+ def breit_wigner_invariant_inverse(
745
+ self, s: Value, mass: Value, width: Value, s_min: Value, s_max: Value
746
+ ) -> typing.Annotated[list[Value], "FixedSize(2)"]: ...
747
+ def cat(self, args: collections.abc.Sequence[Value]) -> Value: ...
748
+ def chili_forward(
749
+ self, r: Value, e_cm: Value, m_out: Value, pt_min: Value, y_max: Value
750
+ ) -> typing.Annotated[list[Value], "FixedSize(4)"]: ...
751
+ def collect_channel_weights(
752
+ self, amp2: Value, channel_indices: Value, channel_count: Value
753
+ ) -> Value: ...
754
+ def com_p_in(
755
+ self, e_cm: Value
756
+ ) -> typing.Annotated[list[Value], "FixedSize(2)"]: ...
757
+ def cut_dr(self, p: Value, indices: Value, min_max: Value) -> Value: ...
758
+ def cut_eta(self, p: Value, min_max: Value) -> Value: ...
759
+ def cut_m_inv(self, p: Value, indices: Value, min_max: Value) -> Value: ...
760
+ def cut_pt(self, p: Value, min_max: Value) -> Value: ...
761
+ def cut_sqrt_s(self, p: Value, min_max: Value) -> Value: ...
762
+ def cut_unphysical(self, w_in: Value, p: Value, x1: Value, x2: Value) -> Value: ...
763
+ def diff_cross_section(
764
+ self,
765
+ x1: Value,
766
+ x2: Value,
767
+ pdf1: Value,
768
+ pdf2: Value,
769
+ matrix_element: Value,
770
+ e_cm2: Value,
771
+ ) -> Value: ...
772
+ def discrete_histogram(
773
+ self, input: Value, weights: Value, option_count: Value
774
+ ) -> typing.Annotated[list[Value], "FixedSize(2)"]: ...
775
+ def elu(self, in1: Value) -> Value: ...
776
+ def fast_rambo_massive(
777
+ self, r: Value, e_cm: Value, masses: Value, p0: Value
778
+ ) -> typing.Annotated[list[Value], "FixedSize(2)"]: ...
779
+ def fast_rambo_massive_com(
780
+ self, r: Value, e_cm: Value, masses: Value
781
+ ) -> typing.Annotated[list[Value], "FixedSize(2)"]: ...
782
+ def fast_rambo_massless(
783
+ self, r: Value, e_cm: Value, p0: Value
784
+ ) -> typing.Annotated[list[Value], "FixedSize(2)"]: ...
785
+ def fast_rambo_massless_com(
786
+ self, r: Value, e_cm: Value
787
+ ) -> typing.Annotated[list[Value], "FixedSize(2)"]: ...
788
+ def full(self, args: collections.abc.Sequence[Value]) -> Value: ...
789
+ def function(self) -> Function: ...
790
+ def gather(self, index: Value, choices: Value) -> Value: ...
791
+ def gather_int(self, index: Value, choices: Value) -> Value: ...
792
+ def gelu(self, in1: Value) -> Value: ...
793
+ def get_global(
794
+ self,
795
+ name: str,
796
+ dtype: DataType,
797
+ shape: collections.abc.Sequence[typing.SupportsInt],
798
+ ) -> Value: ...
799
+ def input(self, index: typing.SupportsInt) -> Value: ...
800
+ def input_range(
801
+ self, start_index: typing.SupportsInt, end_index: typing.SupportsInt
802
+ ) -> list[Value]: ...
803
+ def interpolate_alpha_s(
804
+ self, q2: Value, grid_logq2: Value, grid_coeffs: Value
805
+ ) -> Value: ...
806
+ def interpolate_pdf(
807
+ self,
808
+ x: Value,
809
+ q2: Value,
810
+ pid_indices: Value,
811
+ grid_logx: Value,
812
+ grid_logq2: Value,
813
+ grid_coeffs: Value,
814
+ ) -> Value: ...
815
+ def invariants_from_momenta(self, p_ext: Value, factors: Value) -> Value: ...
816
+ def leaky_relu(self, in1: Value) -> Value: ...
817
+ def matmul(self, x: Value, weight: Value, bias: Value) -> Value: ...
818
+ def matrix_element(self, args: collections.abc.Sequence[Value]) -> list[Value]: ...
819
+ def max(self, in1: Value, in2: Value) -> Value: ...
820
+ def min(self, in1: Value, in2: Value) -> Value: ...
821
+ def mirror_momenta(self, p_ext: Value, mirror: Value) -> Value: ...
822
+ def momenta_to_x1x2(
823
+ self, p_ext: Value, e_cm: Value
824
+ ) -> typing.Annotated[list[Value], "FixedSize(2)"]: ...
825
+ def mul(self, in1: Value, in2: Value) -> Value: ...
826
+ def nonzero(self, input: Value) -> Value: ...
827
+ def offset_indices(
828
+ self, batch_sizes_offset: Value, batch_sizes_out: Value
829
+ ) -> Value: ...
830
+ def one_hot(self, index: Value, option_count: Value) -> Value: ...
831
+ def output(self, index: typing.SupportsInt, value: Value) -> None: ...
832
+ def output_range(
833
+ self, start_index: typing.SupportsInt, values: collections.abc.Sequence[Value]
834
+ ) -> None: ...
835
+ def permute_momenta(
836
+ self, momenta: Value, permutations: Value, index: Value
837
+ ) -> Value: ...
838
+ def pop(self, in1: Value) -> typing.Annotated[list[Value], "FixedSize(2)"]: ...
839
+ def product(self, values: collections.abc.Sequence[Value]) -> Value: ...
840
+ def pt_eta_phi_x(self, p_ext: Value, x1: Value, x2: Value) -> Value: ...
841
+ def r_to_x1x2(
842
+ self, r: Value, s_hat: Value, s_lab: Value
843
+ ) -> typing.Annotated[list[Value], "FixedSize(3)"]: ...
844
+ def random(self, batch_size: Value, count: Value) -> Value: ...
845
+ def reduce_product(self, in1: Value) -> Value: ...
846
+ def relu(self, in1: Value) -> Value: ...
847
+ def rqs_find_bin(
848
+ self, input: Value, in_sizes: Value, out_sizes: Value, derivatives: Value
849
+ ) -> Value: ...
850
+ def rqs_forward(
851
+ self, input: Value, condition: Value
852
+ ) -> typing.Annotated[list[Value], "FixedSize(2)"]: ...
853
+ def rqs_inverse(
854
+ self, input: Value, condition: Value
855
+ ) -> typing.Annotated[list[Value], "FixedSize(2)"]: ...
856
+ def rqs_reshape(
857
+ self, input: Value, bin_count: Value
858
+ ) -> typing.Annotated[list[Value], "FixedSize(3)"]: ...
859
+ def s_inv_min_max(
860
+ self, pa: Value, pb: Value, p3: Value, t1_abs: Value, m1: Value, m2: Value
861
+ ) -> typing.Annotated[list[Value], "FixedSize(2)"]: ...
862
+ def sample_discrete(
863
+ self, r: Value, option_count: Value
864
+ ) -> typing.Annotated[list[Value], "FixedSize(2)"]: ...
865
+ def sample_discrete_inverse(
866
+ self, index: Value, option_count: Value
867
+ ) -> typing.Annotated[list[Value], "FixedSize(2)"]: ...
868
+ def sample_discrete_probs(
869
+ self, r: Value, probs: Value
870
+ ) -> typing.Annotated[list[Value], "FixedSize(2)"]: ...
871
+ def sample_discrete_probs_inverse(
872
+ self, index: Value, probs: Value
873
+ ) -> typing.Annotated[list[Value], "FixedSize(2)"]: ...
874
+ def scale_half_transverse_mass(self, momenta: Value) -> Value: ...
875
+ def scale_partonic_energy(self, momenta: Value) -> Value: ...
876
+ def scale_transverse_energy(self, momenta: Value) -> Value: ...
877
+ def scale_transverse_mass(self, momenta: Value) -> Value: ...
878
+ def sde2_channel_weights(
879
+ self, invariants: Value, masses: Value, widths: Value, indices: Value
880
+ ) -> Value: ...
881
+ def select(self, input: Value, indices: Value) -> Value: ...
882
+ def sigmoid(self, in1: Value) -> Value: ...
883
+ def softmax(self, input: Value) -> Value: ...
884
+ def softmax_prior(self, input: Value, prior: Value) -> Value: ...
885
+ def softplus(self, in1: Value) -> Value: ...
886
+ def sqrt(self, in1: Value) -> Value: ...
887
+ def square(self, in1: Value) -> Value: ...
888
+ def squeeze(self, input: Value) -> Value: ...
889
+ def stable_invariant(
890
+ self, r: Value, mass: Value, s_min: Value, s_max: Value
891
+ ) -> typing.Annotated[list[Value], "FixedSize(2)"]: ...
892
+ def stable_invariant_inverse(
893
+ self, s: Value, mass: Value, s_min: Value, s_max: Value
894
+ ) -> typing.Annotated[list[Value], "FixedSize(2)"]: ...
