lt-tensor 0.0.1a9__py3-none-any.whl → 0.0.1a10__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
lt_tensor/misc_utils.py CHANGED
@@ -152,7 +152,12 @@ class LogTensor:
152
152
  print(message)
153
153
  sys.stdout.flush()
154
154
 
155
- def _process(self, name: str, resp: Union[Callable[[Any], Any], Any]):
155
+ def _process(
156
+ self,
157
+ name: str,
158
+ resp: Union[Callable[[Any], Any], Any],
159
+ do_not_print: bool = False,
160
+ ):
156
161
  if callable(resp):
157
162
  try:
158
163
  response = resp()
@@ -161,15 +166,16 @@ class LogTensor:
161
166
  print(e)
162
167
  else:
163
168
  response = resp
164
- msg = self._setup_message(name, response)
165
- self._print(msg)
166
- return dict(name=name, results=response, message=msg)
169
+ if not do_not_print and self.do_print:
170
+ msg = self._setup_message(name, response)
171
+ self._print(msg)
172
+ return dict(item=name, value=response)
167
173
 
168
174
  def __call__(
169
175
  self,
170
- main_item: Union[Tensor, np.ndarray, Sequence[Number]],
176
+ inputs: Union[Tensor, np.ndarray, Sequence[Number]],
171
177
  title: Optional[str] = None,
172
- loss_targets: Optional[Union[Tensor, np.ndarray, Sequence[Number]]] = None,
178
+ target: Optional[Union[Tensor, np.ndarray, Sequence[Number]]] = None,
173
179
  *,
174
180
  log_tensor: bool = False,
175
181
  log_device: bool = False,
@@ -177,7 +183,7 @@ class LogTensor:
177
183
  log_std: bool = False,
178
184
  dim_mean: int = -1,
179
185
  dim_std: int = -1,
180
- do_print_external: bool = False,
186
+ print_extended: bool = False,
181
187
  external_logs: List[Tuple[str, Union[Dict[str, Any], List[Any], Any]]] = [
182
188
  ("softmax", {"dim": 0}),
183
189
  ("relu", None),
@@ -188,10 +194,8 @@ class LogTensor:
188
194
  validate_item_type: bool = False,
189
195
  **kwargs,
190
196
  ):
191
- if kwargs:
192
- self.update_settings(**kwargs)
193
- invalid_type = not isinstance(main_item, (Tensor, np.ndarray, list, tuple))
194
- _main_item_tp = type(main_item)
197
+ invalid_type = not isinstance(inputs, (Tensor, np.ndarray, list, tuple))
198
+ _main_item_tp = type(inputs)
195
199
  assert (
196
200
  not validate_item_type or not invalid_type
197
201
  ), f"Invalid Type: {_main_item_tp}"
@@ -199,8 +203,8 @@ class LogTensor:
199
203
  self._print(f"Invalid Type: {_main_item_tp}")
200
204
  return
201
205
 
202
- main_item = self._setup_tensor(main_item)
203
- loss_targets = self._setup_tensor(loss_targets)
206
+ inputs = self._setup_tensor(inputs)
207
+ target = self._setup_tensor(target)
204
208
  if is_str(title):
205
209
  title = re.sub(r"\s+", " ", title.replace("_", " "))
206
210
  has_title = is_str(title)
@@ -209,43 +213,42 @@ class LogTensor:
209
213
  else:
210
214
  title = "Unnamed"
211
215
 
212
- current_register = {"title": title}
213
-
214
- current_register.update(self._process("shape", main_item.shape))
215
- current_register.update(self._process("ndim", main_item.ndim))
216
- current_register.update(self._process("dtype", main_item.dtype))
216
+ current_register = {"title": title, "values": []}
217
+ current_register["shape"] = self._process("shape", inputs.shape)
218
+ current_register["ndim"] = self._process("ndim", inputs.ndim)
219
+ current_register["dtype"] = self._process("dtype", inputs.dtype)
217
220
  if log_device:
218
- current_register.update(self._process("device", main_item.device))
221
+ current_register["device"] = self._process("device", inputs.device)
219
222
 
220
223
  if log_mean:
221
- fn = lambda: main_item.mean(
224
+ fn = lambda: inputs.mean(
222
225
  dim=dim_mean,
223
226
  )
224
- current_register.update(self._process("mean", fn))
227
+ current_register["mean"] = self._process("mean", fn)
225
228
 
226
229
  if log_std:
227
- fn = lambda: main_item.std(dim=dim_std)
228
- current_register.update(self._process("std", fn))
230
+ fn = lambda: inputs.std(dim=dim_std)
231
+ current_register["std"] = self._process("std", fn)
229
232
 
230
233
  if external_logs:
231
234
  old_print = self.do_print
232
- self.do_print = do_print_external
235
+ self.do_print = print_extended
233
236
  self._print("\n---[ External Logs ] ---")
234
237
  for log_fn, log_args in external_logs:
235
238
  if isinstance(log_args, Sequence) and not isinstance(log_args, str):
236
- value = try_torch(log_fn, main_item, *log_args)
239
+ value = try_torch(log_fn, inputs, *log_args)
237
240
  elif isinstance(log_args, dict):
238
- value = try_torch(log_fn, main_item, **log_args)
241
+ value = try_torch(log_fn, inputs, **log_args)
239
242
  elif log_args is None:
240
- value = try_torch(log_fn, main_item)
243
+ value = try_torch(log_fn, inputs)
241
244
  else:
242
- value = try_torch(log_fn, main_item, log_args)
245
+ value = try_torch(log_fn, inputs, log_args)
243
246
  results = self._process(log_fn, value)
244
247
  current_register[log_fn] = results
245
248
  self.do_print = old_print
246
249
 
