machinegnostics 0.0.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (93) hide show
  1. __init__.py +0 -0
  2. machinegnostics/__init__.py +24 -0
  3. machinegnostics/magcal/__init__.py +37 -0
  4. machinegnostics/magcal/characteristics.py +460 -0
  5. machinegnostics/magcal/criteria_eval.py +268 -0
  6. machinegnostics/magcal/criterion.py +140 -0
  7. machinegnostics/magcal/data_conversion.py +381 -0
  8. machinegnostics/magcal/gcor.py +64 -0
  9. machinegnostics/magcal/gdf/__init__.py +2 -0
  10. machinegnostics/magcal/gdf/base_df.py +39 -0
  11. machinegnostics/magcal/gdf/base_distfunc.py +1202 -0
  12. machinegnostics/magcal/gdf/base_egdf.py +823 -0
  13. machinegnostics/magcal/gdf/base_eldf.py +830 -0
  14. machinegnostics/magcal/gdf/base_qgdf.py +1234 -0
  15. machinegnostics/magcal/gdf/base_qldf.py +1019 -0
  16. machinegnostics/magcal/gdf/cluster_analysis.py +456 -0
  17. machinegnostics/magcal/gdf/data_cluster.py +975 -0
  18. machinegnostics/magcal/gdf/data_intervals.py +853 -0
  19. machinegnostics/magcal/gdf/data_membership.py +536 -0
  20. machinegnostics/magcal/gdf/der_egdf.py +243 -0
  21. machinegnostics/magcal/gdf/distfunc_engine.py +841 -0
  22. machinegnostics/magcal/gdf/egdf.py +324 -0
  23. machinegnostics/magcal/gdf/eldf.py +297 -0
  24. machinegnostics/magcal/gdf/eldf_intv.py +609 -0
  25. machinegnostics/magcal/gdf/eldf_ma.py +627 -0
  26. machinegnostics/magcal/gdf/homogeneity.py +1218 -0
  27. machinegnostics/magcal/gdf/intv_engine.py +1523 -0
  28. machinegnostics/magcal/gdf/marginal_intv_analysis.py +558 -0
  29. machinegnostics/magcal/gdf/qgdf.py +289 -0
  30. machinegnostics/magcal/gdf/qldf.py +296 -0
  31. machinegnostics/magcal/gdf/scedasticity.py +197 -0
  32. machinegnostics/magcal/gdf/wedf.py +181 -0
  33. machinegnostics/magcal/gdf/z0_estimator.py +1047 -0
  34. machinegnostics/magcal/layer_base.py +42 -0
  35. machinegnostics/magcal/layer_history_base.py +74 -0
  36. machinegnostics/magcal/layer_io_process_base.py +238 -0
  37. machinegnostics/magcal/layer_param_base.py +448 -0
  38. machinegnostics/magcal/mg_weights.py +36 -0
  39. machinegnostics/magcal/sample_characteristics.py +532 -0
  40. machinegnostics/magcal/scale_optimization.py +185 -0
  41. machinegnostics/magcal/scale_param.py +313 -0
  42. machinegnostics/magcal/util/__init__.py +0 -0
  43. machinegnostics/magcal/util/dis_docstring.py +18 -0
  44. machinegnostics/magcal/util/logging.py +24 -0
  45. machinegnostics/magcal/util/min_max_float.py +34 -0
  46. machinegnostics/magnet/__init__.py +0 -0
  47. machinegnostics/metrics/__init__.py +28 -0
  48. machinegnostics/metrics/accu.py +61 -0
  49. machinegnostics/metrics/accuracy.py +67 -0
  50. machinegnostics/metrics/auto_correlation.py +183 -0
  51. machinegnostics/metrics/auto_covariance.py +204 -0
  52. machinegnostics/metrics/cls_report.py +130 -0
  53. machinegnostics/metrics/conf_matrix.py +93 -0
  54. machinegnostics/metrics/correlation.py +178 -0
  55. machinegnostics/metrics/cross_variance.py +167 -0
  56. machinegnostics/metrics/divi.py +82 -0
  57. machinegnostics/metrics/evalmet.py +109 -0
  58. machinegnostics/metrics/f1_score.py +128 -0
  59. machinegnostics/metrics/gmmfe.py +108 -0
  60. machinegnostics/metrics/hc.py +141 -0
  61. machinegnostics/metrics/mae.py +72 -0
  62. machinegnostics/metrics/mean.py +117 -0
  63. machinegnostics/metrics/median.py +122 -0
  64. machinegnostics/metrics/mg_r2.py +167 -0
  65. machinegnostics/metrics/mse.py +78 -0
  66. machinegnostics/metrics/precision.py +119 -0
  67. machinegnostics/metrics/r2.py +122 -0
  68. machinegnostics/metrics/recall.py +108 -0
  69. machinegnostics/metrics/rmse.py +77 -0
  70. machinegnostics/metrics/robr2.py +119 -0
  71. machinegnostics/metrics/std.py +144 -0
  72. machinegnostics/metrics/variance.py +101 -0
  73. machinegnostics/models/__init__.py +2 -0
  74. machinegnostics/models/classification/__init__.py +1 -0
  75. machinegnostics/models/classification/layer_history_log_reg.py +121 -0
  76. machinegnostics/models/classification/layer_io_process_log_reg.py +98 -0
  77. machinegnostics/models/classification/layer_mlflow_log_reg.py +107 -0
  78. machinegnostics/models/classification/layer_param_log_reg.py +275 -0
  79. machinegnostics/models/classification/mg_log_reg.py +273 -0
  80. machinegnostics/models/cross_validation.py +118 -0
  81. machinegnostics/models/data_split.py +106 -0
  82. machinegnostics/models/regression/__init__.py +2 -0
  83. machinegnostics/models/regression/layer_histroy_rob_reg.py +139 -0
  84. machinegnostics/models/regression/layer_io_process_rob_rig.py +88 -0
  85. machinegnostics/models/regression/layer_mlflow_rob_reg.py +134 -0
  86. machinegnostics/models/regression/layer_param_rob_reg.py +212 -0
  87. machinegnostics/models/regression/mg_lin_reg.py +253 -0
  88. machinegnostics/models/regression/mg_poly_reg.py +258 -0
  89. machinegnostics-0.0.1.dist-info/METADATA +246 -0
  90. machinegnostics-0.0.1.dist-info/RECORD +93 -0
  91. machinegnostics-0.0.1.dist-info/WHEEL +5 -0
  92. machinegnostics-0.0.1.dist-info/licenses/LICENSE +674 -0
  93. machinegnostics-0.0.1.dist-info/top_level.txt +2 -0
@@ -0,0 +1,258 @@
1
+ '''
2
+ Machine Gnostics - Machine Gnostics Library
3
+ Copyright (C) 2025 Machine Gnostics Team
4
+
5
+ Author: Nirmal Parmar
6
+
7
+ Description:
8
+ This module implements a robust polynomial regression model using mathematical gnostics principles.