895
+ def stable_invariant_nu(
896
+ self, r: Value, mass: Value, nu: Value, s_min: Value, s_max: Value
897
+ ) -> typing.Annotated[list[Value], "FixedSize(2)"]: ...
898
+ def stable_invariant_nu_inverse(
899
+ self, s: Value, mass: Value, nu: Value, s_min: Value, s_max: Value
900
+ ) -> typing.Annotated[list[Value], "FixedSize(2)"]: ...
901
+ def stack(self, args: collections.abc.Sequence[Value]) -> Value: ...
902
+ def sub(self, in1: Value, in2: Value) -> Value: ...
903
+ def subchannel_weights(
904
+ self,
905
+ invariants: Value,
906
+ masses: Value,
907
+ widths: Value,
908
+ indices: Value,
909
+ on_shell: Value,
910
+ group_sizes: Value,
911
+ ) -> Value: ...
912
+ def t_inv_min_max(
913
+ self, pa: Value, pb: Value, m1: Value, m2: Value
914
+ ) -> typing.Annotated[list[Value], "FixedSize(2)"]: ...
915
+ def three_body_decay(
916
+ self,
917
+ r_e1: Value,
918
+ r_e2: Value,
919
+ r_phi: Value,
920
+ r_cos_theta: Value,
921
+ r_beta: Value,
922
+ m0: Value,
923
+ m1: Value,
924
+ m2: Value,
925
+ m3: Value,
926
+ p0: Value,
927
+ ) -> typing.Annotated[list[Value], "FixedSize(4)"]: ...
928
+ def three_body_decay_com(
929
+ self,
930
+ r_e1: Value,
931
+ r_e2: Value,
932
+ r_phi: Value,
933
+ r_cos_theta: Value,
934
+ r_beta: Value,
935
+ m0: Value,
936
+ m1: Value,
937
+ m2: Value,
938
+ m3: Value,
939
+ ) -> typing.Annotated[list[Value], "FixedSize(4)"]: ...
940
+ def two_body_decay(
941
+ self,
942
+ r_phi: Value,
943
+ r_cos_theta: Value,
944
+ m0: Value,
945
+ m1: Value,
946
+ m2: Value,
947
+ p0: Value,
948
+ ) -> typing.Annotated[list[Value], "FixedSize(3)"]: ...
949
+ def two_body_decay_com(
950
+ self, r_phi: Value, r_cos_theta: Value, m0: Value, m1: Value, m2: Value
951
+ ) -> typing.Annotated[list[Value], "FixedSize(3)"]: ...
952
+ def two_to_three_particle_scattering(
953
+ self,
954
+ phi_choice: Value,
955
+ pa: Value,
956
+ pb: Value,
957
+ p3: Value,
958
+ s23: Value,
959
+ t1_abs: Value,
960
+ m1: Value,
961
+ m2: Value,
962
+ ) -> typing.Annotated[list[Value], "FixedSize(3)"]: ...
963
+ def two_to_two_particle_scattering(
964
+ self, r_phi: Value, pa: Value, pb: Value, t_abs: Value, m1: Value, m2: Value
965
+ ) -> typing.Annotated[list[Value], "FixedSize(3)"]: ...
966
+ def two_to_two_particle_scattering_com(
967
+ self, r_phi: Value, pa: Value, pb: Value, t_abs: Value, m1: Value, m2: Value
968
+ ) -> typing.Annotated[list[Value], "FixedSize(3)"]: ...
969
+ def uniform_invariant(
970
+ self, r: Value, s_min: Value, s_max: Value
971
+ ) -> typing.Annotated[list[Value], "FixedSize(2)"]: ...
972
+ def uniform_invariant_inverse(
973
+ self, s: Value, s_min: Value, s_max: Value
974
+ ) -> typing.Annotated[list[Value], "FixedSize(2)"]: ...
975
+ def unsqueeze(self, input: Value) -> Value: ...
976
+ def unstack(self, in1: Value) -> list[Value]: ...
977
+ def unstack_sizes(self, in1: Value) -> list[Value]: ...
978
+ def unweight(
979
+ self, weights: Value, max_weight: Value
980
+ ) -> typing.Annotated[list[Value], "FixedSize(2)"]: ...
981
+ def vegas_forward(
982
+ self, input: Value, grid: Value
983
+ ) -> typing.Annotated[list[Value], "FixedSize(2)"]: ...
984
+ def vegas_histogram(
985
+ self, input: Value, weights: Value, bin_count: Value
986
+ ) -> typing.Annotated[list[Value], "FixedSize(2)"]: ...
987
+ def vegas_inverse(
988
+ self, input: Value, grid: Value
989
+ ) -> typing.Annotated[list[Value], "FixedSize(2)"]: ...
990
+ def x1x2_to_r(
991
+ self, x1: Value, x2: Value, s_lab: Value
992
+ ) -> typing.Annotated[list[Value], "FixedSize(2)"]: ...
993
+
994
+ class FunctionGenerator:
995
+ def __call__(self, *args): ...
996
+ def __init__(
997
+ self,
998
+ name: str,
999
+ arg_types: collections.abc.Sequence[Type],
1000
+ return_types: collections.abc.Sequence[Type],
1001
+ ) -> None: ...
1002
+ def build_function(
1003
+ self, builder: FunctionBuilder, args: collections.abc.Sequence[Value]
1004
+ ) -> list[Value]: ...
1005
+ def function(self) -> Function: ...
1006
+
1007
+ class FunctionRuntime:
1008
+ def __call__(self, *args): ...
1009
+ @typing.overload
1010
+ def __init__(self, function: Function) -> None: ...
1011
+ @typing.overload
1012
+ def __init__(self, function: Function, context: Context) -> None: ...
1013
+ def call(self, arg0: collections.abc.Sequence[typing.Any]) -> list[Tensor]: ...
1014
+ def call_backward(
1015
+ self,
1016
+ arg0: collections.abc.Sequence[typing.Any],
1017
+ arg1: collections.abc.Sequence[typing.Any],
1018
+ arg2: collections.abc.Sequence[bool],
1019
+ ) -> tuple[
1020
+ list[madspace._madspace_py.Tensor | None],
1021
+ list[tuple[str, madspace._madspace_py.Tensor | None]],
1022
+ ]: ...
1023
+ def call_with_grad(
1024
+ self,
1025
+ arg0: collections.abc.Sequence[typing.Any],
1026
+ arg1: collections.abc.Sequence[bool],
1027
+ ) -> tuple[list[Tensor], list[madspace._madspace_py.Tensor | None], list[bool]]: ...
1028
+
1029
+ class Instruction:
1030
+ def __str__(self) -> str: ...
1031
+ @property
1032
+ def name(self) -> str: ...
1033
+ @property
1034
+ def opcode(self) -> int: ...
1035
+
1036
+ class InstructionCall:
1037
+ def __repr__(self) -> str: ...
1038
+ def __str__(self) -> str: ...
1039
+ @property
1040
+ def inputs(self) -> list[Value]: ...
1041
+ @property
1042
+ def instruction(self) -> Instruction: ...
1043
+ @property
1044
+ def outputs(self) -> list[Value]: ...
1045
+
1046
+ class Integrand(FunctionGenerator):
1047
+ matrix_element_inputs: typing.ClassVar[
1048
+ list
1049
+ ] # value = [<MatrixElementInput.momenta_in: 0>, <MatrixElementInput.alpha_s_in: 1>, <MatrixElementInput.flavor_in: 2>, <MatrixElementInput.random_color_in: 3>, <MatrixElementInput.random_helicity_in: 4>, <MatrixElementInput.random_diagram_in: 5>]
1050
+ matrix_element_outputs: typing.ClassVar[
1051
+ list
1052
+ ] # value = [<MatrixElementOutput.matrix_element_out: 0>, <MatrixElementOutput.diagram_amp2_out: 1>, <MatrixElementOutput.color_index_out: 2>, <MatrixElementOutput.helicity_index_out: 3>, <MatrixElementOutput.diagram_index_out: 4>]
1053
+ return_chan_weights: typing.ClassVar[int] = 256
1054
+ return_channel: typing.ClassVar[int] = 128
1055
+ return_cwnet_input: typing.ClassVar[int] = 512
1056
+ return_discrete: typing.ClassVar[int] = 1024
1057
+ return_discrete_latent: typing.ClassVar[int] = 2048
1058
+ return_indices: typing.ClassVar[int] = 16
1059
+ return_latent: typing.ClassVar[int] = 64
1060
+ return_momenta: typing.ClassVar[int] = 4
1061
+ return_random: typing.ClassVar[int] = 32
1062
+ return_x1_x2: typing.ClassVar[int] = 8
1063
+ sample: typing.ClassVar[int] = 1
1064
+ unweight: typing.ClassVar[int] = 2
1065
+ def __init__(
1066
+ self,
1067
+ mapping: PhaseSpaceMapping,
1068
+ diff_xs: DifferentialCrossSection,
1069
+ adaptive_map: (
1070
+ None | madspace._madspace_py.VegasMapping | madspace._madspace_py.Flow
1071
+ ) = None,
1072
+ discrete_before: (
1073
+ None
1074
+ | madspace._madspace_py.DiscreteSampler
1075
+ | madspace._madspace_py.DiscreteFlow
1076
+ ) = None,
1077
+ discrete_after: (
1078
+ None
1079
+ | madspace._madspace_py.DiscreteSampler
1080
+ | madspace._madspace_py.DiscreteFlow
1081
+ ) = None,
1082
+ pdf_grid: madspace._madspace_py.PdfGrid | None = None,
1083
+ energy_scale: madspace._madspace_py.EnergyScale | None = None,
1084
+ prop_chan_weights: madspace._madspace_py.PropagatorChannelWeights | None = None,
1085
+ subchan_weights: madspace._madspace_py.SubchannelWeights | None = None,
1086
+ chan_weight_net: madspace._madspace_py.ChannelWeightNetwork | None = None,
1087
+ chan_weight_remap: collections.abc.Sequence[typing.SupportsInt] = [],
1088
+ remapped_chan_count: typing.SupportsInt = 0,
1089
+ flags: typing.SupportsInt = 0,
1090
+ channel_indices: collections.abc.Sequence[typing.SupportsInt] = [],
1091
+ active_flavors: collections.abc.Sequence[typing.SupportsInt] = [],
1092
+ ) -> None: ...
