lumen-resources 0.2.2__py3-none-any.whl → 0.3.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,115 +1,42 @@
1
1
  # generated by datamodel-codegen:
2
2
  # filename: model_info-schema.json
3
- # timestamp: 2025-10-19T06:58:43+00:00
3
+ # timestamp: 2025-12-11T07:52:17+00:00
4
4
 
5
5
  from __future__ import annotations
6
6
 
7
7
  from datetime import date
8
8
  from enum import Enum
9
+ from typing import Any
9
10
 
10
11
  from pydantic import AwareDatetime, BaseModel, ConfigDict, Field
11
12
 
12
13
 
13
14
  class Format(Enum):
14
- """Model source format type.
15
-
16
- Defines the format and source platform for a model. Different formats
17
- have different loading mechanisms and repository structures.
18
-
19
- Attributes:
20
- huggingface: Hugging Face Hub model format.
21
- openclip: OpenCLIP model format.
22
- modelscope: ModelScope model format.
23
- custom: Custom model format.
24
-
25
- Example:
26
- >>> source = Source(format=Format.huggingface, repo_id="openai/clip-vit-base-patch32")
27
- >>> print(source.format.value)
28
- 'huggingface'
29
- """
30
-
31
- huggingface = "huggingface"
32
- openclip = "openclip"
33
- modelscope = "modelscope"
34
- custom = "custom"
15
+ huggingface = 'huggingface'
16
+ openclip = 'openclip'
17
+ modelscope = 'modelscope'
18
+ custom = 'custom'
35
19
 
36
20
 
37
21
  class Source(BaseModel):
38
- """Model source information.
39
-
40
- Contains information about where and how to obtain the model, including
41
- the format type and repository identifier.
42
-
43
- Attributes:
44
- format: Model format type (huggingface, openclip, modelscope, custom).
45
- repo_id: Repository identifier for the model source.
46
-
47
- Example:
48
- >>> source = Source(
49
- ... format=Format.huggingface,
50
- ... repo_id="openai/clip-vit-base-patch32"
51
- ... )
52
- >>> print(source.repo_id)
53
- 'openai/clip-vit-base-patch32'
54
- """
55
-
56
22
  model_config = ConfigDict(
57
- extra="forbid",
23
+ extra='forbid',
58
24
  )
59
25
  format: Format
60
- repo_id: str = Field(
61
- ..., description="Repository identifier for model source", min_length=1
62
- )
26
+ repo_id: str = Field(..., min_length=1)
27
+ """
28
+ Repository identifier for model source
29
+ """
63
30
 
64
31
 
65
32
  class Requirements(BaseModel):
66
- """Python environment requirements for model runtime.
67
-
68
- Specifies the Python version and package dependencies required to run
69
- the model in a specific runtime configuration.
70
-
71
- Attributes:
72
- python: Minimum Python version requirement.
73
- dependencies: List of required Python package dependencies.
74
-
75
- Example:
76
- >>> req = Requirements(
77
- ... python=">=3.8",
78
- ... dependencies=["torch", "transformers", "pillow"]
79
- ... )
80
- >>> print(req.python)
81
- '>=3.8'
82
- """
83
-
84
33
  python: str | None = None
85
34
  dependencies: list[str] | None = None
86
35
 
87
36
 
88
37
  class Runtimes(BaseModel):
89
- """Runtime configuration for a specific model execution environment.
90
-
91
- Defines the availability, file requirements, device compatibility, and
92
- dependencies for a model runtime (e.g., torch, onnx, rknn).
93
-
94
- Attributes:
95
- available: Whether this runtime is available for the model.
96
- files: List of required files or dict mapping runtime to file lists.
97
- devices: List of compatible devices for this runtime.
98
- requirements: Python environment requirements for this runtime.
99
-
100
- Example:
101
- >>> runtime = Runtimes(
102
- ... available=True,
103
- ... files=["model.pt", "config.json"],
104
- ... devices=["cuda", "cpu"],
105
- ... requirements=Requirements(python=">=3.8", dependencies=["torch"])
106
- ... )
107
- >>> print(runtime.available)
108
- True
109
- """
110
-
111
38
  model_config = ConfigDict(
112
- extra="forbid",
39
+ extra='forbid',
113
40
  )
114
41
  available: bool
115
42
  files: list[str] | dict[str, list[str]] | None = None
@@ -118,56 +45,16 @@ class Runtimes(BaseModel):
118
45
 