9
+ '''
10
+
11
+ import numpy as np
12
+ from machinegnostics.models.regression.layer_io_process_rob_rig import DataProcessRobustRegressor
13
+ from machinegnostics.metrics import robr2
14
+ from machinegnostics.magcal import disable_parent_docstring
15
+ import logging
16
+ from machinegnostics.magcal.util.logging import get_logger
17
+
18
+ class PolynomialRegressor(DataProcessRobustRegressor):
19
+ """
20
+ Robust Polynomial Regression using Mathematical Gnostics principles.
21
+
22
+ This regressor fits a polynomial model to data using robust, gnostic loss functions
23
+ and gnostic weights. It is designed to be resilient to outliers and non-Gaussian noise, making it
24
+ suitable for scientific and engineering applications where data quality may vary.
25
+
26
+ Key Features
27
+ ------------
28
+ - Robust to outliers: Uses gnostic loss functions and adaptive gnostic weights.
29
+ - Flexible polynomial degree: Supports linear and higher-order polynomial regression.
30
+ - Iterative optimization: Supports early stopping and convergence tolerance.
31
+ - Tracks detailed history: Optionally records loss, weights, entropy, and gnostic characteristics at each iteration.
32
+ - Compatible with numpy arrays for input/output.
33
+
34
+ Parameters
35
+ ----------
36
+ degree : int, default=2
37
+ Degree of the polynomial to fit.
38
+ scale : {'auto', int, float}, default='auto'
39
+ Scaling method or value for input features.
40
+ max_iter : int, default=100
41
+ Maximum number of optimization iterations.
42
+ tol : float, default=1e-8
43
+ Tolerance for convergence.
44
+ mg_loss : str, default='hi'
45
+ Loss function to use ('hi', 'fi', etc.).
46
+ early_stopping : bool, default=True
47
+ Whether to stop early if convergence is detected.
48
+ verbose : bool, default=False
49
+ If True, prints progress and diagnostics during fitting.
50
+ data_form : str, default='a'
51
+ Internal data representation format.
52
+ gnostic_characteristics : bool, default=True
53
+ If True, computes and records gnostic properties (fi, hi, etc.).
54
+ history : bool, default=True
55
+ If True, records the optimization history for analysis.
56
+
57
+ Attributes
58
+ ----------
59
+ coefficients : np.ndarray
60
+ Fitted polynomial coefficients.
61
+ weights : np.ndarray
62
+ Final sample weights after robust fitting.
63
+ params : list of dict
64
+ List of parameter snapshots (loss, weights, gnostic properties) at each iteration.
65
+ _history : list
66
+ Internal optimization history (if enabled).
67
+ degree, max_iter, tol, mg_loss, early_stopping, verbose, scale, data_form, gnostic_characteristics
68
+ Configuration parameters as set at initialization.
69
+
70
+ Methods
71
+ -------
72
+ fit(X, y)
73
+ Fit the polynomial regressor to input features X and targets y.
74
+ predict(X)
75
+ Predict target values for new input features X.
76
+ score(X, y, case='i')
77
+ Compute the robust R2 score for input features X and true targets y.
78
+
79
+ Example
80
+ -------
81
+ >>> from machinegnostics.models.regression import PolynomialRegressor
82
+ >>> model = PolynomialRegressor(degree=2, max_iter=200, verbose=True)
83
+ >>> model.fit(X_train, y_train)
84
+ >>> y_pred = model.predict(X_test)
85
+ >>> r2 = model.score(X_test, y_test)
86
+
87
+ Notes
88
+ -----
89
+ - This model is part of the Machine Gnostics library, which implements advanced machine learning techniques
90
+ based on mathematical gnostics principles.