1093
+ def adaptive_map(
1094
+ self,
1095
+ ) -> None | madspace._madspace_py.VegasMapping | madspace._madspace_py.Flow: ...
1096
+ def chan_weight_net(self) -> madspace._madspace_py.ChannelWeightNetwork | None: ...
1097
+ def diff_xs(self) -> DifferentialCrossSection: ...
1098
+ def discrete_after(
1099
+ self,
1100
+ ) -> (
1101
+ None
1102
+ | madspace._madspace_py.DiscreteSampler
1103
+ | madspace._madspace_py.DiscreteFlow
1104
+ ): ...
1105
+ def discrete_before(
1106
+ self,
1107
+ ) -> (
1108
+ None
1109
+ | madspace._madspace_py.DiscreteSampler
1110
+ | madspace._madspace_py.DiscreteFlow
1111
+ ): ...
1112
+ def energy_scale(self) -> madspace._madspace_py.EnergyScale | None: ...
1113
+ def flags(self) -> int: ...
1114
+ def latent_dims(self) -> tuple[list[int], list[bool]]: ...
1115
+ def mapping(self) -> PhaseSpaceMapping: ...
1116
+ def particle_count(self) -> int: ...
1117
+ def prop_chan_weights(
1118
+ self,
1119
+ ) -> madspace._madspace_py.PropagatorChannelWeights | None: ...
1120
+ def random_dim(self) -> int: ...
1121
+ def vegas_grid_name(self) -> str | None: ...
1122
+
1123
+ class IntegrandProbability(FunctionGenerator):
1124
+ def __init__(self, integrand: Integrand) -> None: ...
1125
+
1126
+ class Invariant(Mapping):
1127
+ def __init__(
1128
+ self,
1129
+ power: typing.SupportsFloat = 0.0,
1130
+ mass: typing.SupportsFloat = 0.0,
1131
+ width: typing.SupportsFloat = 0.0,
1132
+ ) -> None: ...
1133
+
1134
+ class LHECompleter:
1135
+ def __init__(
1136
+ self,
1137
+ subproc_args: collections.abc.Sequence[SubprocArgs],
1138
+ bw_cutoff: typing.SupportsFloat,
1139
+ ) -> None: ...
1140
+ def complete_event_data(
1141
+ self,
1142
+ event: LHEEvent,
1143
+ subprocess_index: typing.SupportsInt,
1144
+ diagram_index: typing.SupportsInt,
1145
+ color_index: typing.SupportsInt,
1146
+ flavor_index: typing.SupportsInt,
1147
+ helicity_index: typing.SupportsInt,
1148
+ ) -> None: ...
1149
+ @property
1150
+ def max_particle_count(self) -> int: ...
1151
+
1152
+ class LHEEvent:
1153
+ def __init__(
1154
+ self,
1155
+ process_id: typing.SupportsInt = 0,
1156
+ weight: typing.SupportsFloat = 0.0,
1157
+ scale: typing.SupportsFloat = 0.0,
1158
+ alpha_qed: typing.SupportsFloat = 0.0,
1159
+ alpha_qcd: typing.SupportsFloat = 0.0,
1160
+ particles: collections.abc.Sequence[LHEParticle] = [],
1161
+ ) -> None: ...
1162
+ @property
1163
+ def alpha_qcd(self) -> int: ...
1164
+ @alpha_qcd.setter
1165
+ def alpha_qcd(self, arg0: typing.SupportsInt) -> None: ...
1166
+ @property
1167
+ def alpha_qed(self) -> float: ...
1168
+ @alpha_qed.setter
1169
+ def alpha_qed(self, arg0: typing.SupportsFloat) -> None: ...
1170
+ @property
1171
+ def particles(self) -> list[LHEParticle]: ...
1172
+ @particles.setter
1173
+ def particles(self, arg0: collections.abc.Sequence[LHEParticle]) -> None: ...
1174
+ @property
1175
+ def process_id(self) -> int: ...
1176
+ @process_id.setter
1177
+ def process_id(self, arg0: typing.SupportsInt) -> None: ...
1178
+ @property
1179
+ def scale(self) -> float: ...
1180
+ @scale.setter
1181
+ def scale(self, arg0: typing.SupportsFloat) -> None: ...
1182
+ @property
1183
+ def weight(self) -> float: ...
1184
+ @weight.setter
1185
+ def weight(self, arg0: typing.SupportsFloat) -> None: ...
1186
+
1187
+ class LHEFileWriter:
1188
+ def __init__(self, file_name: str, meta: LHEMeta) -> None: ...
1189
+ def write(self, event: LHEEvent) -> None: ...
1190
+ def write_string(self, str: str) -> None: ...
1191
+
1192
+ class LHEHeader:
1193
+ content: str
1194
+ escape_content: bool
1195
+ name: str
1196
+ def __init__(
1197
+ self, name: str = "", content: str = "", escape_content: bool = False
1198
+ ) -> None: ...
1199
+
1200
+ class LHEMeta:
1201
+ def __init__(
1202
+ self,
1203
+ beam1_pdg_id: typing.SupportsInt = 0,
1204
+ beam2_pdg_id: typing.SupportsInt = 0,
1205
+ beam1_energy: typing.SupportsFloat = 0.0,
1206
+ beam2_energy: typing.SupportsFloat = 0.0,
1207
+ beam1_pdf_authors: typing.SupportsInt = 0,
1208
+ beam2_pdf_authors: typing.SupportsInt = 0,
1209
+ beam1_pdf_id: typing.SupportsInt = 0,
1210
+ beam2_pdf_id: typing.SupportsInt = 0,
1211
+ weight_mode: typing.SupportsInt = 0,
1212
+ processes: collections.abc.Sequence[LHEProcess] = [],
1213
+ headers: collections.abc.Sequence[LHEHeader] = [],
1214
+ ) -> None: ...
1215
+ @property
1216
+ def beam1_energy(self) -> float: ...
1217
+ @beam1_energy.setter
1218
+ def beam1_energy(self, arg0: typing.SupportsFloat) -> None: ...
1219
+ @property
1220
+ def beam1_pdf_authors(self) -> int: ...
1221
+ @beam1_pdf_authors.setter
1222
+ def beam1_pdf_authors(self, arg0: typing.SupportsInt) -> None: ...
1223
+ @property
1224
+ def beam1_pdf_id(self) -> int: ...
1225
+ @beam1_pdf_id.setter
1226
+ def beam1_pdf_id(self, arg0: typing.SupportsInt) -> None: ...
1227
+ @property
1228
+ def beam1_pdg_id(self) -> int: ...
1229
+ @beam1_pdg_id.setter
1230
+ def beam1_pdg_id(self, arg0: typing.SupportsInt) -> None: ...
1231
+ @property
1232
+ def beam2_energy(self) -> float: ...
1233
+ @beam2_energy.setter
1234
+ def beam2_energy(self, arg0: typing.SupportsFloat) -> None: ...
1235
+ @property
1236
+ def beam2_pdf_authors(self) -> int: ...
1237
+ @beam2_pdf_authors.setter
1238
+ def beam2_pdf_authors(self, arg0: typing.SupportsInt) -> None: ...
1239
+ @property
1240
+ def beam2_pdf_id(self) -> int: ...
1241
+ @beam2_pdf_id.setter
1242
+ def beam2_pdf_id(self, arg0: typing.SupportsInt) -> None: ...
1243
+ @property
1244
+ def beam2_pdg_id(self) -> int: ...
1245
+ @beam2_pdg_id.setter
1246
+ def beam2_pdg_id(self, arg0: typing.SupportsInt) -> None: ...
1247
+ @property
1248
+ def headers(self) -> list[LHEHeader]: ...
1249
+ @headers.setter
1250
+ def headers(self, arg0: collections.abc.Sequence[LHEHeader]) -> None: ...
1251
+ @property
1252
+ def processes(self) -> list[LHEProcess]: ...