247
- if loss_targets is not None:
248
- losses = get_losses(main_item, loss_targets, False)
250
+ if target is not None:
251
+ losses = get_losses(inputs, target, False)
249
252
  started_ls = False
250
253
  if self.do_print:
251
254
  for loss, res in losses.items():
@@ -258,7 +261,9 @@ class LogTensor:
258
261
  current_register["loss"] = losses
259
262
 
260
263
  if log_tensor:
261
- current_register.update(self._process("Tensor", main_item))
264
+ current_register["values"].append(
265
+ self._process("Tensor", inputs, not print_extended)
266
+ )
262
267
 
263
268
  self._print(self.end_with)
264
269
  self._store_item_and_update(current_register)
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: lt-tensor
3
- Version: 0.0.1a9
3
+ Version: 0.0.1a10
4
4
  Summary: General utilities for PyTorch and others. Built for general use.
5
5
  Home-page: https://github.com/gr1336/lt-tensor/
6
6
  Author: gr1336
@@ -2,7 +2,7 @@ lt_tensor/__init__.py,sha256=uwJ7uiO18VYj8Z1V4KSOQ3ZrnowSgJWKCIiFBrzLMOI,429
2
2
  lt_tensor/losses.py,sha256=TinZJP2ypZ7Tdg6d9nnFWFkPyormfgQ0Z9P2ER3sqzE,4341
3
3
  lt_tensor/lr_schedulers.py,sha256=LSZzqrOOLzSthD8k-W4cYPJt0vCjmHkiJkLr5e3yRTE,3659
4
4
  lt_tensor/math_ops.py,sha256=ewIYkvxIy_Lab_9ExjFUgLs-oYLOu8IRRDo7f1pn3i8,2248
5
- lt_tensor/misc_utils.py,sha256=-MGqs3Dt35M7EsgBqqTLin9v0xVu8V29HQZVtsxK5QU,24746
5
+ lt_tensor/misc_utils.py,sha256=N9Rf-i6m51Q3YYdmI5tI5Rb3wPz8OAJrTrLlqfCwWrk,24792
6
6
  lt_tensor/model_base.py,sha256=8qN7oklALFanOz-eqVzdnB9RD2kN_3ltynSMAPOl-TI,13413
7
7
  lt_tensor/monotonic_align.py,sha256=LhBd8p1xdBzg6jQrQX1j7b4PNeYGwIqM24zcU-pHOLE,2239
8
8
  lt_tensor/noise_tools.py,sha256=JkWw0-bCMRNNMShwXKKt5KbO3104tvNiBePt-ThPkEo,11366
@@ -21,8 +21,8 @@ lt_tensor/model_zoo/rsd.py,sha256=5bba50g1Hm5kMexuJ4SwOIJuyQ1qJd8Acrq-Ax6CqE8,69
21
21
  lt_tensor/model_zoo/tfrms.py,sha256=kauh-A13pk08SZ5OspEE5a-gPKD4rZr6tqMKWu3KGhk,4237
22
22
  lt_tensor/processors/__init__.py,sha256=4b9MxAJolXiJfSm20ZEspQTDm1tgLazwlPWA_jB1yLM,63
23
23
  lt_tensor/processors/audio.py,sha256=2Sta_KytTqGZh-ZeHpcCbqP6O8VT6QQVkx-7szA3Itc,8830
24
- lt_tensor-0.0.1a9.dist-info/licenses/LICENSE,sha256=HUnu_iSPpnDfZS_PINhO3AoVizJD1A2vee8WX7D7uXo,11358
25
- lt_tensor-0.0.1a9.dist-info/METADATA,sha256=4T6spgppj3ijgyjaVFt5-J6885dpOSdpJXIMnd4pQ3E,965
26
- lt_tensor-0.0.1a9.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
27
- lt_tensor-0.0.1a9.dist-info/top_level.txt,sha256=35FuhFeXnUyvHWdbVHGPh0hS8euofafnJ_GJAVSF4Kk,10
28
- lt_tensor-0.0.1a9.dist-info/RECORD,,
24
+ lt_tensor-0.0.1a10.dist-info/licenses/LICENSE,sha256=HUnu_iSPpnDfZS_PINhO3AoVizJD1A2vee8WX7D7uXo,11358
25
+ lt_tensor-0.0.1a10.dist-info/METADATA,sha256=-VDQmGfkd5uW4_8B_TbwH-xvRivsGn3jWEtXTyeCT0s,966
26
+ lt_tensor-0.0.1a10.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
27
+ lt_tensor-0.0.1a10.dist-info/top_level.txt,sha256=35FuhFeXnUyvHWdbVHGPh0hS8euofafnJ_GJAVSF4Kk,10
28
+ lt_tensor-0.0.1a10.dist-info/RECORD,,