lt-tensor 0.0.1a4__py3-none-any.whl → 0.0.1a7__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- lt_tensor/__init__.py +9 -1
- lt_tensor/datasets/audio.py +94 -95
- lt_tensor/losses.py +145 -0
- lt_tensor/math_ops.py +7 -0
- lt_tensor/misc_utils.py +10 -96
- lt_tensor/model_base.py +105 -6
- lt_tensor/model_zoo/disc.py +14 -14
- lt_tensor/model_zoo/istft.py +41 -0
- lt_tensor/noise_tools.py +368 -0
- lt_tensor/processors/__init__.py +3 -0
- lt_tensor/processors/audio.py +193 -0
- lt_tensor/transform.py +190 -30
- {lt_tensor-0.0.1a4.dist-info → lt_tensor-0.0.1a7.dist-info}/METADATA +2 -2
- lt_tensor-0.0.1a7.dist-info/RECORD +28 -0
- lt_tensor-0.0.1a4.dist-info/RECORD +0 -24
- {lt_tensor-0.0.1a4.dist-info → lt_tensor-0.0.1a7.dist-info}/WHEEL +0 -0
- {lt_tensor-0.0.1a4.dist-info → lt_tensor-0.0.1a7.dist-info}/licenses/LICENSE +0 -0
- {lt_tensor-0.0.1a4.dist-info → lt_tensor-0.0.1a7.dist-info}/top_level.txt +0 -0
lt_tensor/model_base.py
CHANGED
@@ -4,6 +4,7 @@ __all__ = ["Model"]
|
|
4
4
|
import warnings
|
5
5
|
from .torch_commons import *
|
6
6
|
from lt_utils.common import *
|
7
|
+
from lt_utils.misc_utils import log_traceback
|
7
8
|
|
8
9
|
T = TypeVar("T")
|
9
10
|
|
@@ -40,20 +41,113 @@ class Model(nn.Module, ABC):
|
|
40
41
|
def device(self, device: Union[torch.device, str]):
|
41
42
|
assert isinstance(device, (str, torch.device))
|
42
43
|
self._device = torch.device(device) if isinstance(device, str) else device
|
43
|
-
self.
|
44
|
+
self._apply_device_to()
|
44
45
|
|
45
|
-
def
|
46
|
+
def _apply_device_to(self):
|
46
47
|
"""Add here components that are needed to have device applied to them,
|
47
|
-
that
|
48
|
+
that usually the '.to()' function fails to apply
|
48
49
|
|
49
50
|
example:
|
50
51
|
```
|
51
|
-
def
|
52
|
+
def _apply_device_to(self):
|
52
53
|
self.my_tensor = self.my_tensor.to(device=self.device)
|
53
54
|
```
|
54
55
|
"""
|
55
56
|
pass
|
56
57
|
|
58
|
+
def freeze_weight(self, weight: Union[str, nn.Module], freeze: bool):
|
59
|
+
assert isinstance(weight, (str, nn.Module))
|
60
|
+
if isinstance(weight, str):
|
61
|
+
if hasattr(self, weight):
|
62
|
+
w = getattr(self, weight)
|
63
|
+
if isinstance(w, nn.Module):
|
64
|
+
w.requires_grad_(not freeze)
|
65
|
+
else:
|
66
|
+
weight.requires_grad_(not freeze)
|
67
|
+
|
68
|
+
def _freeze_unfreeze(
|
69
|
+
self,
|
70
|
+
weight: Union[str, nn.Module],
|
71
|
+
task: Literal["freeze", "unfreeze"] = "freeze",
|
72
|
+
_skip_except: bool = False,
|
73
|
+
):
|
74
|
+
try:
|
75
|
+
assert isinstance(weight, (str, nn.Module))
|
76
|
+
if isinstance(weight, str):
|
77
|
+
w_txt = f"Failed to {task} the module '{weight}'. Reason: is not a valid attribute of {self._get_name()}"
|
78
|
+
if hasattr(self, weight):
|
79
|
+
w_txt = f"Failed to {task} the module '{weight}'. Reason: is not a Module type."
|
80
|
+
w = getattr(self, weight)
|
81
|
+
if isinstance(w, nn.Module):
|
82
|
+
w_txt = f"Successfully {task} the module '{weight}'."