1253
+ @processes.setter
1254
+ def processes(self, arg0: collections.abc.Sequence[LHEProcess]) -> None: ...
1255
+ @property
1256
+ def weight_mode(self) -> int: ...
1257
+ @weight_mode.setter
1258
+ def weight_mode(self, arg0: typing.SupportsInt) -> None: ...
1259
+
1260
+ class LHEParticle:
1261
+ status_incoming: typing.ClassVar[int] = -1
1262
+ status_intermediate_resonance: typing.ClassVar[int] = 2
1263
+ status_outgoing: typing.ClassVar[int] = 1
1264
+ def __init__(
1265
+ self,
1266
+ pdg_id: typing.SupportsInt = 0,
1267
+ status_code: typing.SupportsInt = 0,
1268
+ mother1: typing.SupportsInt = 0,
1269
+ mother2: typing.SupportsInt = 0,
1270
+ color: typing.SupportsInt = 0,
1271
+ anti_color: typing.SupportsInt = 0,
1272
+ p_x: typing.SupportsFloat = 0.0,
1273
+ p_y: typing.SupportsFloat = 0.0,
1274
+ p_z: typing.SupportsFloat = 0.0,
1275
+ energy: typing.SupportsFloat = 0.0,
1276
+ mass: typing.SupportsFloat = 0.0,
1277
+ lifetime: typing.SupportsFloat = 0.0,
1278
+ spin: typing.SupportsFloat = 0.0,
1279
+ ) -> None: ...
1280
+ @property
1281
+ def anti_color(self) -> int: ...
1282
+ @anti_color.setter
1283
+ def anti_color(self, arg0: typing.SupportsInt) -> None: ...
1284
+ @property
1285
+ def color(self) -> int: ...
1286
+ @color.setter
1287
+ def color(self, arg0: typing.SupportsInt) -> None: ...
1288
+ @property
1289
+ def energy(self) -> float: ...
1290
+ @energy.setter
1291
+ def energy(self, arg0: typing.SupportsFloat) -> None: ...
1292
+ @property
1293
+ def lifetime(self) -> float: ...
1294
+ @lifetime.setter
1295
+ def lifetime(self, arg0: typing.SupportsFloat) -> None: ...
1296
+ @property
1297
+ def mass(self) -> float: ...
1298
+ @mass.setter
1299
+ def mass(self, arg0: typing.SupportsFloat) -> None: ...
1300
+ @property
1301
+ def mother1(self) -> int: ...
1302
+ @mother1.setter
1303
+ def mother1(self, arg0: typing.SupportsInt) -> None: ...
1304
+ @property
1305
+ def mother2(self) -> int: ...
1306
+ @mother2.setter
1307
+ def mother2(self, arg0: typing.SupportsInt) -> None: ...
1308
+ @property
1309
+ def pdg_id(self) -> int: ...
1310
+ @pdg_id.setter
1311
+ def pdg_id(self, arg0: typing.SupportsInt) -> None: ...
1312
+ @property
1313
+ def px(self) -> float: ...
1314
+ @px.setter
1315
+ def px(self, arg0: typing.SupportsFloat) -> None: ...
1316
+ @property
1317
+ def py(self) -> float: ...
1318
+ @py.setter
1319
+ def py(self, arg0: typing.SupportsFloat) -> None: ...
1320
+ @property
1321
+ def pz(self) -> float: ...
1322
+ @pz.setter
1323
+ def pz(self, arg0: typing.SupportsFloat) -> None: ...
1324
+ @property
1325
+ def spin(self) -> float: ...
1326
+ @spin.setter
1327
+ def spin(self, arg0: typing.SupportsFloat) -> None: ...
1328
+ @property
1329
+ def status_code(self) -> int: ...
1330
+ @status_code.setter
1331
+ def status_code(self, arg0: typing.SupportsInt) -> None: ...
1332
+
1333
+ class LHEProcess:
1334
+ @staticmethod
1335
+ def __init__(*args, **kwargs) -> None: ...
1336
+ @property
1337
+ def cross_section(self) -> float: ...
1338
+ @cross_section.setter
1339
+ def cross_section(self, arg0: typing.SupportsFloat) -> None: ...
1340
+ @property
1341
+ def cross_section_error(self) -> float: ...
1342
+ @cross_section_error.setter
1343
+ def cross_section_error(self, arg0: typing.SupportsFloat) -> None: ...
1344
+ @property
1345
+ def max_weight(self) -> float: ...
1346
+ @max_weight.setter
1347
+ def max_weight(self, arg0: typing.SupportsFloat) -> None: ...
1348
+ @property
1349
+ def process_id(self) -> int: ...
1350
+ @process_id.setter
1351
+ def process_id(self, arg0: typing.SupportsInt) -> None: ...
1352
+
1353
+ class LineRef:
1354
+ def __init__(self, str: str) -> None: ...
1355
+ def __repr__(self) -> str: ...
1356
+
1357
+ class Logger:
1358
+ class LogLevel:
1359
+ """
1360
+ Members:
1361
+
1362
+ level_debug
1363
+
1364
+ level_info
1365
+
1366
+ level_warning
1367
+
1368
+ level_error
1369
+ """
1370
+
1371
+ __members__: typing.ClassVar[
1372
+ dict[str, Logger.LogLevel]
1373
+ ] # value = {'level_debug': <LogLevel.level_debug: 0>, 'level_info': <LogLevel.level_info: 1>, 'level_warning': <LogLevel.level_warning: 2>, 'level_error': <LogLevel.level_error: 3>}
1374
+ level_debug: typing.ClassVar[
1375
+ Logger.LogLevel
1376
+ ] # value = <LogLevel.level_debug: 0>
1377
+ level_error: typing.ClassVar[
1378
+ Logger.LogLevel
1379
+ ] # value = <LogLevel.level_error: 3>
1380
+ level_info: typing.ClassVar[Logger.LogLevel] # value = <LogLevel.level_info: 1>
1381
+ level_warning: typing.ClassVar[
1382
+ Logger.LogLevel
1383
+ ] # value = <LogLevel.level_warning: 2>
1384
+ def __eq__(self, other: typing.Any) -> bool: ...
1385
+ def __getstate__(self) -> int: ...
1386
+ def __hash__(self) -> int: ...
1387
+ def __index__(self) -> int: ...
1388
+ @typing.overload
1389
+ def __init__(self, value: typing.SupportsInt) -> None: ...
1390
+ @typing.overload
1391
+ def __init__(self, name: str) -> None: ...
1392
+ def __int__(self) -> int: ...
1393
+ def __ne__(self, other: typing.Any) -> bool: ...
1394
+ def __repr__(self) -> str: ...
1395
+ def __setstate__(self, state: typing.SupportsInt) -> None: ...
1396
+ def __str__(self) -> str: ...
1397
+ @property
1398
+ def name(self) -> str: ...
1399
+ @property
1400
+ def value(self) -> int: ...
1401
+
1402
+ level_debug: typing.ClassVar[Logger.LogLevel] # value = <LogLevel.level_debug: 0>
1403
+ level_error: typing.ClassVar[Logger.LogLevel] # value = <LogLevel.level_error: 3>
1404
+ level_info: typing.ClassVar[Logger.LogLevel] # value = <LogLevel.level_info: 1>
1405
+ level_warning: typing.ClassVar[
1406
+ Logger.LogLevel
1407
+ ] # value = <LogLevel.level_warning: 2>
1408
+ @staticmethod
1409
+ def debug(message: str) -> None: ...
1410
+ @staticmethod
1411
+ def error(message: str) -> None: ...
1412
+ @staticmethod
1413
+ def info(message: str) -> None: ...
1414
+ @staticmethod
1415
+ def log(level: Logger.LogLevel, message: str) -> None: ...
1416
+ @staticmethod
1417
+ def set_log_handler(
1418
+ func: collections.abc.Callable[[Logger.LogLevel, str], None],
1419
+ ) -> None: ...
1420
+ @staticmethod
1421
+ def warning(message: str) -> None: ...
1422
+
1423
+ class Luminosity(Mapping):
1424
+ def __init__(
1425
+ self,
1426
+ s_lab: typing.SupportsFloat,
1427
+ s_hat_min: typing.SupportsFloat,
1428
+ s_hat_max: typing.SupportsFloat = 0.0,
1429
+ invariant_power: typing.SupportsFloat = 0.0,
1430
+ mass: typing.SupportsFloat = 0.0,
1431
+ width: typing.SupportsFloat = 0.0,
1432
+ ) -> None: ...