119
46
 
120
47
  class Datasets(BaseModel):
121
- """Dataset configuration for model evaluation and inference.
122
-
123
- Defines the label and embedding datasets used for zero-shot classification
124
- or other dataset-specific model operations.
125
-
126
- Attributes:
127
- labels: Dataset identifier for class labels.
128
- embeddings: Dataset identifier for embeddings.
129
-
130
- Example:
131
- >>> dataset = Datasets(
132
- ... labels="imagenet1k_labels",
133
- ... embeddings="imagenet1k_embeddings"
134
- ... )
135
- >>> print(dataset.labels)
136
- 'imagenet1k_labels'
137
- """
138
-
139
48
  model_config = ConfigDict(
140
- extra="forbid",
49
+ extra='forbid',
141
50
  )
142
51
  labels: str
143
52
  embeddings: str
144
53
 
145
54
 
146
55
  class Metadata(BaseModel):
147
- """Model metadata information.
148
-
149
- Contains descriptive metadata about the model including licensing,
150
- authorship, creation dates, and categorization tags.
151
-
152
- Attributes:
153
- license: License identifier for the model.
154
- author: Model author or organization.
155
- created_at: Model creation date.
156
- updated_at: Last model update timestamp.
157
- tags: List of descriptive tags for categorization.
158
-
159
- Example:
160
- >>> metadata = Metadata(
161
- ... license="MIT",
162
- ... author="OpenAI",
163
- ... tags=["computer-vision", "multimodal", "clip"]
164
- ... )
165
- >>> print(metadata.license)
166
- 'MIT'
167
- """
168
-
169
56
  model_config = ConfigDict(
170
- extra="forbid",
57
+ extra='forbid',
171
58
  )
172
59
  license: str | None = None
173
60
  author: str | None = None
@@ -177,57 +64,38 @@ class Metadata(BaseModel):
177
64
 
178
65
 
179
66
  class ModelInfo(BaseModel):
180
- """Schema for Lumen AI model configuration files.
181
-
182
- Complete model definition including source information, runtime configurations,
183
- dataset compatibility, and metadata. This is the top-level schema for
184
- model_info.json files.
185
-
186
- Attributes:
187
- name: Model name identifier, also OpenCLIP model identifier if applicable.
188
- version: Model version following semantic versioning (X.Y.Z).
189
- description: Model description and purpose.
190
- model_type: Type/category of the model.
191
- embedding_dim: Dimension of the model's embedding space.
192
- source: Model source information including format and repository.
193
- runtimes: Dictionary mapping runtime names to runtime configurations.
194
- datasets: Optional dataset configurations for model evaluation.
195
- metadata: Optional model metadata including license and author.
196
-
197
- Example:
198
- >>> model_info = ModelInfo(
199
- ... name="ViT-B-32",
200
- ... version="1.0.0",
201
- ... description="Vision Transformer for CLIP",
202
- ... model_type="vision-transformer",
203
- ... embedding_dim=512,
204
- ... source=Source(format=Format.huggingface, repo_id="openai/clip-vit-base-patch32"),
205
- ... runtimes={"torch": Runtimes(available=True)}
206
- ... )
207
- >>> print(model_info.name)
208
- 'ViT-B-32'
67
+ """
68
+ Schema for Lumen AI model configuration files
209
69
  """
210
70
 