|
83
|
+
w.requires_grad_(task == "unfreeze")
|
84
|
+
|
85
|
+
else:
|
86
|
+
w.requires_grad_(task == "unfreeze")
|
87
|
+
w_txt = f"Successfully '{task}' the module '{weight}'."
|
88
|
+
return w_txt
|
89
|
+
except Exception as e:
|
90
|
+
if not _skip_except:
|
91
|
+
raise e
|
92
|
+
return str(e)
|
93
|
+
|
94
|
+
def freeze_weight(
|
95
|
+
self,
|
96
|
+
weight: Union[str, nn.Module],
|
97
|
+
_skip_except: bool = False,
|
98
|
+
):
|
99
|
+
return self._freeze_unfreeze(weight, "freeze", _skip_except)
|
100
|
+
|
101
|
+
def unfreeze_weight(
|
102
|
+
self,
|
103
|
+
weight: Union[str, nn.Module],
|
104
|
+
_skip_except: bool = False,
|
105
|
+
):
|
106
|
+
return self._freeze_unfreeze(weight, "freeze", _skip_except)
|
107
|
+
|
108
|
+
def freeze_all(self, exclude: Optional[List[str]] = None):
|
109
|
+
no_exclusions = not exclude
|
110
|
+
frozen = []
|
111
|
+
not_frozen = []
|
112
|
+
for name, param in self.named_parameters():
|
113
|
+
if no_exclusions:
|
114
|
+
try:
|
115
|
+
param.requires_grad_(False)
|
116
|
+
frozen.append(name)
|
117
|
+
except Exception as e:
|
118
|
+
not_frozen.append((name, str(e)))
|
119
|
+
elif any(layer in name for layer in exclude):
|
120
|
+
try:
|
121
|
+
param.requires_grad_(False)
|
122
|
+
frozen.append(name)
|
123
|
+
except Exception as e:
|
124
|
+
not_frozen.append((name, str(e)))
|
125
|
+
else:
|
126
|
+
not_frozen.append((name, "Excluded"))
|
127
|
+
return dict(frozen=frozen, not_frozen=not_frozen)
|
128
|
+
|
129
|
+
def unfreeze_all_except(self, exclude: Optional[list[str]] = None):
|
130
|
+
"""Unfreezes all model parameters except specified layers."""
|
131
|
+
no_exclusions = not exclude
|
132
|
+
unfrozen = []
|
133
|
+
not_unfrozen = []
|
134
|
+
for name, param in self.named_parameters():
|
135
|
+
if no_exclusions:
|
136
|
+
try:
|
137
|
+
param.requires_grad_(True)
|
138
|
+
unfrozen.append(name)
|
139
|
+
except Exception as e:
|
140
|
+
not_unfrozen.append((name, str(e)))
|
141
|
+
elif any(layer in name for layer in exclude):
|
142
|
+
try:
|
143
|
+
param.requires_grad_(True)
|
144
|
+
unfrozen.append(name)
|
145
|
+
except Exception as e:
|
146
|
+
not_unfrozen.append((name, str(e)))
|
147
|
+
else:
|
148
|
+
not_unfrozen.append((name, "Excluded"))
|
149
|
+
return dict(unfrozen=unfrozen, not_unfrozen=not_unfrozen)
|
150
|
+
|
57
151
|
def to(self, *args, **kwargs):
|
58
152
|
device, dtype, non_blocking, convert_to_format = torch._C._nn._parse_to(
|
59
153
|
*args, **kwargs
|
@@ -186,11 +280,16 @@ class Model(nn.Module, ABC):
|
|
186
280
|
)
|
187
281
|
|
188
282
|
def get_weights(self, module_name: Optional[str] = None) -> List[Tensor]:
|
189
|
-
"""Returns the weights of the model
|
283
|
+
"""Returns the weights of the model entry model or from a specified module"""
|
190
284
|
if module_name is not None:
|
191
285
|
assert hasattr(self, module_name), f"Module {module_name} does not exits"
|
192
286
|
module = getattr(self, module_name)
|
193
|
-
|
287
|
+
params = []
|
288
|
+
if isinstance(module, nn.Module):
|
289
|
+
return [x.data.detach() for x in module.parameters()]
|
290
|
+