91
+ - For more information, visit: https://machinegnostics.info/
92
+ """
93
+ @disable_parent_docstring
94
+ def __init__(
95
+ self,
96
+ degree: int = 2,
97
+ scale: str | int | float = 'auto',
98
+ max_iter: int = 100,
99
+ tol: float = 1e-3,
100
+ mg_loss: str = 'hi',
101
+ early_stopping: bool = True,
102
+ verbose: bool = False,
103
+ data_form: str = 'a',
104
+ gnostic_characteristics: bool = True,
105
+ history: bool = True
106
+ ):
107
+ """
108
+ Initialize a PolynomialRegressor instance with robust, gnostic regression settings.
109
+
110
+ Parameters
111
+ ----------
112
+ degree : int, default=2
113
+ Degree of the polynomial to fit.
114
+ scale : {'auto', int, float}, default='auto'
115
+ Scaling method or value for input features.
116
+ max_iter : int, default=100
117
+ Maximum number of optimization iterations.
118
+ tol : float, default=1e-8
119
+ Tolerance for convergence.
120
+ mg_loss : str, default='hi'
121
+ Loss function to use ('hi', 'fi', etc.).
122
+ early_stopping : bool, default=True
123
+ Whether to stop early if convergence is detected.
124
+ verbose : bool, default=False
125
+ If True, prints progress and diagnostics during fitting.
126
+ data_form : str, default='a'
127
+ Internal data representation format.
128
+ gnostic_characteristics : bool, default=True
129
+ If True, computes and records gnostic properties (fi, hi, etc.).
130
+ history : bool, default=True
131
+ If True, records the optimization history for analysis.
132
+
133
+ Notes
134
+ -----
135
+ All configuration parameters are stored as attributes for later reference.
136
+ """
137
+ super().__init__(
138
+ degree=degree,
139
+ max_iter=max_iter,
140
+ tol=tol,
141
+ mg_loss=mg_loss,
142
+ early_stopping=early_stopping,
143
+ verbose=verbose,
144
+ scale=scale,
145
+ data_form=data_form,
146
+ gnostic_characteristics=gnostic_characteristics,
147
+ history=history
148
+ )
149
+ # # Optionally, set self.degree here as well for safety:
150
+ self.degree = degree
151
+ self.max_iter = max_iter
152
+ self.tol = tol
153
+ self.mg_loss = mg_loss
154
+ self.early_stopping = early_stopping
155
+ self.verbose = verbose
156
+ self.scale = scale
157
+ self.data_form = data_form
158
+ self.gnostic_characteristics = gnostic_characteristics
159
+ self._record_history = history
160
+ self.params = []
161
+ # history option
162
+ if history:
163
+ self._history = []
164
+ else:
165
+ self._history = None
166
+ # logger
167
+ self.logger = get_logger(self.__class__.__name__, logging.DEBUG if verbose else logging.WARNING)
168
+ self.logger.debug(f"{self.__class__.__name__} initialized.")
169
+
170
+ def fit(self, X: np.ndarray, y: np.ndarray):
171
+ """
172
+ Fit the robust polynomial regressor model to the provided data.
173
+
174
+ This method performs robust polynomial regression using the specified gnostic loss function,
175
+ iteratively optimizing the model coefficients and sample weights to minimize the influence of outliers.
176
+ If history tracking is enabled, it records loss, weights, and gnostic properties at each iteration.
177
+
178
+ Parameters
179
+ ----------
180
+ X : np.ndarray
181
+ Input features of shape (n_samples, n_features).
182
+ y : np.ndarray
183
+ Target values of shape (n_samples,).
184
+
185
+ Returns
186
+ -------
187
+ self : PolynomialRegressor
188
+ Returns the fitted model instance for chaining or further use.
189
+
190
+ Example
191
+ -------
192
+ >>> model = PolynomialRegressor(degree=2, max_iter=200, verbose=True)
193
+ >>> model.fit(X_train, y_train)
194
+
195
+ Notes
196
+ -----
197
+ - After fitting, the model's coefficients and sample weights are available in the `coefficients` and `weights` attributes.
198
+ - If `history=True`, the optimization history is available in the `params` and `_history` attributes.
199
+ """
200
+ # Call the fit method from DataProcessRobustRegressor
201
+ self.logger.info("Starting fit process.")
202
+ super()._fit(X, y)
203
+
204
+ def predict(self, model_input: np.ndarray) -> np.ndarray:
205
+ """
206
+ Predict target values using the fitted polynomial regressor model.
207
+
208
+ Parameters
209
+ ----------
210
+ model_input : np.ndarray
211
+ Input features for prediction, shape (n_samples, n_features).
212
+
213
+ Returns
214
+ -------
215
+ y_pred : np.ndarray
216
+ Predicted target values, shape (n_samples,).
217
+
218
+ Example
219
+ -------
220
+ >>> model = PolynomialRegressor(degree=2)
221
+ >>> model.fit(X_train, y_train)
222
+ >>> y_pred = model.predict(X_test)
223
+ """
224
+ # Call the predict method from DataProcessRobustRegressor
225
+ self.logger.info("Making predictions.")
226
+ return super()._predict(model_input)
227
+
228
+ def score(self, X: np.ndarray, y: np.ndarray, case:str = 'i') -> float:
229
+ """
230
+ Compute the robust (gnostic) R2 score for the polynomial regressor model.
231
+
232
+ Parameters
233
+ ----------
234
+ X : np.ndarray
235
+ Input features for scoring, shape (n_samples, n_features).
236
+ y : np.ndarray
237
+ True target values, shape (n_samples,).
238
+ case : str, default='i'
239
+ Specifies the case or variant of the R2 score to compute.
240
+
241
+ Returns
242
+ -------
243
+ score : float
244
+ Robust R2 score of the model on the provided data.