211
71
  model_config = ConfigDict(
212
- extra="forbid",
213
- )
214
- name: str = Field(
215
- ...,
216
- description="Model name identifier, this is also openclip model identifier if openclip is set as source format",
217
- max_length=100,
218
- min_length=1,
219
- )
220
- version: str = Field(
221
- ..., description="Model version", pattern="^[0-9]+\\.[0-9]+\\.[0-9]+$"
222
- )
223
- description: str = Field(
224
- ..., description="Model description and purpose", max_length=500, min_length=1
225
- )
226
- model_type: str = Field(..., description="Type of the model")
227
- embedding_dim: int = Field(
228
- ..., description="Dimension of the embedding space", ge=1, le=100000
72
+ extra='forbid',
229
73
  )
74
+ name: str = Field(..., max_length=100, min_length=1)
75
+ """
76
+ Model name identifier, this is also openclip model identifier if openclip is set as source format
77
+ """
78
+ version: str = Field(..., pattern='^[0-9]+\\.[0-9]+\\.[0-9]+$')
79
+ """
80
+ Model version
81
+ """
82
+ description: str = Field(..., max_length=500, min_length=1)
83
+ """
84
+ Model description and purpose
85
+ """
86
+ model_type: str
87
+ """
88
+ Type of the model
89
+ """
90
+ embedding_dim: int | None = Field(None, ge=1, le=100000)
91
+ """
92
+ Dimension of the embedding space
93
+ """
230
94
  source: Source
231
95
  runtimes: dict[str, Runtimes]
232
96
  datasets: dict[str, Datasets] | None = None
97
+ extra_metadata: dict[str, Any] | None = None
98
+ """
99
+ Additional model-specific configuration and metadata
100
+ """
233
101
  metadata: Metadata | None = None
@@ -1,14 +1,11 @@
1
1
  # generated by datamodel-codegen:
2
2
  # filename: result_schemas
3
- # timestamp: 2025-11-28T17:04:43+00:00
4
-
3
+ # timestamp: 2025-12-12T07:02:32+00:00
5
4
 
6
5
  from .embedding_v1 import EmbeddingV1
7
6
  from .face_v1 import FaceV1
8
7
  from .labels_v1 import LabelsV1
8
+ from .ocr_v1 import OCRV1
9
+ from .text_generation_v1 import TextGenerationV1
9
10
 
10
- __all__ = [
11
- "FaceV1",
12
- "EmbeddingV1",
13
- "LabelsV1",
14
- ]
11
+ __all__ = ["FaceV1", "EmbeddingV1", "LabelsV1", "OCRV1", "TextGenerationV1"]
@@ -1,6 +1,6 @@
1
1
  # generated by datamodel-codegen:
2
2
  # filename: embedding_v1.json
3
- # timestamp: 2025-11-28T17:04:43+00:00
3
+ # timestamp: 2025-12-12T07:02:32+00:00
4
4
 
5
5
  from __future__ import annotations
6
6
 
@@ -1,6 +1,6 @@
1
1
  # generated by datamodel-codegen:
2
2
  # filename: face_v1.json
3
- # timestamp: 2025-11-28T17:04:43+00:00
3
+ # timestamp: 2025-12-12T07:02:32+00:00
4
4
 
5
5
  from __future__ import annotations
6
6
 
@@ -1,6 +1,6 @@
1
1
  # generated by datamodel-codegen:
2
2
  # filename: labels_v1.json
3
- # timestamp: 2025-11-28T17:04:43+00:00
3
+ # timestamp: 2025-12-12T07:02:32+00:00
4
4
 