elif isinstance(module, (Tensor, nn.Parameter)):
|
291
|
+
return [module.data.detach()]
|
292
|
+
raise (f"{module_name} is has no weights")
|
194
293
|
return [x.data.detach() for x in self.parameters()]
|
195
294
|
|
196
295
|
def print_trainable_parameters(
|
lt_tensor/model_zoo/disc.py
CHANGED
@@ -11,37 +11,36 @@ class PeriodDiscriminator(Model):
|
|
11
11
|
use_spectral_norm=False,
|
12
12
|
kernel_size: int = 5,
|
13
13
|
stride: int = 3,
|
14
|
-
initial_s: int = 32,
|
15
14
|
):
|
16
15
|
super().__init__()
|
17
16
|
self.period = period
|
17
|
+
self.stride = stride
|
18
|
+
self.kernel_size = kernel_size
|
18
19
|
self.norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
20
|
+
|
21
|
+
self.channels = [32, 128, 512, 1024, 1024]
|
19
22
|
self.first_pass = nn.Sequential(
|
20
23
|
self.norm_f(
|
21
24
|
nn.Conv2d(
|
22
|
-
1,
|
25
|
+
1, self.channels[0], (kernel_size, 1), (stride, 1), padding=(2, 0)
|
23
26
|
)
|
24
27
|
),
|
25
28
|
nn.LeakyReLU(0.1),
|
26
29
|
)
|
27
|
-
self._last_sz = initial_s * 4
|
28
30
|
|
29
|
-
|
31
|
+
|
32
|
+
self.convs = nn.ModuleList([self._get_next(self.channels[i+1], self.channels[i], i == 3) for i in range(4)])
|
30
33
|
|
31
34
|
self.post_conv = nn.Conv2d(1024, 1, (stride, 1), 1, padding=(1, 0))
|
32
|
-
self.kernel_size = kernel_size
|
33
|
-
self.stride = stride
|
34
35
|
|
35
|
-
def _get_next(self, is_last: bool = False):
|
36
|
-
in_dim = self._last_sz
|
37
|
-
self._last_sz *= 4
|
38
|
-
print(self._last_sz, "-----------------------")
|
36
|
+
def _get_next(self, out_dim:int, last_in:int, is_last: bool = False):
|
39
37
|
stride = (self.stride, 1) if not is_last else 1
|
38
|
+
|
40
39
|
return nn.Sequential(
|
41
40
|
self.norm_f(
|
42
41
|
nn.Conv2d(
|
43
|
-
|
44
|
-
|
42
|
+
last_in,
|
43
|
+
out_dim,
|
45
44
|
(self.kernel_size, 1),
|
46
45
|
stride,
|
47
46
|
padding=(2, 0),
|
@@ -91,6 +90,7 @@ class ScaleDiscriminator(nn.Module):
|
|
91
90
|
def __init__(self, use_spectral_norm=False):
|
92
91
|
super().__init__()
|
93
92
|
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
93
|
+
self.activation = nn.LeakyReLU(0.1)
|
94
94
|
self.convs = nn.ModuleList(
|
95
95
|
[
|
96
96
|
norm_f(nn.Conv1d(1, 128, 15, 1, padding=7)),
|
@@ -103,7 +103,6 @@ class ScaleDiscriminator(nn.Module):
|
|
103
103
|
]
|
104
104
|
)
|
105
105
|
self.post_conv = norm_f(nn.Conv1d(1024, 1, 3, 1, padding=1))
|
106
|
-
self.activation = nn.LeakyReLU(0.1)
|
107
106
|
|
108
107
|
def forward(self, x: torch.Tensor):
|
109
108
|
"""
|
@@ -147,9 +146,10 @@ class GeneralLossDescriminator(Model):
|
|
147
146
|
super().__init__()
|
148
147
|
self.mpd = MultiPeriodDiscriminator()
|
149
148
|
self.msd = MultiScaleDiscriminator()
|
149
|
+
self.print_trainable_parameters()
|
150
150
|
|
151
151
|
def _get_group_(self):
|
152
152
|
pass
|
153
153
|
|
154
154
|
def forward(self, x: Tensor, y_hat: Tensor):
|
155
|
-
return
|
155
|
+
return
|
lt_tensor/model_zoo/istft.py
CHANGED
@@ -106,3 +106,44 @@ class Generator(Model):
|
|
106
106
|
classname = m.__class__.__name__
|
107
107
|
if "Conv" in classname:
|
108
108
|
m.weight.data.normal_(mean, std)