245
+
246
+ Example
247
+ -------
248
+ >>> model = PolynomialRegressor(degree=2)
249
+ >>> model.fit(X_train, y_train)
250
+ >>> r2 = model.score(X_test, y_test)
251
+ >>> print(f'Robust R2 score: {r2}')
252
+ """
253
+ self.logger.info("Calculating robust R2 score.")
254
+ # prediction
255
+ y_pred = self.predict(X)
256
+ # Call the score method from DataProcessRobustRegressor
257
+ r2 = robr2(y, y_pred, w=self.weights)
258
+ return r2
@@ -0,0 +1,246 @@
1
+ Metadata-Version: 2.4
2
+ Name: machinegnostics
3
+ Version: 0.0.1
4
+ Summary: Machine Gnostics is an open-source initiative that seeks to redefine the mathematical underpinnings of machine learning. While most conventional ML libraries are grounded in probabilistic and statistical frameworks, Machine Gnostics explores alternative paradigms—drawing from Mathematical Gnostics, the non-statistical and deterministic approach. Laws of Nature, Encoded—For Everyone!
5
+ Author-email: Nirmal Parmar <info.machinegnostics@gmail.com>
6
+ Maintainer-email: Nirmal Parmar <info.machinegnostics@gmail.com>
7
+ License-Expression: GPL-3.0-only
8
+ Project-URL: Homepage, https://github.com/MachineGnostics
9
+ Project-URL: Issues, https://github.com/MachineGnostics/machinegnostics
10
+ Project-URL: Website, https://machinegnostics.info/
11
+ Keywords: machine learning,AI,data science,data analysis,deep learning,neural networks,ML,Machine Gnostics,Mathematical Gnostics
12
+ Classifier: Development Status :: 4 - Beta
13
+ Classifier: Intended Audience :: Science/Research
14
+ Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
15
+ Classifier: Programming Language :: Python :: 3
16
+ Classifier: Programming Language :: Python :: 3.9
17
+ Classifier: Programming Language :: Python :: 3.10
18
+ Classifier: Programming Language :: Python :: 3.11
19
+ Classifier: Operating System :: OS Independent
20
+ Requires-Python: >=3.9
21
+ Description-Content-Type: text/markdown
22
+ License-File: LICENSE
23
+ Requires-Dist: fastapi
24
+ Requires-Dist: numpy
25
+ Requires-Dist: pandas
26
+ Requires-Dist: pydantic
27
+ Requires-Dist: scipy
28
+ Requires-Dist: SQLAlchemy
29
+ Dynamic: license-file
30
+
31
+ # Machine Gnostics
32
+
33
+ > Machine Gnostics: Laws of Nature, Encoded—For Everyone!
34
+
35
+ Welcome to **Machine Gnostics**, an innovative Python library designed to implement the principles of **Machine Gnostics** for robust data analysis, modeling, and inference. Unlike traditional statistical approaches that depend heavily on probabilistic assumptions, Machine Gnostics harnesses deterministic algebraic and geometric structures. This unique foundation enables the library to deliver exceptional resilience against outliers, noise, and corrupted data, making it a powerful tool for challenging real-world scenarios.
36
+
37
+ Machine Gnostics is an open-source initiative that seeks to redefine the mathematical underpinnings of machine learning. While most conventional ML libraries are grounded in probabilistic and statistical frameworks, Machine Gnostics explores alternative paradigms—drawing from deterministic algebra, information theory, and geometric methods. This approach opens new avenues for building robust, interpretable, and reliable analysis tools that can withstand the limitations of traditional models.
38
+
39
+ > As a pioneering project, Machine Gnostics invites users to adopt a fresh perspective and develop a new understanding of machine learning. The library is currently in its infancy, and as such, some features may require refinement and fixes. We are actively working to expand its capabilities, with new models and methods planned for the near future. Community support and collaboration are essential to realizing Machine Gnostics’ full potential. Together, let’s build a new AI grounded in a rational and resilient paradigm.
40
+
41
+ More information at [Machine Gnostics](https://machinegnostics.info)
42
+
43
+ ---
44
+
45
+ # Installation Guide
46
+
47
+ Machine Gnostics is distributed as a standard Python package and is designed for easy installation and integration into your data science workflow. The library has been tested on macOS with Python 3.11 and is fully compatible with standard data science libraries.
48
+
49
+ ---
50
+
51
+ ## 1. Create a Python Virtual Environment
52
+
53
+ It is best practice to use a virtual environment to manage your project dependencies and avoid conflicts with other Python packages.
54
+
55
+ ### macOS & Linux
56
+
57
+ ```bash
58
+ # Create a new virtual environment named 'mg-env'
59
+ python3 -m venv mg-env
60
+ # Activate the environment
61
+ source mg-env/bin/activate
62
+ ```
63
+
64
+ ### Windows
65
+
66
+ ```cmd
67
+ # Create a new virtual environment named 'mg-env'
68
+ python -m venv mg-env
69
+ # Activate the environment
70
+ mg-env\Scripts\activate
71
+ ```
72
+
73
+ ---
74
+
75
+ ## 2. Install Machine Gnostics
76
+
77
+ Install the Machine Gnostics library using pip:
78
+
79
+ ### macOS & Linux
80
+
81
+ ```bash
82
+ pip install machinegnostics
83
+ ```
84
+
85
+ ### Windows
86
+
87
+ ```cmd
88
+ pip install machinegnostics
89
+ ```
90
+
91
+ This command will install Machine Gnostics and automatically resolve its dependencies.