5
5
  from __future__ import annotations
6
6
 
@@ -0,0 +1,54 @@
1
+ # generated by datamodel-codegen:
2
+ # filename: ocr_v1.json
3
+ # timestamp: 2025-12-12T07:02:32+00:00
4
+
5
+ from __future__ import annotations
6
+
7
+ from pydantic import BaseModel, ConfigDict, Field, RootModel
8
+
9
+
10
+ class BoxItem(RootModel[list[int]]):
11
+ root: list[int] = Field(..., max_length=2, min_length=2)
12
+ """
13
+ Point coordinates [x, y]
14
+ """
15
+
16
+
17
+ class Item(BaseModel):
18
+ model_config = ConfigDict(
19
+ extra='forbid',
20
+ )
21
+ box: list[BoxItem] = Field(..., min_length=3)
22
+ """
23
+ Polygon coordinates defining the text region (usually 4 points for rotated rectangle: TL, TR, BR, BL)
24
+ """
25
+ text: str
26
+ """
27
+ Recognized text content
28
+ """
29
+ confidence: float = Field(..., ge=0.0, le=1.0)
30
+ """
31
+ Recognition confidence score
32
+ """
33
+
34
+
35
+ class OCRV1(BaseModel):
36
+ """
37
+ Universal schema for OCR text detection and recognition responses across Lumen services
38
+ """
39
+
40
+ model_config = ConfigDict(
41
+ extra='forbid',
42
+ )
43
+ items: list[Item]
44
+ """
45
+ Detected text regions with content and metadata
46
+ """
47
+ count: int = Field(..., ge=0)
48
+ """
49
+ Number of detected text regions
50
+ """
51
+ model_id: str = Field(..., min_length=1)
52
+ """
53
+ Model identifier (combined detection and recognition models)
54
+ """
@@ -0,0 +1,89 @@
1
+ # generated by datamodel-codegen:
2
+ # filename: text_generation_v1.json
3
+ # timestamp: 2025-12-12T07:02:32+00:00
4
+
5
+ from __future__ import annotations
6
+
7
+ from enum import Enum
8
+
9
+ from pydantic import BaseModel, ConfigDict, Field
10
+
11
+
12
+ class FinishReason(Enum):
13
+ """
14
+ Reason why generation terminated
15
+ """
16
+
17
+ stop = 'stop'
18
+ length = 'length'
19
+ eos_token = 'eos_token'
20
+ stop_sequence = 'stop_sequence'
21
+ error = 'error'
22
+
23
+
24
+ class Metadata(BaseModel):
25
+ """
26
+ Optional metadata about the generation process
27
+ """
28
+
29
+ model_config = ConfigDict(
30
+ extra='forbid',
31
+ )
32
+ temperature: float | None = Field(None, ge=0.0)
33
+ """
34
+ Sampling temperature used for generation
35
+ """
36
+ top_p: float | None = Field(None, ge=0.0, le=1.0)
37
+ """
38
+ Nucleus sampling parameter used for generation
39
+ """
40
+ max_tokens: int | None = Field(None, ge=1)
41
+ """
42
+ Maximum tokens allowed for generation
43
+ """
44
+ seed: int | None = None
45
+ """
46
+ Random seed used for generation (if deterministic)
47
+ """
48
+ generation_time_ms: float | None = Field(None, ge=0.0)
49
+ """
50
+ Time taken to generate the response in milliseconds
51
+ """
52
+ streaming_chunks: int | None = Field(None, ge=0)
53
+ """
54
+ Number of chunks in streaming generation (if applicable)
55
+ """
56
+
57
+
58
+ class TextGenerationV1(BaseModel):
59
+ """
60
+ Universal schema for text generation responses across Lumen VLM services. Returns generated text with metadata about the generation process.