1433
+
1434
+ class MLP(FunctionGenerator):
1435
+ class Activation:
1436
+ """
1437
+ Members:
1438
+
1439
+ relu
1440
+
1441
+ leaky_relu
1442
+
1443
+ elu
1444
+
1445
+ gelu
1446
+
1447
+ sigmoid
1448
+
1449
+ softplus
1450
+
1451
+ linear
1452
+ """
1453
+
1454
+ __members__: typing.ClassVar[
1455
+ dict[str, MLP.Activation]
1456
+ ] # value = {'relu': <Activation.relu: 0>, 'leaky_relu': <Activation.leaky_relu: 1>, 'elu': <Activation.elu: 2>, 'gelu': <Activation.gelu: 3>, 'sigmoid': <Activation.sigmoid: 4>, 'softplus': <Activation.softplus: 5>, 'linear': <Activation.linear: 6>}
1457
+ elu: typing.ClassVar[MLP.Activation] # value = <Activation.elu: 2>
1458
+ gelu: typing.ClassVar[MLP.Activation] # value = <Activation.gelu: 3>
1459
+ leaky_relu: typing.ClassVar[
1460
+ MLP.Activation
1461
+ ] # value = <Activation.leaky_relu: 1>
1462
+ linear: typing.ClassVar[MLP.Activation] # value = <Activation.linear: 6>
1463
+ relu: typing.ClassVar[MLP.Activation] # value = <Activation.relu: 0>
1464
+ sigmoid: typing.ClassVar[MLP.Activation] # value = <Activation.sigmoid: 4>
1465
+ softplus: typing.ClassVar[MLP.Activation] # value = <Activation.softplus: 5>
1466
+ def __eq__(self, other: typing.Any) -> bool: ...
1467
+ def __getstate__(self) -> int: ...
1468
+ def __hash__(self) -> int: ...
1469
+ def __index__(self) -> int: ...
1470
+ @typing.overload
1471
+ def __init__(self, value: typing.SupportsInt) -> None: ...
1472
+ @typing.overload
1473
+ def __init__(self, name: str) -> None: ...
1474
+ def __int__(self) -> int: ...
1475
+ def __ne__(self, other: typing.Any) -> bool: ...
1476
+ def __repr__(self) -> str: ...
1477
+ def __setstate__(self, state: typing.SupportsInt) -> None: ...
1478
+ def __str__(self) -> str: ...
1479
+ @property
1480
+ def name(self) -> str: ...
1481
+ @property
1482
+ def value(self) -> int: ...
1483
+
1484
+ elu: typing.ClassVar[MLP.Activation] # value = <Activation.elu: 2>
1485
+ gelu: typing.ClassVar[MLP.Activation] # value = <Activation.gelu: 3>
1486
+ leaky_relu: typing.ClassVar[MLP.Activation] # value = <Activation.leaky_relu: 1>
1487
+ linear: typing.ClassVar[MLP.Activation] # value = <Activation.linear: 6>
1488
+ relu: typing.ClassVar[MLP.Activation] # value = <Activation.relu: 0>
1489
+ sigmoid: typing.ClassVar[MLP.Activation] # value = <Activation.sigmoid: 4>
1490
+ softplus: typing.ClassVar[MLP.Activation] # value = <Activation.softplus: 5>
1491
+ def __init__(
1492
+ self,
1493
+ input_dim: typing.SupportsInt,
1494
+ output_dim: typing.SupportsInt,
1495
+ hidden_dim: typing.SupportsInt = 32,
1496
+ layers: typing.SupportsInt = 3,
1497
+ activation: MLP.Activation = MLP.Activation.Activation.leaky_relu,
1498
+ prefix: str = "",
1499
+ ) -> None: ...
1500
+ def initialize_globals(self, context: Context) -> None: ...
1501
+ def input_dim(self) -> int: ...
1502
+ def output_dim(self) -> int: ...
1503
+
1504
+ class Mapping:
1505
+ def __init__(
1506
+ self,
1507
+ name: str,
1508
+ input_types: collections.abc.Sequence[Type],
1509
+ output_types: collections.abc.Sequence[Type],
1510
+ condition_types: collections.abc.Sequence[Type],
1511
+ ) -> None: ...
1512
+ def build_forward(
1513
+ self,
1514
+ builder: FunctionBuilder,
1515
+ inputs: collections.abc.Sequence[Value],
1516
+ conditions: collections.abc.Sequence[Value],
1517
+ ) -> tuple[list[Value], Value]: ...
1518
+ def build_inverse(
1519
+ self,
1520
+ builder: FunctionBuilder,
1521
+ inputs: collections.abc.Sequence[Value],
1522
+ conditions: collections.abc.Sequence[Value],
1523
+ ) -> tuple[list[Value], Value]: ...
1524
+ def forward_function(self) -> Function: ...
1525
+ def inverse_function(self) -> Function: ...
1526
+ def map_forward(self, inputs, conditions=list()): ...
1527
+ def map_inverse(self, inputs, conditions=list()): ...
1528
+
1529
+ class MatrixElement(FunctionGenerator):
1530
+ class MatrixElementInput:
1531
+ """
1532
+ Members:
1533
+
1534
+ momenta_in
1535
+
1536
+ alpha_s_in
1537
+
1538
+ flavor_in
1539
+
1540
+ random_color_in
1541
+
1542
+ random_helicity_in
1543
+
1544
+ random_diagram_in
1545
+
1546
+ helicity_in
1547
+
1548
+ diagram_in
1549
+ """
1550
+
1551
+ __members__: typing.ClassVar[
1552
+ dict[str, MatrixElement.MatrixElementInput]
1553
+ ] # value = {'momenta_in': <MatrixElementInput.momenta_in: 0>, 'alpha_s_in': <MatrixElementInput.alpha_s_in: 1>, 'flavor_in': <MatrixElementInput.flavor_in: 2>, 'random_color_in': <MatrixElementInput.random_color_in: 3>, 'random_helicity_in': <MatrixElementInput.random_helicity_in: 4>, 'random_diagram_in': <MatrixElementInput.random_diagram_in: 5>, 'helicity_in': <MatrixElementInput.helicity_in: 6>, 'diagram_in': <MatrixElementInput.diagram_in: 7>}
1554
+ alpha_s_in: typing.ClassVar[
1555
+ MatrixElement.MatrixElementInput
1556
+ ] # value = <MatrixElementInput.alpha_s_in: 1>
1557
+ diagram_in: typing.ClassVar[
1558
+ MatrixElement.MatrixElementInput
1559
+ ] # value = <MatrixElementInput.diagram_in: 7>
1560
+ flavor_in: typing.ClassVar[
1561
+ MatrixElement.MatrixElementInput
1562
+ ] # value = <MatrixElementInput.flavor_in: 2>
1563
+ helicity_in: typing.ClassVar[
1564
+ MatrixElement.MatrixElementInput
1565
+ ] # value = <MatrixElementInput.helicity_in: 6>
1566
+ momenta_in: typing.ClassVar[
1567
+ MatrixElement.MatrixElementInput
1568
+ ] # value = <MatrixElementInput.momenta_in: 0>
1569
+ random_color_in: typing.ClassVar[
1570
+ MatrixElement.MatrixElementInput
1571
+ ] # value = <MatrixElementInput.random_color_in: 3>
1572
+ random_diagram_in: typing.ClassVar[
1573
+ MatrixElement.MatrixElementInput
1574
+ ] # value = <MatrixElementInput.random_diagram_in: 5>
1575
+ random_helicity_in: typing.ClassVar[
1576
+ MatrixElement.MatrixElementInput
1577
+ ] # value = <MatrixElementInput.random_helicity_in: 4>
1578
+ def __eq__(self, other: typing.Any) -> bool: ...
1579
+ def __getstate__(self) -> int: ...
1580
+ def __hash__(self) -> int: ...
1581
+ def __index__(self) -> int: ...
1582
+ @typing.overload
1583
+ def __init__(self, value: typing.SupportsInt) -> None: ...
1584
+ @typing.overload
1585
+ def __init__(self, name: str) -> None: ...
1586
+ def __int__(self) -> int: ...
1587
+ def __ne__(self, other: typing.Any) -> bool: ...
1588
+ def __repr__(self) -> str: ...
1589
+ def __setstate__(self, state: typing.SupportsInt) -> None: ...
1590
+ def __str__(self) -> str: ...
1591
+ @property
1592
+ def name(self) -> str: ...
1593
+ @property
1594
+ def value(self) -> int: ...
1595
+
1596
+ class MatrixElementOutput:
1597
+ """
1598
+ Members:
1599
+
1600
+ matrix_element_out
1601
+
1602
+ diagram_amp2_out
1603
+
1604
+ color_index_out
1605
+
1606
+ helicity_index_out
1607
+
1608
+ diagram_index_out
1609
+ """
1610
+
1611
+ __members__: typing.ClassVar[
1612
+ dict[str, MatrixElement.MatrixElementOutput]
1613
+ ] # value = {'matrix_element_out': <MatrixElementOutput.matrix_element_out: 0>, 'diagram_amp2_out': <MatrixElementOutput.diagram_amp2_out: 1>, 'color_index_out': <MatrixElementOutput.color_index_out: 2>, 'helicity_index_out': <MatrixElementOutput.helicity_index_out: 3>, 'diagram_index_out': <MatrixElementOutput.diagram_index_out: 4>}
1614
+ color_index_out: typing.ClassVar[
1615
+ MatrixElement.MatrixElementOutput
1616
+ ] # value = <MatrixElementOutput.color_index_out: 2>
1617
+ diagram_amp2_out: typing.ClassVar[
1618
+ MatrixElement.MatrixElementOutput
1619
+ ] # value = <MatrixElementOutput.diagram_amp2_out: 1>
1620
+ diagram_index_out: typing.ClassVar[
1621
+ MatrixElement.MatrixElementOutput
1622
+ ] # value = <MatrixElementOutput.diagram_index_out: 4>
1623
+ helicity_index_out: typing.ClassVar[
1624
+ MatrixElement.MatrixElementOutput
1625
+ ] # value = <MatrixElementOutput.helicity_index_out: 3>
1626
+ matrix_element_out: typing.ClassVar[
1627
+ MatrixElement.MatrixElementOutput
1628
+ ] # value = <MatrixElementOutput.matrix_element_out: 0>
1629
+ def __eq__(self, other: typing.Any) -> bool: ...
