lt-tensor 0.0.1a35__py3-none-any.whl → 0.0.1a37__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- lt_tensor/__init__.py +1 -1
- lt_tensor/model_zoo/audio_models/bigvgan/__init__.py +10 -10
- lt_tensor/model_zoo/audio_models/hifigan/__init__.py +6 -10
- lt_tensor/model_zoo/losses/CQT/__init__.py +0 -0
- lt_tensor/model_zoo/losses/CQT/transforms.py +336 -0
- lt_tensor/model_zoo/losses/CQT/utils.py +519 -0
- lt_tensor/model_zoo/losses/discriminators.py +232 -0
- lt_tensor/processors/audio.py +275 -123
- {lt_tensor-0.0.1a35.dist-info → lt_tensor-0.0.1a37.dist-info}/METADATA +2 -2
- {lt_tensor-0.0.1a35.dist-info → lt_tensor-0.0.1a37.dist-info}/RECORD +13 -10
- {lt_tensor-0.0.1a35.dist-info → lt_tensor-0.0.1a37.dist-info}/WHEEL +0 -0
- {lt_tensor-0.0.1a35.dist-info → lt_tensor-0.0.1a37.dist-info}/licenses/LICENSE +0 -0
- {lt_tensor-0.0.1a35.dist-info → lt_tensor-0.0.1a37.dist-info}/top_level.txt +0 -0
@@ -726,3 +726,235 @@ class MultiResolutionDiscriminator(_MultiDiscriminatorT):
|
|
726
726
|
y_d_gs.append(y_d_g)
|
727
727
|
fmap_gs.append(fmap_g)
|
728
728
|
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
729
|
+
|
730
|
+
|
731
|
+
class DiscriminatorCQT(ConvNets):
|
732
|
+
"""Adapted from https://github.com/open-mmlab/Amphion/blob/main/models/vocoders/gan/discriminator/mssbcqtd.py under the MIT license."""
|
733
|
+
|
734
|
+
def __init__(
|
735
|
+
self,
|
736
|
+
hop_length: int,
|
737
|
+
n_octaves: int,
|
738
|
+
bins_per_octave: int,
|
739
|
+
sampling_rate: int,
|
740
|
+
cqtd_filters: int = 128,
|
741
|
+
cqtd_max_filters: int = 1024,
|
742
|
+
cqtd_filters_scale: int = 1,
|
743
|
+
cqtd_dilations: list = [1, 2, 4],
|
744
|
+
cqtd_in_channels: int = 1,
|
745
|
+
cqtd_out_channels: int = 1,
|
746
|
+
cqtd_normalize_volume: bool = False,
|
747
|
+
):
|
748
|
+
super().__init__()
|
749
|
+
self.filters = cqtd_filters
|
750
|
+
self.max_filters = cqtd_max_filters
|
751
|
+
self.filters_scale = cqtd_filters_scale
|
752
|
+
self.kernel_size = (3, 9)
|
753
|
+
self.dilations = cqtd_dilations
|
754
|
+
self.stride = (1, 2)
|
755
|
+
|
756
|
+
self.fs = sampling_rate
|
757
|
+
self.in_channels = cqtd_in_channels
|
758
|
+
self.out_channels = cqtd_out_channels
|
759
|
+
self.hop_length = hop_length
|
760
|
+
self.n_octaves = n_octaves
|
761
|
+
self.bins_per_octave = bins_per_octave
|
762
|
+
|
763
|
+
# Lazy-load
|
764
|
+
from lt_tensor.model_zoo.losses.CQT.transforms import CQT2010v2
|
765
|
+
|
766
|
+
self.cqt_transform = CQT2010v2(
|
767
|
+
sr=self.fs * 2,
|
768
|
+
hop_length=self.hop_length,
|