|
109
|
+
|
110
|
+
|
111
|
+
# Below are items found in the Rishikesh's repo that might work for this generator.
|
112
|
+
# https://github.com/rishikksh20/iSTFTNet-pytorch/blob/781480e9563d4dff5a8cc9ef1af6c6e0cab025c8/models.py
|
113
|
+
|
114
|
+
|
115
|
+
def feature_loss(fmap_r, fmap_g, weight=2.0):
|
116
|
+
"""Feature matching loss between real and generated feature maps."""
|
117
|
+
loss = 0.0
|
118
|
+
for dr, dg in zip(fmap_r, fmap_g):
|
119
|
+
for rl, gl in zip(dr, dg):
|
120
|
+
loss += torch.mean(torch.abs(rl - gl))
|
121
|
+
return loss * weight
|
122
|
+
|
123
|
+
|
124
|
+
def discriminator_loss(disc_real_outputs, disc_generated_outputs):
|
125
|
+
"""LSGAN-style loss for real and fake predictions."""
|
126
|
+
loss = 0.0
|
127
|
+
r_losses, g_losses = [], []
|
128
|
+
|
129
|
+
for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
|
130
|
+
r_loss = torch.mean((1.0 - dr) ** 2)
|
131
|
+
g_loss = torch.mean(dg**2)
|
132
|
+
loss += r_loss + g_loss
|
133
|
+
r_losses.append(r_loss.item())
|
134
|
+
g_losses.append(g_loss.item())
|
135
|
+
|
136
|
+
return loss, r_losses, g_losses
|
137
|
+
|
138
|
+
|
139
|
+
def generator_loss(disc_generated_outputs):
|
140
|
+
"""LSGAN generator loss encouraging fake to look like real (close to 1)."""
|
141
|
+
loss = 0.0
|
142
|
+
gen_losses = []
|
143
|
+
|
144
|
+
for dg in disc_generated_outputs:
|
145
|
+
l = torch.mean((1.0 - dg) ** 2)
|
146
|
+
gen_losses.append(l.item())
|
147
|
+
loss += l
|
148
|
+
|
149
|
+
return loss, gen_losses
|
lt_tensor/noise_tools.py
ADDED
@@ -0,0 +1,368 @@
|
|
1
|
+
__all__ = [
|
2
|
+
"NoiseSchedulerA",
|
3
|
+
"NoiseSchedulerB",
|
4
|
+
"NoiseSchedulerC",
|
5
|
+
"add_gaussian_noise",
|
6
|
+
"add_uniform_noise",
|
7
|
+
"add_linear_noise",
|
8
|
+
"add_impulse_noise",
|
9
|
+
"add_pink_noise",
|
10
|
+
"add_clipped_gaussian_noise",
|
11
|
+
"add_multiplicative_noise",
|
12
|
+
"apply_noise",
|
13
|
+
]
|
14
|
+
|
15
|
+
from lt_utils.common import *
|
16
|
+
import torch.nn.functional as F
|
17
|
+
from .torch_commons import *
|
18
|
+
import math
|
19
|
+
import random
|
20
|
+
from .misc_utils import set_seed
|
21
|
+
|
22
|
+
|
23
|
+
def add_gaussian_noise(x: Tensor, noise_level=0.025):
|
24
|
+
noise = torch.randn_like(x) * noise_level
|
25
|
+
return x + noise
|
26
|
+
|
27
|
+
|
28
|
+
def add_uniform_noise(x: Tensor, noise_level=0.025):
|
29
|
+
noise = (torch.rand_like(x) - 0.5) * 2 * noise_level
|
30
|
+
return x + noise
|
31
|
+
|
32
|
+
|
33
|
+
def add_linear_noise(x, noise_level=0.05):
|
34
|
+
T = x.shape[-1]
|
35
|
+
ramp = torch.linspace(0, noise_level, T, device=x.device)
|
36
|
+
for _ in range(x.dim() - 1):
|
37
|
+
ramp = ramp.unsqueeze(0)
|
38
|
+