61
+ """
62
+
63
+ model_config = ConfigDict(
64
+ extra='forbid',
65
+ )
66
+ text: str = Field(..., min_length=0)
67
+ """
68
+ Generated text content
69
+ """
70
+ finish_reason: FinishReason
71
+ """
72
+ Reason why generation terminated
73
+ """
74
+ generated_tokens: int = Field(..., ge=0)
75
+ """
76
+ Number of tokens generated in the response
77
+ """
78
+ input_tokens: int | None = Field(None, ge=0)
79
+ """
80
+ Number of tokens in the input prompt
81
+ """
82
+ model_id: str = Field(..., min_length=1)
83
+ """
84
+ Identifier of the model that generated the text
85
+ """
86
+ metadata: Metadata | None = None
87
+ """
88
+ Optional metadata about the generation process
89
+ """
@@ -202,6 +202,10 @@ definitions:
202
202
  type: string
203
203
  description: "List of ONNX execution providers. If null, uses ONNX Runtime defaults."
204
204
  default: null
205
+ prefer_fp16:
206
+ type: boolean
207
+ description: "Whether to prefer FP16 model files over FP32 when available. Improves performance on supported hardware."
208
+ default: true
205
209
  additionalProperties: false
206
210
  ModelConfig:
207
211
  type: object
@@ -9,7 +9,6 @@
9
9
  "version",
10
10
  "description",
11
11
  "model_type",
12
- "embedding_dim",
13
12
  "source",
14
13
  "runtimes"
15
14
  ],
@@ -135,6 +134,11 @@
135
134
  },
136
135
  "additionalProperties": false
137
136
  },
137
+ "extra_metadata": {
138
+ "type": "object",
139
+ "description": "Additional model-specific configuration and metadata",
140
+ "additionalProperties": true
141
+ },
138
142
  "metadata": {
139
143
  "type": "object",
140
144
  "properties": {
@@ -0,0 +1,55 @@
1
+ {
2
+ "$schema": "http://json-schema.org/draft-07/schema#",
3
+ "title": "OCRV1",
4
+ "description": "Universal schema for OCR text detection and recognition responses across Lumen services",
5
+ "type": "object",
6
+ "properties": {
7
+ "items": {
8
+ "type": "array",
9
+ "items": {
10
+ "type": "object",
11
+ "properties": {
12
+ "box": {
13
+ "type": "array",
14
+ "items": {
15
+ "type": "array",
16
+ "items": {
17
+ "type": "integer"
18
+ },
19
+ "minItems": 2,
20
+ "maxItems": 2,
21
+ "description": "Point coordinates [x, y]"
22
+ },
23
+ "minItems": 3,
24
+ "description": "Polygon coordinates defining the text region (usually 4 points for rotated rectangle: TL, TR, BR, BL)"
25
+ },
26
+ "text": {
27
+ "type": "string",
28
+ "description": "Recognized text content"
29
+ },
30
+ "confidence": {
31
+ "type": "number",
32
+ "minimum": 0.0,
33
+ "maximum": 1.0,
34
+ "description": "Recognition confidence score"
35
+ }
36
+ },
37
+ "required": ["box", "text", "confidence"],
38
+ "additionalProperties": false
39
+ },
40
+ "description": "Detected text regions with content and metadata"
41
+ },
42
+ "count": {
43
+ "type": "integer",
44
+ "minimum": 0,
45
+ "description": "Number of detected text regions"
46
+ },
47
+ "model_id": {
48
+ "type": "string",
49
+ "minLength": 1,
50