92
+
93
+ ---
94
+
95
+ ## 3. Verify Installation
96
+
97
+ You can verify that Machine Gnostics and its dependencies are installed correctly by importing them in a Python session:
98
+
99
+ ```python
100
+ # check import
101
+ import machinegnostics
102
+ print("imported successfully!")
103
+ ```
104
+
105
+ You can also check the installation with pip:
106
+
107
+ ### macOS & Linux
108
+
109
+ ```bash
110
+ pip show machinegnostics
111
+ ```
112
+
113
+ ### Windows
114
+
115
+ ```cmd
116
+ pip show machinegnostics
117
+ ```
118
+
119
+ ---
120
+
121
+ ## 4. Quick Usage Example
122
+
123
+ Machine Gnostics is designed to be as simple to use as other machine learning libraries. You can call its functions and classes directly after installation.
124
+
125
+ ### Example "Gnostic Distribution Function"
126
+
127
+ ```python
128
+ import numpy as np
129
+ from machinegnostics.magcal import EGDF
130
+
131
+ data = np.array([ -13.5, 0, 1., 2., 3., 4., 5., 6., 7., 8., 9., 10.])
132
+ egdf = EGDF()
133
+ egdf.fit(data)
134
+ egdf.plot()
135
+ print(egdf.params)
136
+ ```
137
+
138
+ ### Example "Polynomial Regression"
139
+
140
+ ```python
141
+ import numpy as np
142
+ from machinegnostics.models.regression import PolynomialRegressor
143
+
144
+ # Example data
145
+ X = np.array([0., 0.4, 0.8, 1.2, 1.6, 2. ])
146
+ y = np.array([17.89408548, 69.61586934, -7.19890572, 9.37670866, -10.55673099, 16.57855348])
147
+
148
+ # Create and fit a robust polynomial regression model
149
+ model = PolynomialRegressor(degree=2)
150
+ model.fit(X, y)
151
+
152
+ model_lr = LinearRegressor()
153
+ model_lr.fit(X, y)
154
+
155
+ # Make predictions
156
+ y_pred = model.predict(X)
157
+ y_pred_lr = model_lr.predict(X)
158
+
159
+ print("Predictions:", y_pred)
160
+
161
+ # coefficients
162
+ print("Coefficients:", model.coefficients)
163
+
164
+ # x vs y, y_pred plot
165
+ import matplotlib.pyplot as plt
166
+ plt.scatter(X, y, color='blue', label='Data')
167
+ plt.plot(X, y_pred, color='red', label='Polynomial Prediction')
168
+ plt.plot(X, y_pred_lr, color='green', label='Linear Prediction')
169
+ plt.xlabel('X')
170
+ plt.ylabel('y')
171
+ plt.title('Polynomial Regression')
172
+ plt.legend()
173
+ plt.grid(True, alpha=0.3)
174
+ plt.show()
175
+ ```
176
+
177
+ ---
178
+
179
+ ## 5. Platform and Environment
180
+
181
+ - **Operating System:** Tested on macOS and Windows 11
182
+ - **Python Version:** 3.11 recommended
183
+ - **Dependencies:** Compatible with NumPy, pandas, SciPy, and other standard data science libraries
184
+
185
+ ---
186
+
187
+ ## 6. Troubleshooting
188
+
189
+ - **Activate Your Environment:**
190
+ Always activate your virtual environment before installing or running Machine Gnostics.
191
+
192
+ **macOS & Linux:**
193
+
194
+ ```bash
195
+ source mg-env/bin/activate
196
+ # or for conda
197
+ conda activate myenv
198
+ ```
199
+
200
+ **Windows:**
201
+
202
+ ```cmd
203
+ mg-env\Scripts\activate
204
+ # or for conda
205
+ conda activate myenv
206
+ ```
207
+ - **Check Your Python Version:**
208
+ Ensure you are using Python 3.8 or newer.
209
+
210
+ **macOS & Linux:**
211
+
212
+ ```bash
213
+ python3 --version
214
+ ```
215
+
216
+ **Windows:**
217
+
218
+ ```cmd
219
+ python --version
220
+ ```
221
+ - **Upgrade pip:**
222
+ An outdated pip can cause installation errors. Upgrade pip before installing:
223
+
224
+ **macOS & Linux:**
225
+
226
+ ```bash
227
+ pip install --upgrade pip
228
+ ```
229
+
230
+ **Windows:**
231
+
232
+ ```cmd
233
+ pip install --upgrade pip
234
+ ```
235
+
236
+ **Install from a Clean Environment:** If you encounter conflicts, try creating a fresh virtual environment and reinstalling.
237
+ **Check Your Internet Connection:** Download errors often result from network issues. Make sure you are connected.
238
+ **Permission Issues:** If you see permission errors, avoid using `sudo pip install`. Instead, use a virtual environment.
239
+
240
+ - **Still Stuck**
241
+
242
+ - [Contact us](https://machinegnostics.info/contact/) or open an issue on [GitHub](https://github.com/MachineGnostics/machinegnostics).
243
+
244
+ ---
245
+
246
+ Machine Gnostics is designed for simplicity and reliability, making robust machine learning accessible for all Python users.