769
|
+
n_bins=self.bins_per_octave * self.n_octaves,
|
770
|
+
bins_per_octave=self.bins_per_octave,
|
771
|
+
output_format="Complex",
|
772
|
+
pad_mode="constant",
|
773
|
+
)
|
774
|
+
|
775
|
+
self.conv_pres = nn.ModuleList()
|
776
|
+
for _ in range(self.n_octaves):
|
777
|
+
self.conv_pres.append(
|
778
|
+
nn.Conv2d(
|
779
|
+
self.in_channels * 2,
|
780
|
+
self.in_channels * 2,
|
781
|
+
kernel_size=self.kernel_size,
|
782
|
+
padding=self.get_2d_padding(self.kernel_size),
|
783
|
+
)
|
784
|
+
)
|
785
|
+
|
786
|
+
self.convs = nn.ModuleList()
|
787
|
+
|
788
|
+
self.convs.append(
|
789
|
+
nn.Conv2d(
|
790
|
+
self.in_channels * 2,
|
791
|
+
self.filters,
|
792
|
+
kernel_size=self.kernel_size,
|
793
|
+
padding=self.get_2d_padding(self.kernel_size),
|
794
|
+
)
|
795
|
+
)
|
796
|
+
|
797
|
+
in_chs = min(self.filters_scale * self.filters, self.max_filters)
|
798
|
+
for i, dilation in enumerate(self.dilations):
|
799
|
+
out_chs = min(
|
800
|
+
(self.filters_scale ** (i + 1)) * self.filters, self.max_filters
|
801
|
+
)
|
802
|
+
self.convs.append(
|
803
|
+
weight_norm(
|
804
|
+
nn.Conv2d(
|
805
|
+
in_chs,
|
806
|
+
out_chs,
|
807
|
+
kernel_size=self.kernel_size,
|
808
|
+
stride=self.stride,
|
809
|
+
dilation=(dilation, 1),
|
810
|
+
padding=self.get_2d_padding(self.kernel_size, (dilation, 1)),
|
811
|
+
)
|
812
|
+
)
|
813
|
+
)
|
814
|
+
in_chs = out_chs
|
815
|
+
out_chs = min(
|
816
|
+
(self.filters_scale ** (len(self.dilations) + 1)) * self.filters,
|
817
|
+
self.max_filters,
|
818
|
+
)
|
819
|
+
self.convs.append(
|
820
|
+
weight_norm(
|
821
|
+
nn.Conv2d(
|
822
|
+
in_chs,
|
823
|
+
out_chs,
|
824
|
+
kernel_size=(self.kernel_size[0], self.kernel_size[0]),
|
825
|
+
padding=self.get_2d_padding(
|
826
|
+
(self.kernel_size[0], self.kernel_size[0])
|
827
|
+
),
|
828
|
+
)
|
829
|
+
)
|
830
|
+
)
|
831
|
+
|
832
|
+
self.conv_post = weight_norm(
|
833
|
+
nn.Conv2d(
|
834
|
+
out_chs,
|
835
|
+
self.out_channels,
|
836
|
+
kernel_size=(self.kernel_size[0], self.kernel_size[0]),
|
837
|
+
padding=self.get_2d_padding((self.kernel_size[0], self.kernel_size[0])),
|
838
|
+
)
|
839
|
+
)
|
840
|
+
|
841
|
+
self.activation = torch.nn.LeakyReLU(negative_slope=0.1)
|
842
|
+
self.resample = T.Resample(orig_freq=self.fs, new_freq=self.fs * 2)
|
843
|
+
|
844
|
+
self.cqtd_normalize_volume = cqtd_normalize_volume
|
845
|
+
if self.cqtd_normalize_volume:
|
846
|
+
print(
|
847
|
+
f"[INFO] cqtd_normalize_volume set to True. Will apply DC offset removal & peak volume normalization in CQTD!"