1630
+ def __getstate__(self) -> int: ...
1631
+ def __hash__(self) -> int: ...
1632
+ def __index__(self) -> int: ...
1633
+ @typing.overload
1634
+ def __init__(self, value: typing.SupportsInt) -> None: ...
1635
+ @typing.overload
1636
+ def __init__(self, name: str) -> None: ...
1637
+ def __int__(self) -> int: ...
1638
+ def __ne__(self, other: typing.Any) -> bool: ...
1639
+ def __repr__(self) -> str: ...
1640
+ def __setstate__(self, state: typing.SupportsInt) -> None: ...
1641
+ def __str__(self) -> str: ...
1642
+ @property
1643
+ def name(self) -> str: ...
1644
+ @property
1645
+ def value(self) -> int: ...
1646
+
1647
+ alpha_s_in: typing.ClassVar[
1648
+ MatrixElement.MatrixElementInput
1649
+ ] # value = <MatrixElementInput.alpha_s_in: 1>
1650
+ color_index_out: typing.ClassVar[
1651
+ MatrixElement.MatrixElementOutput
1652
+ ] # value = <MatrixElementOutput.color_index_out: 2>
1653
+ diagram_amp2_out: typing.ClassVar[
1654
+ MatrixElement.MatrixElementOutput
1655
+ ] # value = <MatrixElementOutput.diagram_amp2_out: 1>
1656
+ diagram_in: typing.ClassVar[
1657
+ MatrixElement.MatrixElementInput
1658
+ ] # value = <MatrixElementInput.diagram_in: 7>
1659
+ diagram_index_out: typing.ClassVar[
1660
+ MatrixElement.MatrixElementOutput
1661
+ ] # value = <MatrixElementOutput.diagram_index_out: 4>
1662
+ flavor_in: typing.ClassVar[
1663
+ MatrixElement.MatrixElementInput
1664
+ ] # value = <MatrixElementInput.flavor_in: 2>
1665
+ helicity_in: typing.ClassVar[
1666
+ MatrixElement.MatrixElementInput
1667
+ ] # value = <MatrixElementInput.helicity_in: 6>
1668
+ helicity_index_out: typing.ClassVar[
1669
+ MatrixElement.MatrixElementOutput
1670
+ ] # value = <MatrixElementOutput.helicity_index_out: 3>
1671
+ matrix_element_out: typing.ClassVar[
1672
+ MatrixElement.MatrixElementOutput
1673
+ ] # value = <MatrixElementOutput.matrix_element_out: 0>
1674
+ momenta_in: typing.ClassVar[
1675
+ MatrixElement.MatrixElementInput
1676
+ ] # value = <MatrixElementInput.momenta_in: 0>
1677
+ random_color_in: typing.ClassVar[
1678
+ MatrixElement.MatrixElementInput
1679
+ ] # value = <MatrixElementInput.random_color_in: 3>
1680
+ random_diagram_in: typing.ClassVar[
1681
+ MatrixElement.MatrixElementInput
1682
+ ] # value = <MatrixElementInput.random_diagram_in: 5>
1683
+ random_helicity_in: typing.ClassVar[
1684
+ MatrixElement.MatrixElementInput
1685
+ ] # value = <MatrixElementInput.random_helicity_in: 4>
1686
+ @typing.overload
1687
+ def __init__(
1688
+ self,
1689
+ matrix_element_index: typing.SupportsInt,
1690
+ particle_count: typing.SupportsInt,
1691
+ inputs: collections.abc.Sequence[MatrixElement.MatrixElementInput],
1692
+ outputs: collections.abc.Sequence[MatrixElement.MatrixElementOutput],
1693
+ diagram_count: typing.SupportsInt = 1,
1694
+ sample_random_inputs: bool = False,
1695
+ ) -> None: ...
1696
+ @typing.overload
1697
+ def __init__(
1698
+ self,
1699
+ matrix_element_api: MatrixElementApi,
1700
+ inputs: collections.abc.Sequence[MatrixElement.MatrixElementInput],
1701
+ outputs: collections.abc.Sequence[MatrixElement.MatrixElementOutput],
1702
+ sample_random_inputs: bool = False,
1703
+ ) -> None: ...
1704
+ def diagram_count(self) -> int: ...
1705
+ def matrix_element_index(self) -> int: ...
1706
+ def particle_count(self) -> int: ...
1707
+
1708
+ class MatrixElementApi:
1709
+ def __init__(
1710
+ self, file: str, param_card: str, index: typing.SupportsInt = 0
1711
+ ) -> None: ...
1712
+ def device(self) -> Device: ...
1713
+ def diagram_count(self) -> int: ...
1714
+ def helicity_count(self) -> int: ...
1715
+ def index(self) -> int: ...
1716
+ def particle_count(self) -> int: ...
1717
+
1718
+ class MomentumPreprocessing(FunctionGenerator):
1719
+ def __init__(self, particle_count: typing.SupportsInt) -> None: ...
1720
+ def output_dim(self) -> int: ...
1721
+
1722
+ class MultiChannelFunction(FunctionGenerator):
1723
+ def __init__(
1724
+ self, functions: collections.abc.Sequence[FunctionGenerator]
1725
+ ) -> None: ...
1726
+
1727
+ class MultiChannelIntegrand(FunctionGenerator):
1728
+ def __init__(self, integrands: collections.abc.Sequence[Integrand]) -> None: ...
1729
+
1730
+ class MultiChannelMapping(Mapping):
1731
+ def __init__(self, mappings: collections.abc.Sequence[Mapping]) -> None: ...
1732
+
1733
+ class PartonDensity(FunctionGenerator):
1734
+ def __init__(
1735
+ self,
1736
+ grid: PdfGrid,
1737
+ pids: collections.abc.Sequence[typing.SupportsInt],
1738
+ dynamic_pid: bool = False,
1739
+ prefix: str = "",
1740
+ ) -> None: ...
1741
+
1742
+ class PdfGrid:
1743
+ def __init__(self, file: str) -> None: ...
1744
+ def coefficients_shape(self, batch_dim: bool = False) -> list[int]: ...
1745
+ def initialize_globals(self, context: Context, prefix: str = "") -> None: ...
1746
+ def logq2_shape(self, batch_dim: bool = False) -> list[int]: ...
1747
+ def logx_shape(self, batch_dim: bool = False) -> list[int]: ...
1748
+ @property
1749
+ def grid_point_count(self) -> int: ...
1750
+ @property
1751
+ def logq2(self) -> list[float]: ...
1752
+ @property
1753
+ def logx(self) -> list[float]: ...
1754
+ @property
1755
+ def pids(self) -> list[int]: ...
1756
+ @property
1757
+ def q(self) -> list[float]: ...
1758
+ @property
1759
+ def q_count(self) -> int: ...
1760
+ @property
1761
+ def region_sizes(self) -> list[int]: ...
1762
+ @property
1763
+ def values(self) -> list[list[float]]: ...
1764
+ @property
1765
+ def x(self) -> list[float]: ...
1766
+
1767
+ class PhaseSpaceMapping(Mapping):
1768
+ class TChannelMode:
1769
+ """
1770
+ Members:
1771
+
1772
+ propagator
1773
+
1774
+ rambo
1775
+
1776
+ chili
1777
+ """
1778
+
1779
+ __members__: typing.ClassVar[
1780
+ dict[str, PhaseSpaceMapping.TChannelMode]
1781
+ ] # value = {'propagator': <TChannelMode.propagator: 0>, 'rambo': <TChannelMode.rambo: 1>, 'chili': <TChannelMode.chili: 2>}
1782
+ chili: typing.ClassVar[
1783
+ PhaseSpaceMapping.TChannelMode
1784
+ ] # value = <TChannelMode.chili: 2>
1785
+ propagator: typing.ClassVar[
1786
+ PhaseSpaceMapping.TChannelMode
1787
+ ] # value = <TChannelMode.propagator: 0>
1788
+ rambo: typing.ClassVar[
1789
+ PhaseSpaceMapping.TChannelMode
1790
+ ] # value = <TChannelMode.rambo: 1>
1791
+ def __eq__(self, other: typing.Any) -> bool: ...
1792
+ def __getstate__(self) -> int: ...
1793
+ def __hash__(self) -> int: ...
1794
+ def __index__(self) -> int: ...
1795
+ @typing.overload
1796
+ def __init__(self, value: typing.SupportsInt) -> None: ...
1797
+ @typing.overload
1798
+ def __init__(self, name: str) -> None: ...
1799
+ def __int__(self) -> int: ...
1800
+ def __ne__(self, other: typing.Any) -> bool: ...