return x + ramp.expand_as(x)
|
39
|
+
|
40
|
+
|
41
|
+
def add_impulse_noise(x: Tensor, noise_level=0.025):
|
42
|
+
# For image inputs
|
43
|
+
probs = torch.rand_like(x)
|
44
|
+
x_clone = x.detach().clone()
|
45
|
+
x_clone[probs < (noise_level / 2)] = 0.0 # salt
|
46
|
+
x_clone[probs > (1 - noise_level / 2)] = 1.0 # pepper
|
47
|
+
return x_clone
|
48
|
+
|
49
|
+
|
50
|
+
def add_pink_noise(x: Tensor, noise_level=0.05):
|
51
|
+
# pink noise: divide freq spectrum by sqrt(f)
|
52
|
+
if x.ndim == 3:
|
53
|
+
x = x.view(-1, x.shape[-1]) # flatten to 2D [B*M, T]
|
54
|
+
pink_noised = []
|
55
|
+
|
56
|
+
for row in x:
|
57
|
+
white = torch.randn_like(row)
|
58
|
+
f = torch.fft.rfft(white)
|
59
|
+
freqs = torch.fft.rfftfreq(row.numel(), d=1.0)
|
60
|
+
freqs[0] = 1.0 # prevent div by 0
|
61
|
+
f /= freqs.sqrt()
|
62
|
+
pink = torch.fft.irfft(f, n=row.numel())
|
63
|
+
pink_noised.append(pink)
|
64
|
+
|
65
|
+
pink_noised = torch.stack(pink_noised, dim=0).view_as(x)
|
66
|
+
return x + pink_noised * noise_level
|
67
|
+
|
68
|
+
|
69
|
+
def add_clipped_gaussian_noise(x, noise_level=0.025):
|
70
|
+
noise = torch.randn_like(x) * noise_level
|
71
|
+
return torch.clamp(x + noise, 0.0, 1.0)
|
72
|
+
|
73
|
+
|
74
|
+
def add_multiplicative_noise(x, noise_level=0.025):
|
75
|
+
noise = 1 + torch.randn_like(x) * noise_level
|
76
|
+
return x * noise
|
77
|
+
|
78
|
+
|
79
|
+
_VALID_NOISES = [
|
80
|
+
"gaussian",
|
81
|
+
"uniform",
|
82
|
+
"linear",
|
83
|
+
"impulse",
|
84
|
+
"pink",
|
85
|
+
"clipped_gaussian",
|
86
|
+
"multiplicative",
|
87
|
+
]
|
88
|
+
|
89
|
+
_NOISE_MAP = {
|
90
|
+
"gaussian": add_gaussian_noise,
|
91
|
+
"uniform": add_uniform_noise,
|
92
|
+
"linear": add_linear_noise,
|
93
|
+
"impulse": add_impulse_noise,
|
94
|
+
"pink": add_pink_noise,
|
95
|
+
"clipped_gaussian": add_clipped_gaussian_noise,
|
96
|
+
"multiplicative": add_multiplicative_noise,
|
97
|
+
}
|
98
|
+
|
99
|
+
_NOISE_DIM_SUPPORT = {
|
100
|
+
"gaussian": (1, 2),
|
101
|
+
"uniform": (1, 2),
|
102
|
+
"multiplicative": (1, 2, 3),
|
103
|
+
"clipped_gaussian": (1, 2, 3),
|
104
|
+
"linear": (2, 3),
|
105
|
+
"impulse": (2, 3),
|
106
|
+
"pink": (2, 3),
|
107
|
+
}
|
108
|
+
|
109
|
+
|
110
|
+
def apply_noise(
|
111
|
+
x: Tensor,
|
112
|
+
noise_type: str = "gaussian",
|
113
|
+
noise_level: float = 0.01,
|
114
|
+
seed: Optional[int] = None,
|
115
|
+
on_error: Literal["raise", "try_others", "return_unchanged"] = "raise",
|
116
|
+
_last_tries: list[str] = [],
|
117
|
+
):
|
118
|
+
noise_type = noise_type.lower().strip()
|
119
|
+
last_tries = _last_tries
|
120
|
+
|
121
|
+
if noise_type not in _NOISE_MAP:
|
122
|
+
raise ValueError(f"Noise type '{noise_type}' not supported.")