+ "description": "Model identifier (combined detection and recognition models)"
51
+ }
52
+ },
53
+ "required": ["items", "count", "model_id"],
54
+ "additionalProperties": false
55
+ }
@@ -0,0 +1,94 @@
1
+ {
2
+ "$schema": "http://json-schema.org/draft-07/schema#",
3
+ "title": "TextGenerationV1",
4
+ "description": "Universal schema for text generation responses across Lumen VLM services. Returns generated text with metadata about the generation process.",
5
+ "type": "object",
6
+ "properties": {
7
+ "text": {
8
+ "type": "string",
9
+ "minLength": 0,
10
+ "description": "Generated text content"
11
+ },
12
+ "finish_reason": {
13
+ "type": "string",
14
+ "enum": ["stop", "length", "eos_token", "stop_sequence", "error"],
15
+ "description": "Reason why generation terminated"
16
+ },
17
+ "generated_tokens": {
18
+ "type": "integer",
19
+ "minimum": 0,
20
+ "description": "Number of tokens generated in the response"
21
+ },
22
+ "input_tokens": {
23
+ "type": "integer",
24
+ "minimum": 0,
25
+ "description": "Number of tokens in the input prompt"
26
+ },
27
+ "model_id": {
28
+ "type": "string",
29
+ "minLength": 1,
30
+ "description": "Identifier of the model that generated the text"
31
+ },
32
+ "metadata": {
33
+ "type": "object",
34
+ "properties": {
35
+ "temperature": {
36
+ "type": "number",
37
+ "minimum": 0.0,
38
+ "description": "Sampling temperature used for generation"
39
+ },
40
+ "top_p": {
41
+ "type": "number",
42
+ "minimum": 0.0,
43
+ "maximum": 1.0,
44
+ "description": "Nucleus sampling parameter used for generation"
45
+ },
46
+ "max_tokens": {
47
+ "type": "integer",
48
+ "minimum": 1,
49
+ "description": "Maximum tokens allowed for generation"
50
+ },
51
+ "seed": {
52
+ "type": "integer",
53
+ "description": "Random seed used for generation (if deterministic)"
54
+ },
55
+ "generation_time_ms": {
56
+ "type": "number",
57
+ "minimum": 0,
58
+ "description": "Time taken to generate the response in milliseconds"
59
+ },
60
+ "streaming_chunks": {
61
+ "type": "integer",
62
+ "minimum": 0,
63
+ "description": "Number of chunks in streaming generation (if applicable)"
64
+ }
65
+ },
66
+ "additionalProperties": false,
67
+ "description": "Optional metadata about the generation process"
68
+ }
69
+ },
70
+ "required": ["text", "finish_reason", "generated_tokens", "model_id"],
71
+ "additionalProperties": false,
72
+ "examples": [
73
+ {
74
+ "text": "The image shows a beautiful sunset over mountains with vibrant colors.",
75
+ "finish_reason": "stop",
76
+ "generated_tokens": 15,
77
+ "input_tokens": 8,
78
+ "model_id": "fastvlm-2b-onnx",
79
+ "metadata": {
80
+ "temperature": 0.7,
81
+ "top_p": 0.9,
82
+ "max_tokens": 512,
83
+ "generation_time_ms": 245.6
84
+ }
85
+ },
86
+ {
87
+ "text": "A cat is sitting on a windowsill looking outside.",
88
+ "finish_reason": "eos_token",
89
+ "generated_tokens": 9,
90
+ "input_tokens": 12,
91
+ "model_id": "fastvlm-2b-onnx"
92
+ }
93
+ ]
94
+ }
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: lumen-resources