1801
+ def __repr__(self) -> str: ...
1802
+ def __setstate__(self, state: typing.SupportsInt) -> None: ...
1803
+ def __str__(self) -> str: ...
1804
+ @property
1805
+ def name(self) -> str: ...
1806
+ @property
1807
+ def value(self) -> int: ...
1808
+
1809
+ chili: typing.ClassVar[
1810
+ PhaseSpaceMapping.TChannelMode
1811
+ ] # value = <TChannelMode.chili: 2>
1812
+ propagator: typing.ClassVar[
1813
+ PhaseSpaceMapping.TChannelMode
1814
+ ] # value = <TChannelMode.propagator: 0>
1815
+ rambo: typing.ClassVar[
1816
+ PhaseSpaceMapping.TChannelMode
1817
+ ] # value = <TChannelMode.rambo: 1>
1818
+ @typing.overload
1819
+ def __init__(
1820
+ self,
1821
+ topology: Topology,
1822
+ cm_energy: typing.SupportsFloat,
1823
+ leptonic: bool = False,
1824
+ invariant_power: typing.SupportsFloat = 0.8,
1825
+ t_channel_mode: PhaseSpaceMapping.TChannelMode = PhaseSpaceMapping.TChannelMode.TChannelMode.propagator,
1826
+ cuts: madspace._madspace_py.Cuts | None = None,
1827
+ permutations: collections.abc.Sequence[
1828
+ collections.abc.Sequence[typing.SupportsInt]
1829
+ ] = [],
1830
+ ) -> None: ...
1831
+ @typing.overload
1832
+ def __init__(
1833
+ self,
1834
+ masses: collections.abc.Sequence[typing.SupportsFloat],
1835
+ cm_energy: typing.SupportsFloat,
1836
+ leptonic: bool = False,
1837
+ invariant_power: typing.SupportsFloat = 0.8,
1838
+ mode: PhaseSpaceMapping.TChannelMode = PhaseSpaceMapping.TChannelMode.TChannelMode.rambo,
1839
+ cuts: madspace._madspace_py.Cuts | None = None,
1840
+ ) -> None: ...
1841
+ def channel_count(self) -> int: ...
1842
+ def particle_count(self) -> int: ...
1843
+ def random_dim(self) -> int: ...
1844
+
1845
+ class PrettyBox:
1846
+ def __init__(
1847
+ self,
1848
+ title: str,
1849
+ rows: typing.SupportsInt,
1850
+ columns: collections.abc.Sequence[typing.SupportsInt],
1851
+ offset: typing.SupportsInt = 0,
1852
+ box_width: typing.SupportsInt = 91,
1853
+ ) -> None: ...
1854
+ def print_first(self) -> None: ...
1855
+ def print_update(self) -> None: ...
1856
+ def set_cell(
1857
+ self, row: typing.SupportsInt, column: typing.SupportsInt, value: str
1858
+ ) -> None: ...
1859
+ def set_column(
1860
+ self, column: typing.SupportsInt, values: collections.abc.Sequence[str]
1861
+ ) -> None: ...
1862
+ def set_row(
1863
+ self, row: typing.SupportsInt, values: collections.abc.Sequence[str]
1864
+ ) -> None: ...
1865
+ @property
1866
+ def line_count(self) -> int: ...
1867
+
1868
+ class Propagator:
1869
+ def __init__(
1870
+ self,
1871
+ mass: typing.SupportsFloat = 0.0,
1872
+ width: typing.SupportsFloat = 0.0,
1873
+ integration_order: typing.SupportsInt = 0,
1874
+ e_min: typing.SupportsFloat = 0.0,
1875
+ e_max: typing.SupportsFloat = 0.0,
1876
+ pdg_id: typing.SupportsInt = 0,
1877
+ ) -> None: ...
1878
+ @property
1879
+ def e_max(self) -> float: ...
1880
+ @property
1881
+ def e_min(self) -> float: ...
1882
+ @property
1883
+ def integration_order(self) -> int: ...
1884
+ @property
1885
+ def mass(self) -> float: ...
1886
+ @property
1887
+ def pdg_id(self) -> int: ...
1888
+ @property
1889
+ def width(self) -> float: ...
1890
+
1891
+ class PropagatorChannelWeights(FunctionGenerator):
1892
+ def __init__(
1893
+ self,
1894
+ topologies: collections.abc.Sequence[Topology],
1895
+ permutations: collections.abc.Sequence[
1896
+ collections.abc.Sequence[collections.abc.Sequence[typing.SupportsInt]]
1897
+ ],
1898
+ channel_indices: collections.abc.Sequence[
1899
+ collections.abc.Sequence[typing.SupportsInt]
1900
+ ],
1901
+ ) -> None: ...
1902
+
1903
+ class RunningCoupling(FunctionGenerator):
1904
+ def __init__(self, grid: AlphaSGrid, prefix: str = "") -> None: ...
1905
+
1906
+ class SubchannelWeights(FunctionGenerator):
1907
+ def __init__(
1908
+ self,
1909
+ topologies: collections.abc.Sequence[collections.abc.Sequence[Topology]],
1910
+ permutations: collections.abc.Sequence[
1911
+ collections.abc.Sequence[collections.abc.Sequence[typing.SupportsInt]]
1912
+ ],
1913
+ channel_indices: collections.abc.Sequence[
1914
+ collections.abc.Sequence[typing.SupportsInt]
1915
+ ],
1916
+ ) -> None: ...
1917
+ def channel_count(self) -> int: ...
1918
+
1919
+ class SubprocArgs:
1920
+ def __init__(
1921
+ self,
1922
+ process_id: typing.SupportsInt = 0,
1923
+ topologies: collections.abc.Sequence[Topology] = [],
1924
+ permutations: collections.abc.Sequence[
1925
+ collections.abc.Sequence[collections.abc.Sequence[typing.SupportsInt]]
1926
+ ] = [],
1927
+ diagram_indices: collections.abc.Sequence[
1928
+ collections.abc.Sequence[typing.SupportsInt]
1929
+ ] = [],
1930
+ diagram_color_indices: collections.abc.Sequence[
1931
+ collections.abc.Sequence[collections.abc.Sequence[typing.SupportsInt]]
1932
+ ] = [],
1933
+ color_flows: collections.abc.Sequence[
1934
+ collections.abc.Sequence[
1935
+ collections.abc.Sequence[tuple[typing.SupportsInt, typing.SupportsInt]]
1936
+ ]
1937
+ ] = [],
1938
+ pdg_color_types: collections.abc.Mapping[
1939
+ typing.SupportsInt, typing.SupportsInt
1940
+ ] = {},
1941
+ helicities: collections.abc.Sequence[
1942
+ collections.abc.Sequence[typing.SupportsFloat]
1943
+ ] = [],
1944
+ pdg_ids: collections.abc.Sequence[
1945
+ collections.abc.Sequence[collections.abc.Sequence[typing.SupportsInt]]
1946
+ ] = [],
1947
+ matrix_flavor_indices: collections.abc.Sequence[typing.SupportsInt] = [],
1948
+ ) -> None: ...
1949
+ @property
1950
+ def color_flows(self) -> list[list[list[tuple[int, int]]]]: ...
1951
+ @color_flows.setter
1952
+ def color_flows(
1953
+ self,
1954
+ arg0: collections.abc.Sequence[
1955
+ collections.abc.Sequence[
1956
+ collections.abc.Sequence[tuple[typing.SupportsInt, typing.SupportsInt]]
1957
+ ]
1958
+ ],
1959
+ ) -> None: ...
1960
+ @property
1961
+ def diagram_color_indices(self) -> list[list[list[int]]]: ...
1962
+ @diagram_color_indices.setter
1963
+ def diagram_color_indices(
1964
+ self,
1965
+ arg0: collections.abc.Sequence[
1966
+ collections.abc.Sequence[collections.abc.Sequence[typing.SupportsInt]]
1967
+ ],
1968
+ ) -> None: ...
1969
+ @property
1970
+ def diagram_indices(self) -> list[list[int]]: ...
1971
+ @diagram_indices.setter
1972
+ def diagram_indices(
1973
+ self,
1974
+ arg0: collections.abc.Sequence[collections.abc.Sequence[typing.SupportsInt]],
1975
+ ) -> None: ...
1976
+ @property
1977
+ def helicities(self) -> list[list[float]]: ...
1978
+ @helicities.setter
1979
+ def helicities(
1980
+ self,
1981
+ arg0: collections.abc.Sequence[collections.abc.Sequence[typing.SupportsFloat]],
1982
+ ) -> None: ...
1983
+ @property
1984
+ def matrix_flavor_indices(self) -> list[int]: ...
1985
+ @matrix_flavor_indices.setter
1986
+ def matrix_flavor_indices(
1987
+ self, arg0: collections.abc.Sequence[typing.SupportsInt]
1988
+ ) -> None: ...
1989
+ @property
1990
+ def pdg_color_types(self) -> dict[int, int]: ...
1991
+ @pdg_color_types.setter
1992
+ def pdg_color_types(
1993
+ self, arg0: collections.abc.Mapping[typing.SupportsInt, typing.SupportsInt]
1994
+ ) -> None: ...
