lt-tensor 0.0.1a9__py3-none-any.whl → 0.0.1a10__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- lt_tensor/misc_utils.py +36 -31
- {lt_tensor-0.0.1a9.dist-info → lt_tensor-0.0.1a10.dist-info}/METADATA +1 -1
- {lt_tensor-0.0.1a9.dist-info → lt_tensor-0.0.1a10.dist-info}/RECORD +6 -6
- {lt_tensor-0.0.1a9.dist-info → lt_tensor-0.0.1a10.dist-info}/WHEEL +0 -0
- {lt_tensor-0.0.1a9.dist-info → lt_tensor-0.0.1a10.dist-info}/licenses/LICENSE +0 -0
- {lt_tensor-0.0.1a9.dist-info → lt_tensor-0.0.1a10.dist-info}/top_level.txt +0 -0
lt_tensor/misc_utils.py
CHANGED
@@ -152,7 +152,12 @@ class LogTensor:
|
|
152
152
|
print(message)
|
153
153
|
sys.stdout.flush()
|
154
154
|
|
155
|
-
def _process(
|
155
|
+
def _process(
|
156
|
+
self,
|
157
|
+
name: str,
|
158
|
+
resp: Union[Callable[[Any], Any], Any],
|
159
|
+
do_not_print: bool = False,
|
160
|
+
):
|
156
161
|
if callable(resp):
|
157
162
|
try:
|
158
163
|
response = resp()
|
@@ -161,15 +166,16 @@ class LogTensor:
|
|
161
166
|
print(e)
|
162
167
|
else:
|
163
168
|
response = resp
|
164
|
-
|
165
|
-
|
166
|
-
|
169
|
+
if not do_not_print and self.do_print:
|
170
|
+
msg = self._setup_message(name, response)
|
171
|
+
self._print(msg)
|
172
|
+
return dict(item=name, value=response)
|
167
173
|
|
168
174
|
def __call__(
|
169
175
|
self,
|
170
|
-
|
176
|
+
inputs: Union[Tensor, np.ndarray, Sequence[Number]],
|
171
177
|
title: Optional[str] = None,
|
172
|
-
|
178
|
+
target: Optional[Union[Tensor, np.ndarray, Sequence[Number]]] = None,
|
173
179
|
*,
|
174
180
|
log_tensor: bool = False,
|
175
181
|
log_device: bool = False,
|
@@ -177,7 +183,7 @@ class LogTensor:
|
|
177
183
|
log_std: bool = False,
|
178
184
|
dim_mean: int = -1,
|
179
185
|
dim_std: int = -1,
|
180
|
-
|
186
|
+
print_extended: bool = False,
|
181
187
|
external_logs: List[Tuple[str, Union[Dict[str, Any], List[Any], Any]]] = [
|
182
188
|
("softmax", {"dim": 0}),
|
183
189
|
("relu", None),
|
@@ -188,10 +194,8 @@ class LogTensor:
|
|
188
194
|
validate_item_type: bool = False,
|
189
195
|
**kwargs,
|
190
196
|
):
|
191
|
-
|
192
|
-
|
193
|
-
invalid_type = not isinstance(main_item, (Tensor, np.ndarray, list, tuple))
|
194
|
-
_main_item_tp = type(main_item)
|
197
|
+
invalid_type = not isinstance(inputs, (Tensor, np.ndarray, list, tuple))
|
198
|
+
_main_item_tp = type(inputs)
|
195
199
|
assert (
|
196
200
|
not validate_item_type or not invalid_type
|
197
201
|
), f"Invalid Type: {_main_item_tp}"
|
@@ -199,8 +203,8 @@ class LogTensor:
|
|
199
203
|
self._print(f"Invalid Type: {_main_item_tp}")
|
200
204
|
return
|
201
205
|
|
202
|
-
|
203
|
-
|
206
|
+
inputs = self._setup_tensor(inputs)
|
207
|
+
target = self._setup_tensor(target)
|
204
208
|
if is_str(title):
|
205
209
|
title = re.sub(r"\s+", " ", title.replace("_", " "))
|
206
210
|
has_title = is_str(title)
|
@@ -209,43 +213,42 @@ class LogTensor:
|
|
209
213
|
else:
|
210
214
|
title = "Unnamed"
|
211
215
|
|
212
|
-
current_register = {"title": title}
|
213
|
-
|
214
|
-
current_register
|
215
|
-
current_register
|
216
|
-
current_register.update(self._process("dtype", main_item.dtype))
|
216
|
+
current_register = {"title": title, "values": []}
|
217
|
+
current_register["shape"] = self._process("shape", inputs.shape)
|
218
|
+
current_register["ndim"] = self._process("ndim", inputs.ndim)
|
219
|
+
current_register["dtype"] = self._process("dtype", inputs.dtype)
|
217
220
|
if log_device:
|
218
|
-
current_register
|
221
|
+
current_register["device"] = self._process("device", inputs.device)
|
219
222
|
|
220
223
|
if log_mean:
|
221
|
-
fn = lambda:
|
224
|
+
fn = lambda: inputs.mean(
|
222
225