3
- Version: 0.2.2
3
+ Version: 0.3.2
4
4
  Summary: Unified model resource management for Lumen ML services
5
5
  Author-email: EdwinZhanCN <support@lumilio.org>
6
6
  License: MIT
@@ -0,0 +1,28 @@
1
+ lumen_resources/__init__.py,sha256=EwI0cDEF9eIlWT4eYWwL8MUR8-vaHEzpZ0Kf94Kxn60,2729
2
+ lumen_resources/cli.py,sha256=gGGfe0BmqjZX-2fIEEQ-MgElMn21OrabPs7Fcu6aY6A,14204
3
+ lumen_resources/downloader.py,sha256=Gn0or7qvk3BfmKu7VtKklXxVKuBj2lk9b5Nq7Cll-kY,21589
4
+ lumen_resources/exceptions.py,sha256=cUS76Revda0Vt6rPeUNLI2QhluNyLon1GiF5ZM4Kx30,3148
5
+ lumen_resources/lumen_config.py,sha256=9lrsdVcqlwJ1lwrKRfD449FKBKtQ4ut5D26tmwuObdA,5176
6
+ lumen_resources/lumen_config_validator.py,sha256=6GIBwresO1k7yALaNt5EgQZpcxFVq7k1obRQjl4AEEI,9734
7
+ lumen_resources/model_info.py,sha256=O7LRJnC2OJ5uAuic074hzWThruHhVyMg5Kt7eNAdZQ4,2355
8
+ lumen_resources/model_info_validator.py,sha256=91QsUCRuxZT3wCt7xI3wsLVBmEiVXxJUk8d2MOHwNb0,9294
9
+ lumen_resources/platform.py,sha256=EwqjQMoQY2jK0VP1jstgIW_Lu82Cxn9HDxwdCj1EN8w,9824
10
+ lumen_resources/result_schemas/README.md,sha256=nPbihM4RCJxFbBHyUsRYLljyaRjULuMQgW6K1nWYGy0,384
11
+ lumen_resources/result_schemas/__init__.py,sha256=iOxu2V8w5tXrFF5jH-Qn-En7nr2b3ZlcaiswyJCtxCQ,357
12
+ lumen_resources/result_schemas/embedding_v1.py,sha256=XlruWBMKefG7p_f06KS-_iLs8fSwO_wxkfFuBUWgSTk,671
13
+ lumen_resources/result_schemas/face_v1.py,sha256=Vqd-VxzmmPC0tqNtRV9qYx7Xaax5CXxjJhjJ5whiT9w,1314
14
+ lumen_resources/result_schemas/labels_v1.py,sha256=alrU2XKiLSVXGTAfcOZlPbGGKX2s-UrGQ6uYluM-BBY,829
15
+ lumen_resources/result_schemas/ocr_v1.py,sha256=5YFAwBkRJ_dMlyENxosXRYEIyZnDOAYx7JRDVnY7ah4,1259
16
+ lumen_resources/result_schemas/text_generation_v1.py,sha256=DQ6vb5e9tHYzd1Qf-JkDTflzbnyUWOCgleeJnTImt50,2147
17
+ lumen_resources/schemas/config-schema.yaml,sha256=TXw3Gn1q0DcqVHM4jyvSA_sWfmX_GNXe_nXLvRU7_2I,8388
18
+ lumen_resources/schemas/model_info-schema.json,sha256=VkARnNvzdFKee_AROQG9AUU5Q9s2P_dt7Nvm9Mj39aU,5837
19
+ lumen_resources/schemas/result_schemas/embedding_v1.json,sha256=6iZaXbmkP0J5fXGD4Gkrt6AZPvpK6FZaQ754sOXxFrc,841
20
+ lumen_resources/schemas/result_schemas/face_v1.json,sha256=XcnHxwP_KR8lAv6s6npjWQxwyYAQTuBLEKrvlOqH84g,1771
21
+ lumen_resources/schemas/result_schemas/labels_v1.json,sha256=AnOiM0VCuIKrLdrbA73pmu4QD4QaHIDNsANeU3BIOeg,1222
22
+ lumen_resources/schemas/result_schemas/ocr_v1.json,sha256=btVUZjR_RW4CLJjIyEGCITPJFJxMqGSM7QX8OyfVguo,1653
23
+ lumen_resources/schemas/result_schemas/text_generation_v1.json,sha256=f_qwzlfKR_zZMZsn9qQ3U1U3t7HkSk9j7XED-q_s2hc,2876
24
+ lumen_resources-0.3.2.dist-info/METADATA,sha256=16Os1V15jiQlyhm8FucFSQ55YAx682maKWK-BhEUwGw,4002
25
+ lumen_resources-0.3.2.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
26
+ lumen_resources-0.3.2.dist-info/entry_points.txt,sha256=fLCrIB9BxyIDAbJVqDGW4QyvLPlvL53WI-6lkTZ3h2M,61
27
+ lumen_resources-0.3.2.dist-info/top_level.txt,sha256=XgLNoNrF2RIpI2sYIpjLuUREYRVHW13ElHoCnFYHjAQ,16
28
+ lumen_resources-0.3.2.dist-info/RECORD,,