@@ -0,0 +1,93 @@
1
+ __init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
2
+ machinegnostics/__init__.py,sha256=54lUgrIrAdmRD8tTaLGU3sq3Ly_VqKu9JCF2AGsUPuk,984
3
+ machinegnostics/magcal/__init__.py,sha256=X9h_kMerd0u1vRaCpw5xuu_PIohPcEeRR0j_IFmo7dU,2012
4
+ machinegnostics/magcal/characteristics.py,sha256=KE9jLNyDk2Z8oKFBs0iHbn-3AA8zIj3LvHD5xRLOXyc,13755
5
+ machinegnostics/magcal/criteria_eval.py,sha256=AicifHZCUwz-_O2AS5_dKxgQkMQ4Ye58ez9nxZFU6CY,10995
6
+ machinegnostics/magcal/criterion.py,sha256=5dpnPxaE4eBgqw5XB-9N0a4Gob_a4owR5Copq1u8lz0,4822
7
+ machinegnostics/magcal/data_conversion.py,sha256=GPtZuzmWsgJHKeWsWwzBgQ8NzHgYpOa3SDG8X4YHa-c,10960
8
+ machinegnostics/magcal/gcor.py,sha256=WdkjXHktmNbAjjNvEe23DtTkUAiXzzyE3KK2wjr6E5I,2217
9
+ machinegnostics/magcal/layer_base.py,sha256=ZKGn_4kkfbKBPZmqao6ng4-DyOdd21bVDcLXxy7vA8g,906
10
+ machinegnostics/magcal/layer_history_base.py,sha256=7FAmTJfoHom6Wtck-lgRcFK3muj0YvuRVqgfsTBmp-A,2693
11
+ machinegnostics/magcal/layer_io_process_base.py,sha256=PWhJ10-24VnUS2Qufuy0p0duCLP86MaIUvLtuOrM8Ek,8098
12
+ machinegnostics/magcal/layer_param_base.py,sha256=SV0N-hD763rCar--HqzrkEfm7eB0Uk6ZLSTKGxa1jjo,15096
13
+ machinegnostics/magcal/mg_weights.py,sha256=Tg8gnSw2WanshnZRvD4JVdmJXy3hxpZqBoJkR9WpMWk,1117
14
+ machinegnostics/magcal/sample_characteristics.py,sha256=XVGZ5xzVr6DC14vlu7AHl8BbtTWE3Gt5CCPCQOcDV_0,18786
15
+ machinegnostics/magcal/scale_optimization.py,sha256=T2SaMV7UhY73ZdW5M4suMtEkLdxqDXviw9W1hfVfmfI,5273
16
+ machinegnostics/magcal/scale_param.py,sha256=MYC-MqpEe8iEb_I0hZh7hS5p7SfysOVJbHaZbf23S_I,11598
17
+ machinegnostics/magcal/gdf/__init__.py,sha256=ri_dNxE3bNPgbRXd07jF7X4kG6VJ8F0iJtfFDGoB-UQ,97
18
+ machinegnostics/magcal/gdf/base_df.py,sha256=AGodnDv7T03WALrMLmBCz0_PRJRQxKm2WVPrLBR87AE,858
19
+ machinegnostics/magcal/gdf/base_distfunc.py,sha256=YPjuxOFLf0t01BT0F0YGivz8-7V0H0K9R6uxzmqQBYA,51858
20
+ machinegnostics/magcal/gdf/base_egdf.py,sha256=Mtk0H7Ksc3gx9KmlTU37kaaEsnMxQmNEBrAkgTTUtkw,34855
21
+ machinegnostics/magcal/gdf/base_eldf.py,sha256=Pfm_Wf5tYftKniYBrsT7WqgwIbSbgiNElXQisoehkCQ,33021
22
+ machinegnostics/magcal/gdf/base_qgdf.py,sha256=lsLP8T-TTrujxC0aNt-L8UAy9tUtMlAAWgjiFI5F2y0,55670
23
+ machinegnostics/magcal/gdf/base_qldf.py,sha256=LAWQVvlq8qOXT7zpEiag_r4VRdafTQ-eMtikv5JdQPE,42047
24
+ machinegnostics/magcal/gdf/cluster_analysis.py,sha256=WIWmzC6YWfYEn43XTDaKxNvcnXnvLEYZyhSbGe3BYek,19364
25
+ machinegnostics/magcal/gdf/data_cluster.py,sha256=vJvGYsjDCAEY_RRU67k3_0kVfNTTjPVu_Q8Txg-o6AE,43108
26
+ machinegnostics/magcal/gdf/data_intervals.py,sha256=oqxXFeGmCBcCBnq009JbOKQ682BbkcSSjaq1Y8BXKK4,40600
27
+ machinegnostics/magcal/gdf/data_membership.py,sha256=x1iIyG_pwhsPOyG2QvNMdGhAE9qPptC8d5pntFu_bps,24034
28
+ machinegnostics/magcal/gdf/der_egdf.py,sha256=kKxgVKnnGGMRf2Jya-GKcs19fEjRXCm5hlJL1Zn3p_0,9692
29
+ machinegnostics/magcal/gdf/distfunc_engine.py,sha256=WkRnKrUr-oUW43bRx1_8qol-34MQ4fb47rqqH2BAShk,35240
30
+ machinegnostics/magcal/gdf/egdf.py,sha256=916fHl-y3BLubArbbwnWP98e8g_pEbV-ekzeopK_miA,17969
31
+ machinegnostics/magcal/gdf/eldf.py,sha256=DWKrghXUmTse1LbJ1tSmAqx09nK22GNUsBm4AbegBck,15646
32