1995
+ @property
1996
+ def pdg_ids(self) -> list[list[list[int]]]: ...
1997
+ @pdg_ids.setter
1998
+ def pdg_ids(
1999
+ self,
2000
+ arg0: collections.abc.Sequence[
2001
+ collections.abc.Sequence[collections.abc.Sequence[typing.SupportsInt]]
2002
+ ],
2003
+ ) -> None: ...
2004
+ @property
2005
+ def permutations(self) -> list[list[list[int]]]: ...
2006
+ @permutations.setter
2007
+ def permutations(
2008
+ self,
2009
+ arg0: collections.abc.Sequence[
2010
+ collections.abc.Sequence[collections.abc.Sequence[typing.SupportsInt]]
2011
+ ],
2012
+ ) -> None: ...
2013
+ @property
2014
+ def process_id(self) -> int: ...
2015
+ @process_id.setter
2016
+ def process_id(self, arg0: typing.SupportsInt) -> None: ...
2017
+ @property
2018
+ def topologies(self) -> list[Topology]: ...
2019
+ @topologies.setter
2020
+ def topologies(self, arg0: collections.abc.Sequence[Topology]) -> None: ...
2021
+
2022
+ class TPropagatorMapping(Mapping):
2023
+ def __init__(
2024
+ self,
2025
+ integration_order: collections.abc.Sequence[typing.SupportsInt],
2026
+ invariant_power: typing.SupportsFloat = 0.0,
2027
+ ) -> None: ...
2028
+
2029
+ class Tensor:
2030
+ @staticmethod
2031
+ def numpy(tensor): ...
2032
+ @staticmethod
2033
+ def torch(tensor): ...
2034
+ def __dlpack__(
2035
+ self,
2036
+ stream: typing.SupportsInt | None = None,
2037
+ max_version: tuple[typing.SupportsInt, typing.SupportsInt] | None = None,
2038
+ dl_device: typing.SupportsInt | None = None,
2039
+ copy: bool | None = None,
2040
+ ) -> typing.Any: ...
2041
+ def __dlpack_device__(self) -> tuple[int, int]: ...
2042
+
2043
+ class ThreeBodyDecay(Mapping):
2044
+ def __init__(self, com: bool) -> None: ...
2045
+
2046
+ class Topology:
2047
+ @staticmethod
2048
+ def topologies(diagram: Diagram) -> list[Topology]: ...
2049
+ def __init__(self, diagram: Diagram) -> None: ...
2050
+ def propagator_momentum_terms(
2051
+ self, arg0: bool
2052
+ ) -> list[tuple[list[int], float, float]]: ...
2053
+ @property
2054
+ def decay_integration_order(self) -> list[int]: ...
2055
+ @property
2056
+ def decays(self) -> list[Decay]: ...
2057
+ @property
2058
+ def incoming_masses(self) -> list[float]: ...
2059
+ @property
2060
+ def outgoing_indices(self) -> list[int]: ...
2061
+ @property
2062
+ def outgoing_masses(self) -> list[float]: ...
2063
+ @property
2064
+ def t_integration_order(self) -> list[int]: ...
2065
+ @property
2066
+ def t_propagator_count(self) -> int: ...
2067
+ @property
2068
+ def t_propagator_masses(self) -> list[float]: ...
2069
+ @property
2070
+ def t_propagator_widths(self) -> list[float]: ...
2071
+
2072
+ class TwoBodyDecay(Mapping):
2073
+ def __init__(self, com: bool) -> None: ...
2074
+
2075
+ class TwoToThreeParticleScattering(Mapping):
2076
+ def __init__(
2077
+ self,
2078
+ t_invariant_power: typing.SupportsFloat = 0.0,
2079
+ t_mass: typing.SupportsFloat = 0.0,
2080
+ t_width: typing.SupportsFloat = 0.0,
2081
+ s_invariant_power: typing.SupportsFloat = 0.0,
2082
+ s_mass: typing.SupportsFloat = 0.0,
2083
+ s_width: typing.SupportsFloat = 0.0,
2084
+ ) -> None: ...
2085
+
2086
+ class TwoToTwoParticleScattering(Mapping):
2087
+ def __init__(
2088
+ self,
2089
+ com: bool,
2090
+ invariant_power: typing.SupportsFloat = 0.0,
2091
+ mass: typing.SupportsFloat = 0.0,
2092
+ width: typing.SupportsFloat = 0.0,
2093
+ ) -> None: ...
2094
+
2095
+ class Type:
2096
+ @typing.overload
2097
+ def __init__(
2098
+ self,
2099
+ dtype: DataType,
2100
+ batch_size: BatchSize,
2101
+ shape: collections.abc.Sequence[typing.SupportsInt],
2102
+ ) -> None: ...
2103
+ @typing.overload
2104
+ def __init__(
2105
+ self, batch_size_list: collections.abc.Sequence[BatchSize]
2106
+ ) -> None: ...
2107
+ def __repr__(self) -> str: ...
2108
+ def __str__(self) -> str: ...
2109
+ @property
2110
+ def batch_size(self) -> BatchSize: ...
2111
+ @property
2112
+ def dtype(self) -> DataType: ...
2113
+ @property
2114
+ def shape(self) -> list[int]: ...
2115
+
2116
+ class Unweighter(FunctionGenerator):
2117
+ def __init__(self, types: collections.abc.Sequence[Type]) -> None: ...
2118
+
2119
+ class Value:
2120
+ @typing.overload
2121
+ def __init__(self, value: typing.SupportsInt) -> None: ...
2122
+ @typing.overload
2123
+ def __init__(self, value: typing.SupportsFloat) -> None: ...
2124
+ def __repr__(self) -> str: ...
2125
+ def __str__(self) -> str: ...
2126
+ @property
2127
+ def literal_value(
2128
+ self,
2129
+ ) -> int | float | tuple[list[int], list[int] | list[float]] | None: ...
2130
+ @property
2131
+ def local_index(self) -> int: ...
2132
+ @property
2133
+ def type(self) -> Type: ...
2134
+
2135
+ class VegasGridOptimizer:
2136
+ def __init__(
2137
+ self, context: Context, grid_name: str, damping: typing.SupportsFloat
2138
+ ) -> None: ...
2139
+ def add_data(self, values: typing.Any, counts: typing.Any) -> None: ...
2140
+ def optimize(self) -> None: ...
2141
+
2142
+ class VegasHistogram(FunctionGenerator):
2143
+ def __init__(
2144
+ self, dimension: typing.SupportsInt, bin_count: typing.SupportsInt
2145
+ ) -> None: ...
2146
+
2147
+ class VegasMapping(Mapping):
2148
+ def __init__(
2149
+ self,
2150
+ dimension: typing.SupportsInt,
2151
+ bin_count: typing.SupportsInt,
2152
+ prefix: str = "",
2153
+ ) -> None: ...
2154
+ def grid_name(self) -> str: ...
2155
+ def initialize_globals(self, context: Context) -> None: ...
2156
+
2157
+ def batch_float_array(count: typing.SupportsInt) -> Type: ...
2158
+ def batch_four_vec_array(count: typing.SupportsInt) -> Type: ...
2159
+ def cpu_device() -> Device: ...
2160
+ def cuda_device() -> Device: ...
2161
+ def default_context() -> Context: ...
2162
+ def default_cuda_context() -> Context: ...
2163
+ def default_hip_context() -> Context: ...
2164
+ def format_progress(
2165
+ progress: typing.SupportsFloat, width: typing.SupportsInt
2166
+ ) -> str: ...
2167
+ def format_si_prefix(value: typing.SupportsFloat) -> str: ...
2168
+ def format_with_error(
2169
+ value: typing.SupportsFloat, error: typing.SupportsFloat
2170
+ ) -> str: ...
2171
+ def hip_device() -> Device: ...
2172
+ def initialize_vegas_grid(context: Context, grid_name: str) -> None: ...
2173
+ def multichannel_batch_size(count: typing.SupportsInt) -> Type: ...
2174
+ def set_lib_path(lib_path: str) -> None: ...
2175
+ def set_simd_vector_size(vector_size: typing.SupportsInt) -> None: ...
2176
+ def set_thread_count(new_count: typing.SupportsInt) -> None: ...
2177
+
2178
+ batch_float: Type # value = float[batch_size]
2179
+ batch_four_vec: Type # value = float[batch_size, 4]
2180
+ batch_int: Type # value = int[batch_size]
2181
+ batch_size: BatchSize # value = batch_size
2182
+ batch_sizes: DataType # value = <DataType.batch_sizes: 2>
2183
+ float: DataType # value = <DataType.float: 1>
2184
+ int: DataType # value = <DataType.int: 0>
2185
+ log: EventGeneratorVerbosity # value = <EventGeneratorVerbosity.log: 1>
2186
+ pretty: EventGeneratorVerbosity # value = <EventGeneratorVerbosity.pretty: 2>
2187
+ silent: EventGeneratorVerbosity # value = <EventGeneratorVerbosity.silent: 0>
2188
+ single_float: Type # value = float[1]
2189
+ single_int: Type # value = int[1]