|
848
|
+
)
|
849
|
+
|
850
|
+
def get_2d_padding(
|
851
|
+
self,
|
852
|
+
kernel_size: Tuple[int, int],
|
853
|
+
dilation: Tuple[int, int] = (1, 1),
|
854
|
+
):
|
855
|
+
return (
|
856
|
+
((kernel_size[0] - 1) * dilation[0]) // 2,
|
857
|
+
((kernel_size[1] - 1) * dilation[1]) // 2,
|
858
|
+
)
|
859
|
+
|
860
|
+
def forward(self, x: torch.tensor) -> Tuple[torch.Tensor, List[torch.Tensor]]:
|
861
|
+
fmap = []
|
862
|
+
|
863
|
+
if self.cqtd_normalize_volume:
|
864
|
+
# Remove DC offset
|
865
|
+
x = x - x.mean(dim=-1, keepdims=True)
|
866
|
+
# Peak normalize the volume of input audio
|
867
|
+
x = 0.8 * x / (x.abs().max(dim=-1, keepdim=True)[0] + 1e-9)
|
868
|
+
|
869
|
+
x = self.resample(x)
|
870
|
+
|
871
|
+
z = self.cqt_transform(x)
|
872
|
+
|
873
|
+
z_amplitude = z[:, :, :, 0].unsqueeze(1)
|
874
|
+
z_phase = z[:, :, :, 1].unsqueeze(1)
|
875
|
+
|
876
|
+
z = torch.cat([z_amplitude, z_phase], dim=1)
|
877
|
+
z = torch.permute(z, (0, 1, 3, 2)) # [B, C, W, T] -> [B, C, T, W]
|
878
|
+
|
879
|
+
latent_z = []
|
880
|
+
for i in range(self.n_octaves):
|
881
|
+
latent_z.append(
|
882
|
+
self.conv_pres[i](
|
883
|
+
z[
|
884
|
+
:,
|
885
|
+
:,
|
886
|
+
:,
|
887
|
+
i * self.bins_per_octave : (i + 1) * self.bins_per_octave,
|
888
|
+
]
|
889
|
+
)
|
890
|
+
)
|
891
|
+
latent_z = torch.cat(latent_z, dim=-1)
|
892
|
+
|
893
|
+
for i, l in enumerate(self.convs):
|
894
|
+
latent_z = l(latent_z)
|
895
|
+
|
896
|
+
latent_z = self.activation(latent_z)
|
897
|
+
fmap.append(latent_z)
|
898
|
+
|
899
|
+
latent_z = self.conv_post(latent_z)
|
900
|
+
|
901
|
+
return latent_z, fmap
|
902
|
+
|
903
|
+
|
904
|
+
class MultiScaleSubbandCQTDiscriminator(_MultiDiscriminatorT):
|
905
|
+
def __init__(
|
906
|
+
self,
|
907
|
+
sampling_rate: int,
|
908
|
+
cqtd_filters: int = 128,
|
909
|
+
cqtd_max_filters: int = 1024,
|
910
|
+
cqtd_filters_scale: Number = 1,
|
911
|
+
cqtd_dilations: list = [1, 2, 4],
|
912
|
+
cqtd_hop_lengths: list = [512, 256, 256],
|
913
|
+
cqtd_n_octaves: list = [9, 9, 9],
|
914
|
+
cqtd_bins_per_octaves: list = [24, 36, 48],
|
915
|
+
cqtd_in_channels: int = 1,
|
916
|
+
cqtd_out_channels: int = 1,
|
917
|
+
cqtd_normalize_volume: bool = False,
|
918
|
+
):
|
919
|
+
super().__init__()
|
920
|
+
|
921
|
+
self.discriminators = nn.ModuleList(
|
922
|
+
[
|
923
|
+
DiscriminatorCQT(
|
924
|
+
hop_length=cqtd_hop_lengths[i],
|
925
|
+
n_octaves=cqtd_n_octaves[i],
|
926
|
+
bins_per_octave=cqtd_bins_per_octaves[i],
|
927
|
+
sampling_rate=sampling_rate,
|
928
|
+
cqtd_filters=cqtd_filters,
|
929
|
+
cqtd_max_filters=cqtd_max_filters,
|
930
|
+
cqtd_filters_scale=cqtd_filters_scale,
|
931
|
+
cqtd_dilations=cqtd_dilations,
|
932
|
+
cqtd_in_channels=cqtd_in_channels,
|
933
|
+
cqtd_out_channels=cqtd_out_channels,
|
934
|
+
cqtd_normalize_volume=cqtd_normalize_volume,
|
935
|
+
)
|
936
|
+
for i in range(len(cqtd_hop_lengths))
|
937
|
+
]
|
938
|
+
)
|
939
|
+
|
940
|
+
def forward(self, y: torch.Tensor, y_hat: torch.Tensor) -> Tuple[
|
941
|
+
List[torch.Tensor],
|
942
|
+
List[torch.Tensor],
|
943
|
+
List[List[torch.Tensor]],
|
944
|
+
List[List[torch.Tensor]],
|
945
|
+
]:
|
946
|
+
|
947
|
+
y_d_rs = []
|
948
|
+
y_d_gs = []
|
949
|
+
fmap_rs = []
|
950
|
+
fmap_gs = []
|
951
|
+
|
952
|
+
for disc in self.discriminators:
|
953
|
+
y_d_r, fmap_r = disc(y)
|
954
|
+
y_d_g, fmap_g = disc(y_hat)
|
955
|
+
y_d_rs.append(y_d_r)
|
956
|
+
fmap_rs.append(fmap_r)
|
957
|
+
y_d_gs.append(y_d_g)
|
958
|
+
fmap_gs.append(fmap_g)
|
959
|
+
|
960
|
+
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|