+ machinegnostics/magcal/gdf/eldf_intv.py,sha256=Pm5K7qgeb-pyhpA5vf_LH4oUIgzMx6CoUJOJoEh4Lps,28751
33
+ machinegnostics/magcal/gdf/eldf_ma.py,sha256=o_5Chr_QdjCL3NT-2NaPussxyltwrf_guPkUBhMCMGw,26810
34
+ machinegnostics/magcal/gdf/homogeneity.py,sha256=R_aEzP2pHM7nN2BTzkQIkLCdvp1ourFADjj2dGheGcE,53649
35
+ machinegnostics/magcal/gdf/intv_engine.py,sha256=yB0f9rwfe5yuZpu4RIM08-1fYD9gwRaKH-kWFCZpOKo,67142
36
+ machinegnostics/magcal/gdf/marginal_intv_analysis.py,sha256=Kvhpb1alTDRHQAhPtOJ1ezDd219yStfOEfaAz2q-bpY,24856
37
+ machinegnostics/magcal/gdf/qgdf.py,sha256=QwRgCMo00iLocEPuBZg1p803CyrJWPDe_xF5NjBX64Q,15106
38
+ machinegnostics/magcal/gdf/qldf.py,sha256=Y1nl8GAIQq7djp1ZKpmkU858zVN1_4HS9pO5bIHhJqQ,15516
39
+ machinegnostics/magcal/gdf/scedasticity.py,sha256=C8KaY08hQun8t5AFbkS-W5J21g-7LtelMUtycElMyG0,8925
40
+ machinegnostics/magcal/gdf/wedf.py,sha256=-oAhOiskK_mZe4jZFwVblki8Ac1uYRt9APKdcyseirs,6222
41
+ machinegnostics/magcal/gdf/z0_estimator.py,sha256=3wXdCu2kO_eD3HSxgSmQqd3yOtNtROdJMlYPi89yCXs,46010
42
+ machinegnostics/magcal/util/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
43
+ machinegnostics/magcal/util/dis_docstring.py,sha256=8oZncKcDPcy3H-2VU_BQdljYxgYlSi-Jr3n94bquxoc,595
44
+ machinegnostics/magcal/util/logging.py,sha256=hNJwtnSuEWrntIVf_UYJL4gZTOHfXS1XSo9O1ZhUio4,742
45
+ machinegnostics/magcal/util/min_max_float.py,sha256=WOaD8AELbSJyugSIKyB0I9vu7Ur9Yi2_FfSEl3qcjeY,668
46
+ machinegnostics/magnet/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
47
+ machinegnostics/metrics/__init__.py,sha256=Poj3FjaVyh66gnnUhH4sIcYv2yugZDKcSgFq4DJy7ys,1402
48
+ machinegnostics/metrics/accu.py,sha256=uyKcmwAPiYHye17V-GXsqAtFF8dek8QGIiogLd12vQs,2510
49
+ machinegnostics/metrics/accuracy.py,sha256=ApA88sK--Gde4u32r_dy3xBsFST4IdcsXjY8-0DSdNo,2487
50
+ machinegnostics/metrics/auto_correlation.py,sha256=FDN40rAlU5mOs_R-3sbUJ8EvQdlc3TmTdJ1l1jOsQxQ,7246
51
+ machinegnostics/metrics/auto_covariance.py,sha256=94EZ2cQjOx26tRWQ_xZXihH-JBc5MYbxMNHUIlyNia8,8253
52
+ machinegnostics/metrics/cls_report.py,sha256=wGa2YA9-URgdDSf-kITi5nzPb2ESnSYRzPFbQ5V0TPQ,4737
53
+ machinegnostics/metrics/conf_matrix.py,sha256=npqv7xIG_lXTm0lbWozyA6TYNll-VY8ZribRXg2pHNw,3689
54
+ machinegnostics/metrics/correlation.py,sha256=OMMzAypCnR32-5dXEnjibXhqClLscotgFxFfVRtRhTA,6836
55
+ machinegnostics/metrics/cross_variance.py,sha256=VgcXyiEJz1fm--Pa62CIo0moFvS_qqbiqZ7Nisx-hy0,6955
56
+ machinegnostics/metrics/divi.py,sha256=vMRvKf_bVQIZB3MAMkPJ1Zbqe8SFp2G8wglc9wAFjlg,2873
57
+ machinegnostics/metrics/evalmet.py,sha256=OtjUoAZ-Z0yf1xO1jGJZXzrazXPvY8ah-nRQrOe8b70,3926
58
+ machinegnostics/metrics/f1_score.py,sha256=irHcxQ3mcPgFQcuaWDnSc1iij3h9rA-B1UmtxKgAYTg,5596
59
+ machinegnostics/metrics/gmmfe.py,sha256=oNwnzvTqWrIox_5CMGcO2DXbeFMHbMEwZZcEA4nvbDs,3883
60
+ machinegnostics/metrics/hc.py,sha256=eoQSP9cyrqTy_p43ujl-ADJmX-iqY6rZrIYmpkO_pyo,5570
61
+ machinegnostics/metrics/mae.py,sha256=lIS6Qm5OAvSPjfFLqjlCRc5H9PNtgjLZQyFbZ5c6PMI,2703
62
+ machinegnostics/metrics/mean.py,sha256=rifs-MpjoMB27IbMde4HRf8rrLKg48ZsouC3z0os4q4,4508
63
+ machinegnostics/metrics/median.py,sha256=pi51rqY1aJOloCCHnhZ3YgxFWazmBRN8it8gbndXla0,4667
64
+ machinegnostics/metrics/mg_r2.py,sha256=OCkoamJ1y80_qdO2WYE3PZUPi0w1-x4lm0zeLod6Z2s,6934