|
123
|
+
|
124
|
+
# Check dimension compatibility
|
125
|
+
allowed_dims = _NOISE_DIM_SUPPORT.get(noise_type, (1, 2))
|
126
|
+
if x.ndim not in allowed_dims:
|
127
|
+
assert (
|
128
|
+
on_error != "raise"
|
129
|
+
), f"Noise '{noise_type}' is not supported for {x.ndim}D input."
|
130
|
+
if on_error == "return_unchanged":
|
131
|
+
return x, None
|
132
|
+
elif on_error == "try_others":
|
133
|
+
remaining = [
|
134
|
+
n
|
135
|
+
for n in _VALID_NOISES
|
136
|
+
if n not in last_tries and x.ndim in _NOISE_DIM_SUPPORT[n]
|
137
|
+
]
|
138
|
+
if not remaining:
|
139
|
+
return x, None
|
140
|
+
new_type = random.choice(remaining)
|
141
|
+
last_tries.append(new_type)
|
142
|
+
return (
|
143
|
+
apply_noise(
|
144
|
+
x, new_type, noise_level, seed, on_error, last_tries.copy()
|
145
|
+
),
|
146
|
+
noise_type,
|
147
|
+
)
|
148
|
+
try:
|
149
|
+
if isinstance(seed, int):
|
150
|
+
set_seed(seed)
|
151
|
+
return _NOISE_MAP[noise_type](x, noise_level), noise_type
|
152
|
+
except Exception as e:
|
153
|
+
if on_error == "raise":
|
154
|
+
raise e
|
155
|
+
elif on_error == "return_unchanged":
|
156
|
+
return x, None
|
157
|
+
if len(last_tries) == len(_VALID_NOISES):
|
158
|
+
return x, None
|
159
|
+
remaining = [n for n in _VALID_NOISES if n not in last_tries]
|
160
|
+
new_type = random.choice(remaining)
|
161
|
+
last_tries.append(new_type)
|
162
|
+
return (
|
163
|
+
apply_noise(x, new_type, noise_level, seed, on_error, last_tries.copy()),
|
164
|
+
noise_type,
|
165
|
+
)
|
166
|
+
|
167
|
+
|
168
|
+
class NoiseSchedulerA(nn.Module):
|
169
|
+
def __init__(self, samples: int = 64):
|
170
|
+
super().__init__()
|
171
|
+
self.base_steps = samples
|
172
|
+
|
173
|
+
def plot_noise_progression(noise_seq: list[Tensor], titles: list[str] = None):
|
174
|
+
import matplotlib.pyplot as plt
|
175
|
+
|
176
|
+
steps = len(noise_seq)
|
177
|
+
plt.figure(figsize=(15, 3))
|
178
|
+
for i, tensor in enumerate(noise_seq):
|
179
|
+
plt.subplot(1, steps, i + 1)
|
180
|
+
plt.imshow(tensor.squeeze().cpu().numpy(), aspect="auto", origin="lower")
|
181
|
+
if titles:
|
182
|
+
plt.title(titles[i])
|
183
|
+
plt.axis("off")
|
184
|
+
plt.tight_layout()
|
185
|
+
plt.show()
|
186
|
+
|
187
|
+
def forward(
|
188
|
+
self,
|
189
|
+
source_item: torch.Tensor,
|
190
|
+
steps: Optional[int] = None,
|
191
|
+
noise_type: Literal[
|
192
|
+
"gaussian",
|
193
|
+
"uniform",
|
194
|
+
"linear",
|
195
|
+
"impulse",
|
196
|
+
"pink",
|
197
|
+
"clipped_gaussian",
|
198
|
+
"multiplicative",
|
199
|
+
] = "gaussian",
|
200
|
+