|
dim=dim_mean,
|
223
226
|
)
|
224
|
-
current_register
|
227
|
+
current_register["mean"] = self._process("mean", fn)
|
225
228
|
|
226
229
|
if log_std:
|
227
|
-
fn = lambda:
|
228
|
-
current_register
|
230
|
+
fn = lambda: inputs.std(dim=dim_std)
|
231
|
+
current_register["std"] = self._process("std", fn)
|
229
232
|
|
230
233
|
if external_logs:
|
231
234
|
old_print = self.do_print
|
232
|
-
self.do_print =
|
235
|
+
self.do_print = print_extended
|
233
236
|
self._print("\n---[ External Logs ] ---")
|
234
237
|
for log_fn, log_args in external_logs:
|
235
238
|
if isinstance(log_args, Sequence) and not isinstance(log_args, str):
|
236
|
-
value = try_torch(log_fn,
|
239
|
+
value = try_torch(log_fn, inputs, *log_args)
|
237
240
|
elif isinstance(log_args, dict):
|
238
|
-
value = try_torch(log_fn,
|
241
|
+
value = try_torch(log_fn, inputs, **log_args)
|
239
242
|
elif log_args is None:
|
240
|
-
value = try_torch(log_fn,
|
243
|
+
value = try_torch(log_fn, inputs)
|
241
244
|
else:
|
242
|
-
value = try_torch(log_fn,
|
245
|
+
value = try_torch(log_fn, inputs, log_args)
|
243
246
|
results = self._process(log_fn, value)
|
244
247
|
current_register[log_fn] = results
|
245
248
|
self.do_print = old_print
|
246
249
|
|
247
|
-
if
|
248
|
-
losses = get_losses(
|
250
|
+
if target is not None:
|
251
|
+
losses = get_losses(inputs, target, False)
|
249
252
|
started_ls = False
|
250
253
|
if self.do_print:
|
251
254
|
for loss, res in losses.items():
|
@@ -258,7 +261,9 @@ class LogTensor:
|
|
258
261
|
current_register["loss"] = losses
|
259
262
|
|
260
263
|
if log_tensor:
|
261
|
-
current_register.
|
264
|
+
current_register["values"].append(
|
265
|
+
self._process("Tensor", inputs, not print_extended)
|
266
|
+
)
|
262
267
|
|
263
268
|
self._print(self.end_with)
|
264
269
|
self._store_item_and_update(current_register)
|
@@ -2,7 +2,7 @@ lt_tensor/__init__.py,sha256=uwJ7uiO18VYj8Z1V4KSOQ3ZrnowSgJWKCIiFBrzLMOI,429
|
|
2
2
|
lt_tensor/losses.py,sha256=TinZJP2ypZ7Tdg6d9nnFWFkPyormfgQ0Z9P2ER3sqzE,4341
|
3
3
|
lt_tensor/lr_schedulers.py,sha256=LSZzqrOOLzSthD8k-W4cYPJt0vCjmHkiJkLr5e3yRTE,3659
|
4
4
|
lt_tensor/math_ops.py,sha256=ewIYkvxIy_Lab_9ExjFUgLs-oYLOu8IRRDo7f1pn3i8,2248
|
5
|
-
lt_tensor/misc_utils.py,sha256
|
5
|
+
lt_tensor/misc_utils.py,sha256=N9Rf-i6m51Q3YYdmI5tI5Rb3wPz8OAJrTrLlqfCwWrk,24792
|
6
6
|
lt_tensor/model_base.py,sha256=8qN7oklALFanOz-eqVzdnB9RD2kN_3ltynSMAPOl-TI,13413
|
7
7
|
lt_tensor/monotonic_align.py,sha256=LhBd8p1xdBzg6jQrQX1j7b4PNeYGwIqM24zcU-pHOLE,2239
|
8
8
|
lt_tensor/noise_tools.py,sha256=JkWw0-bCMRNNMShwXKKt5KbO3104tvNiBePt-ThPkEo,11366
|
@@ -21,8 +21,8 @@ lt_tensor/model_zoo/rsd.py,sha256=5bba50g1Hm5kMexuJ4SwOIJuyQ1qJd8Acrq-Ax6CqE8,69
|
|
21
21
|
lt_tensor/model_zoo/tfrms.py,sha256=kauh-A13pk08SZ5OspEE5a-gPKD4rZr6tqMKWu3KGhk,4237
|
22
22
|
lt_tensor/processors/__init__.py,sha256=4b9MxAJolXiJfSm20ZEspQTDm1tgLazwlPWA_jB1yLM,63
|
23
23
|
lt_tensor/processors/audio.py,sha256=2Sta_KytTqGZh-ZeHpcCbqP6O8VT6QQVkx-7szA3Itc,8830
|
24
|
-
lt_tensor-0.0.
|
25
|
-
lt_tensor-0.0.
|
26
|
-
lt_tensor-0.0.
|
27
|
-
lt_tensor-0.0.
|
28
|
-
lt_tensor-0.0.
|
24
|
+
lt_tensor-0.0.1a10.dist-info/licenses/LICENSE,sha256=HUnu_iSPpnDfZS_PINhO3AoVizJD1A2vee8WX7D7uXo,11358
|
25
|
+
lt_tensor-0.0.1a10.dist-info/METADATA,sha256=-VDQmGfkd5uW4_8B_TbwH-xvRivsGn3jWEtXTyeCT0s,966
|
26
|
+
lt_tensor-0.0.1a10.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
27
|
+
lt_tensor-0.0.1a10.dist-info/top_level.txt,sha256=35FuhFeXnUyvHWdbVHGPh0hS8euofafnJ_GJAVSF4Kk,10
|
28
|
+
lt_tensor-0.0.1a10.dist-info/RECORD,,
|
File without changes
|
File without changes
|
File without changes
|