65
+ machinegnostics/metrics/mse.py,sha256=_PW6zkrDyhfcQBiPOOpBxieh30jMVAn61G5twLuemqY,3267
66
+ machinegnostics/metrics/precision.py,sha256=UqURGeZJb7ycy9xZwhHyNwJzl_NLxEbnOZ_Q9eiaRpU,5092
67
+ machinegnostics/metrics/r2.py,sha256=AuDjk3qDZRcUlqy38Ks2gvuSrwfZfiIJQoF37m8O4j4,4259
68
+ machinegnostics/metrics/recall.py,sha256=LyEcPLGWdPFFWv6B9zTUwiNxt9XrWnUt1It-zsKFmhA,4328
69
+ machinegnostics/metrics/rmse.py,sha256=xSI18yQsU_ld8_mTgskJ7GB4yZzJjXjkgn6KCbfd-As,3033
70
+ machinegnostics/metrics/robr2.py,sha256=F2m1JMxahKT5lxtXwSMRBsDZqdVlpTJ6o8VvwE42KKM,4769
71
+ machinegnostics/metrics/std.py,sha256=AsVWDQijdBFb9bfBBYeLwabLItwPCrqjBcTRCeatNRA,5761
72
+ machinegnostics/metrics/variance.py,sha256=uosAjkn57HflQ4wda51PGe_e7oGKdT4L5OFOpC6r-zA,3688
73
+ machinegnostics/models/__init__.py,sha256=VjnEzMbEi4KIA0WxN02E7EAOpV8AUp0vSWps-Fq-lhM,129
74
+ machinegnostics/models/cross_validation.py,sha256=G4x6bjFbCOPz16j7g5HVZCoZNF3aNAOr17UBoucHmbY,3887
75
+ machinegnostics/models/data_split.py,sha256=Y-1VFEMuXNAXA3yBfGYjLow0PRSZ1OFyiWlfW3ep8Eg,3732
76
+ machinegnostics/models/classification/__init__.py,sha256=blhns36tnKpxM4MM2rkQnv7E4IxBqJco9mYJqPMkvB8,78
77
+ machinegnostics/models/classification/layer_history_log_reg.py,sha256=CjcYV27lbXqu6sxsqfg1TBRdv2oUz5di1c7wj75fMnw,4444
78
+ machinegnostics/models/classification/layer_io_process_log_reg.py,sha256=ObYfnobQgYBlXvGLPZIBQsqQ3msi9n-muH5J8Hzz9LI,3973
79
+ machinegnostics/models/classification/layer_mlflow_log_reg.py,sha256=rPM5WCcnm5Tc64wVsYf7MTqx1QS3PUqK-ZaHJdm2F24,3751
80
+ machinegnostics/models/classification/layer_param_log_reg.py,sha256=-2vNRYMXOY8hxMKeCdTwt0TMy9W16oMGQVsr-1ubiN4,11267
81
+ machinegnostics/models/classification/mg_log_reg.py,sha256=1RrTcwUCy9T005tauVjVDnjwdf7_cpQRbGYod0p0lWo,10744
82
+ machinegnostics/models/regression/__init__.py,sha256=1Bkbz-7buCSrEmTD1h_I7ehCA-fsRnmNzSeW1_y-jI4,150
83
+ machinegnostics/models/regression/layer_histroy_rob_reg.py,sha256=21ml_nmC3cE1HaXwHJdcLtTQsRDipmkqBb5Xt4xuAQU,4860
84
+ machinegnostics/models/regression/layer_io_process_rob_rig.py,sha256=f2RLzBxCaeUySCwZoBXcW436W7iO28Aa0Z5TldpDpeI,3544
85
+ machinegnostics/models/regression/layer_mlflow_rob_reg.py,sha256=jPRgLW-LVqC__D8PKXDX2FVRMNb_uGqHRD0p-Vy1Hjo,4493
86
+ machinegnostics/models/regression/layer_param_rob_reg.py,sha256=_pBEjyB5JhXPtkhwVxXi4UC4QmhbsnfVwWIECompDqM,8028
87
+ machinegnostics/models/regression/mg_lin_reg.py,sha256=7C9ClM06l4dYPSV8uIOaUJmKRRa2OeINsgMqJHr-FTM,9266
88
+ machinegnostics/models/regression/mg_poly_reg.py,sha256=d80EPeb6SmBoMp07RTATFnUPF1e99XxwgxWzRzz0I9Y,9653
89
+ machinegnostics-0.0.1.dist-info/licenses/LICENSE,sha256=OXLcl0T2SZ8Pmy2_dmlvKuetivmyPd5m1q-Gyd-zaYY,35149
90
+ machinegnostics-0.0.1.dist-info/METADATA,sha256=_B-sWASL85RfbnRN428wl6JqeURiIO98k-L3AfSNVdQ,7813
91
+ machinegnostics-0.0.1.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
92
+ machinegnostics-0.0.1.dist-info/top_level.txt,sha256=qGvrRC633BXccx-wAgfo3urOcQZkQxCt3XX8KzykPlg,25
93
+ machinegnostics-0.0.1.dist-info/RECORD,,
@@ -0,0 +1,5 @@
1
+ Wheel-Version: 1.0
2
+ Generator: setuptools (80.9.0)
3
+ Root-Is-Purelib: true
4
+ Tag: py3-none-any
5
+