seed: Optional[int] = None,
|
201
|
+
noise_level: float = 0.01,
|
202
|
+
shuffle_noise_types: bool = False,
|
203
|
+
return_dict: bool = True,
|
204
|
+
):
|
205
|
+
if steps is None:
|
206
|
+
steps = self.base_steps
|
207
|
+
collected = [source_item.detach().clone()]
|
208
|
+
noise_history = []
|
209
|
+
for i in range(steps):
|
210
|
+
if i > 0 and shuffle_noise_types:
|
211
|
+
noise_type = random.choice(_VALID_NOISES)
|
212
|
+
current, noise_name = apply_noise(
|
213
|
+
collected[-1],
|
214
|
+
noise_type,
|
215
|
+
noise_level,
|
216
|
+
seed=seed,
|
217
|
+
on_error="try_others",
|
218
|
+
)
|
219
|
+
noise_history.append(noise_name)
|
220
|
+
collected.append(current)
|
221
|
+
|
222
|
+
if return_dict:
|
223
|
+
return {
|
224
|
+
"steps": collected,
|
225
|
+
"history": noise_history,
|
226
|
+
"final": collected[-1],
|
227
|
+
"init": collected[0],
|
228
|
+
}
|
229
|
+
return collected, noise_history
|
230
|
+
|
231
|
+
|
232
|
+
class NoiseSchedulerB(nn.Module):
|
233
|
+
def __init__(self, timesteps: int = 512):
|
234
|
+
super().__init__()
|
235
|
+
|
236
|
+
betas = torch.linspace(1e-4, 0.02, timesteps)
|
237
|
+
alphas = 1.0 - betas
|
238
|
+
alpha_cumprod = torch.cumprod(alphas, dim=0)
|
239
|
+
|
240
|
+
self.register_buffer("sqrt_alpha_cumprod", torch.sqrt(alpha_cumprod))
|
241
|
+
self.register_buffer(
|
242
|
+
"sqrt_one_minus_alpha_cumprod", torch.sqrt(1.0 - alpha_cumprod)
|
243
|
+
)
|
244
|
+
|
245
|
+
self.timesteps = timesteps
|
246
|
+
self.default_noise = math.sqrt(1.25)
|
247
|
+
|
248
|
+
def _get_random_noise(
|
249
|
+
self,
|
250
|
+
min_max: Tuple[float, float] = (-3, 3),
|
251
|
+
seed: Optional[int] = None,
|
252
|
+
) -> float:
|
253
|
+
if isinstance(seed, int):
|
254
|
+
random.seed(seed)
|
255
|
+
return random.uniform(*min_max)
|
256
|
+
|
257
|
+
def set_noise(
|
258
|
+
self,
|
259
|
+
noise: Optional[Union[Tensor, Number]] = None,
|
260
|
+
seed: Optional[int] = None,
|
261
|
+
min_max: Tuple[float, float] = (-3, 3),
|
262
|
+
default: bool = False,
|
263
|
+
):
|
264
|
+
if noise is not None:
|
265
|
+
self.default_noise = noise
|
266
|
+
else:
|
267
|
+
self.default_noise = (
|
268
|
+
math.sqrt(1.25) if default else self._get_random_noise(min_max, seed)
|
269
|
+
)
|
270
|
+
|
271
|
+
def forward(
|
272
|
+
self, x_0: Tensor, t: int, noise: Optional[Union[Tensor, float]] = None
|
273
|
+
) -> Tensor:
|
274
|
+
apply_noise()
|
275
|
+
assert (
|
276
|
+
0 >= t < self.timesteps
|
277
|
+
), f"Time step t={t} is out of bounds for scheduler with {self.timesteps} steps."
