lt-tensor 0.0.1a3__py3-none-any.whl → 0.0.1a4__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,8 +1,7 @@
1
1
  __all__ = ["AudioProcessor"]
2
2
  from ..torch_commons import *
3
3
  import torchaudio
4
- from typing import TypeAlias, Union, Optional
5
- from lt_utils.common import PathLike
4
+ from lt_utils.common import *
6
5
  import librosa
7
6
  from lt_utils.type_utils import is_file
8
7
  from torchaudio.functional import resample
@@ -15,18 +14,18 @@ class AudioProcessor:
15
14
  self,
16
15
  sample_rate: int = 24000,
17
16
  n_mels: int = 80,
18
- n_fft: int = 2048,
19
- win_length: int = 2048,
17
+ n_fft: int = 1024,
18
+ win_length: int = 1024,
20
19
  hop_length: int = 256,
21
20
  f_min: float = 0,
22
21
  f_max: float | None = None,
23
- mean: int = -4,
24
- std: int = 4,
25
22
  n_iter: int = 32,
26
23
  center: bool = True,
27
- mel_scale: str = "htk",
24
+ mel_scale: Literal["htk", "slaney"] = "htk",
28
25
  inv_n_fft: int = 16,
29
26
  inv_hop: int = 4,
27
+ std: int = 4,
28
+ mean: int = -4,
30
29
  ):
31
30
  self.mean = mean
32
31
  self.std = std
@@ -51,7 +50,7 @@ class AudioProcessor:
51
50
  )
52
51
  self.mel_rscale = torchaudio.transforms.InverseMelScale(
53
52
  n_stft=self.n_stft,
54
- m_mels=n_mels,
53
+ n_mels=n_mels,
55
54
  sample_rate=sample_rate,
56
55
  f_min=f_min,
57
56
  f_max=f_max,
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: lt-tensor
3
- Version: 0.0.1a3
3
+ Version: 0.0.1a4
4
4
  Summary: General utilities for PyTorch and others. Built for general use.
5
5
  Home-page: https://github.com/gr1336/lt-tensor/
6
6
  Author: gr1336
@@ -7,7 +7,7 @@ lt_tensor/monotonic_align.py,sha256=LhBd8p1xdBzg6jQrQX1j7b4PNeYGwIqM24zcU-pHOLE,
7
7
  lt_tensor/torch_commons.py,sha256=fntsEU8lhBQo0ebonI1iXBkMbWMN3HpBsG13EWlP5s8,718
8
8
  lt_tensor/transform.py,sha256=IVAaQlq12OvMVhX3lX4lgsTCJYJce5n5MtMy7IK_AU4,8892
9
9
  lt_tensor/datasets/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
10
- lt_tensor/datasets/audio.py,sha256=5Bn9Apb3K5QnRah2EfhztcatBRsnpQsdItm_jTaDrUs,3350
10
+ lt_tensor/datasets/audio.py,sha256=BZTceP9MlmyrVioHpWLkd_ZcyawYYZUAlVWKfKwyWAg,3318
11
11
  lt_tensor/model_zoo/__init__.py,sha256=jipEk50_DTMQbGg8FnDDukxmh7Bcwvl_QVRS3rkb7aY,283
12
12
  lt_tensor/model_zoo/bsc.py,sha256=muxIR7dU-Pvf-HFE-iy3zmRb1sTJlcs1vqdlnbU1Hss,6307
13
13
  lt_tensor/model_zoo/disc.py,sha256=ND6JR_x6b2Y1VqxZejalv8Cz5_TO3H_Z-0x6UnACbBM,4740
@@ -17,8 +17,8 @@ lt_tensor/model_zoo/istft.py,sha256=RV7KVY7q4CYzzsWXH4NGJQwSqrYWwHh-16Q62lKoA2k,
17
17
  lt_tensor/model_zoo/pos.py,sha256=N28v-rF8CELouYxQ9r45Jbd4ri5DNydwDgg7nzmQ4Ig,4471
18
18
  lt_tensor/model_zoo/rsd.py,sha256=5bba50g1Hm5kMexuJ4SwOIJuyQ1qJd8Acrq-Ax6CqE8,6958
19
19
  lt_tensor/model_zoo/tfrms.py,sha256=kauh-A13pk08SZ5OspEE5a-gPKD4rZr6tqMKWu3KGhk,4237
20
- lt_tensor-0.0.1a3.dist-info/licenses/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
21
- lt_tensor-0.0.1a3.dist-info/METADATA,sha256=T5Gya3J6YebHzwR0gyvJ8lr5Rj9EJWtLSoo7--CSado,968
22
- lt_tensor-0.0.1a3.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
23
- lt_tensor-0.0.1a3.dist-info/top_level.txt,sha256=35FuhFeXnUyvHWdbVHGPh0hS8euofafnJ_GJAVSF4Kk,10
24
- lt_tensor-0.0.1a3.dist-info/RECORD,,
20
+ lt_tensor-0.0.1a4.dist-info/licenses/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
21
+ lt_tensor-0.0.1a4.dist-info/METADATA,sha256=sbT9xduzE-huVvSjnak9iCo1Eyp45bsMUarc16oTD3o,968
22
+ lt_tensor-0.0.1a4.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
23
+ lt_tensor-0.0.1a4.dist-info/top_level.txt,sha256=35FuhFeXnUyvHWdbVHGPh0hS8euofafnJ_GJAVSF4Kk,10
24
+ lt_tensor-0.0.1a4.dist-info/RECORD,,