|
278
|
+
|
279
|
+
if noise is None:
|
280
|
+
noise = torch.randn_like(x_0) * self.default_noise
|
281
|
+
|
282
|
+
elif isinstance(noise, (float, int)):
|
283
|
+
noise = torch.randn_like(x_0) * noise
|
284
|
+
|
285
|
+
alpha_term = self.sqrt_alpha_cumprod[t] * x_0
|
286
|
+
noise_term = self.sqrt_one_minus_alpha_cumprod[t] * noise
|
287
|
+
return alpha_term + noise_term
|
288
|
+
|
289
|
+
|
290
|
+
class NoiseSchedulerC(nn.Module):
|
291
|
+
def __init__(self, timesteps: int = 512):
|
292
|
+
super().__init__()
|
293
|
+
|
294
|
+
betas = torch.linspace(1e-4, 0.02, timesteps)
|
295
|
+
alphas = 1.0 - betas
|
296
|
+
alpha_cumprod = torch.cumprod(alphas, dim=0)
|
297
|
+
|
298
|
+
self.register_buffer("sqrt_alpha_cumprod", torch.sqrt(alpha_cumprod))
|
299
|
+
self.register_buffer(
|
300
|
+
"sqrt_one_minus_alpha_cumprod", torch.sqrt(1.0 - alpha_cumprod)
|
301
|
+
)
|
302
|
+
|
303
|
+
self.timesteps = timesteps
|
304
|
+
self.default_noise_strength = math.sqrt(1.25)
|
305
|
+
self.default_noise_type = "gaussian"
|
306
|
+
self.noise_seed = None
|
307
|
+
|
308
|
+
def _get_random_uniform(self, shape, min_val=-1.0, max_val=1.0):
|
309
|
+
return torch.empty(shape).uniform_(min_val, max_val)
|
310
|
+
|
311
|
+
def _get_noise(self, x: Tensor, noise_type: str, noise_level: float) -> Tensor:
|
312
|
+
# Basic noise types
|
313
|
+
if noise_type == "gaussian":
|
314
|
+
return torch.randn_like(x) * noise_level
|
315
|
+
elif noise_type == "uniform":
|
316
|
+
return self._get_random_uniform(x.shape) * noise_level
|
317
|
+
elif noise_type == "multiplicative":
|
318
|
+
return x * (1 + (torch.randn_like(x) * noise_level))
|
319
|
+
elif noise_type == "clipped_gaussian":
|
320
|
+
noise = torch.randn_like(x) * noise_level
|
321
|
+
return noise.clamp(-1.0, 1.0)
|
322
|
+
elif noise_type == "impulse":
|
323
|
+
mask = torch.rand_like(x) < noise_level
|
324
|
+
impulses = torch.randn_like(x) * noise_level
|
325
|
+
return x + impulses * mask
|
326
|
+
else:
|
327
|
+
raise ValueError(f"Unsupported noise type: '{noise_type}'")
|
328
|
+
|
329
|
+
def set_noise(
|
330
|
+
self,
|
331
|
+
noise_strength: Optional[Union[Tensor, float]] = None,
|
332
|
+
noise_type: Optional[str] = None,
|
333
|
+
seed: Optional[int] = None,
|
334
|
+
default: bool = False,
|
335
|
+
):
|
336
|
+
if noise_strength is not None:
|
337
|
+
self.default_noise_strength = noise_strength
|
338
|
+
elif default:
|
339
|
+
self.default_noise_strength = math.sqrt(1.25)
|
340
|
+
|
341
|
+
if noise_type is not None:
|
342
|
+
self.default_noise_type = noise_type.lower().strip()
|
343
|
+
|
344
|
+
if isinstance(seed, int):
|
345
|
+
self.noise_seed = seed
|
346
|
+
torch.manual_seed(seed)
|
347
|
+
random.seed(seed)
|
348
|
+
|
349
|
+
def forward(
|
350
|
+
self,
|
351
|
+
x_0: Tensor,
|
352
|
+
t: int,
|
353
|
+
noise: Optional[Union[Tensor, float]] = None,
|
354
|
+
noise_type: Optional[str] = None,
|
355
|
+
) -> Tensor:
|
356
|
+
assert 0 <= t < self.timesteps, f"t={t} is out of bounds [0, {self.timesteps})"
|
357
|
+
|
358
|
+
noise_type = noise_type or self.default_noise_type
|
359
|
+
noise_level = self.default_noise_strength
|
360
|
+
|
361
|
+
if noise is None:
|
362
|
+
noise = self._get_noise(x_0, noise_type, noise_level)
|
363
|
+
elif isinstance(noise, (float, int)):
|
364
|
+
noise = self._get_noise(x_0, noise_type, noise)
|
365
|
+
|
366
|
+
alpha_term = self.sqrt_alpha_cumprod[t] * x_0
|
367
|
+
noise_term = self.sqrt_one_minus_alpha_cumprod[t] * noise
|
368
|
+
return alpha_term + noise_term
|