lt-tensor 0.0.1a34__py3-none-any.whl → 0.0.1a36__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (28) hide show
  1. lt_tensor/__init__.py +1 -1
  2. lt_tensor/losses.py +11 -7
  3. lt_tensor/lr_schedulers.py +147 -21
  4. lt_tensor/misc_utils.py +35 -42
  5. lt_tensor/model_zoo/activations/__init__.py +3 -0
  6. lt_tensor/model_zoo/activations/alias_free/__init__.py +3 -0
  7. lt_tensor/model_zoo/activations/{alias_free_torch → alias_free}/act.py +8 -6
  8. lt_tensor/model_zoo/activations/snake/__init__.py +41 -43
  9. lt_tensor/model_zoo/audio_models/__init__.py +2 -2
  10. lt_tensor/model_zoo/audio_models/bigvgan/__init__.py +243 -0
  11. lt_tensor/model_zoo/audio_models/hifigan/__init__.py +22 -357
  12. lt_tensor/model_zoo/audio_models/istft/__init__.py +14 -349
  13. lt_tensor/model_zoo/audio_models/resblocks.py +248 -0
  14. lt_tensor/model_zoo/convs.py +21 -32
  15. lt_tensor/model_zoo/losses/CQT/__init__.py +0 -0
  16. lt_tensor/model_zoo/losses/CQT/transforms.py +336 -0
  17. lt_tensor/model_zoo/losses/CQT/utils.py +519 -0
  18. lt_tensor/model_zoo/losses/discriminators.py +375 -37
  19. lt_tensor/processors/audio.py +67 -57
  20. {lt_tensor-0.0.1a34.dist-info → lt_tensor-0.0.1a36.dist-info}/METADATA +1 -1
  21. lt_tensor-0.0.1a36.dist-info/RECORD +43 -0
  22. lt_tensor/model_zoo/activations/alias_free_torch/__init__.py +0 -1
  23. lt_tensor-0.0.1a34.dist-info/RECORD +0 -37
  24. /lt_tensor/model_zoo/activations/{alias_free_torch → alias_free}/filter.py +0 -0
  25. /lt_tensor/model_zoo/activations/{alias_free_torch → alias_free}/resample.py +0 -0
  26. {lt_tensor-0.0.1a34.dist-info → lt_tensor-0.0.1a36.dist-info}/WHEEL +0 -0
  27. {lt_tensor-0.0.1a34.dist-info → lt_tensor-0.0.1a36.dist-info}/licenses/LICENSE +0 -0
  28. {lt_tensor-0.0.1a34.dist-info → lt_tensor-0.0.1a36.dist-info}/top_level.txt +0 -0
@@ -73,7 +73,7 @@ class AudioProcessorConfig(ModelConfig):
73
73
  def post_process(self):
74
74
  self.n_stft = self.n_fft // 2 + 1
75
75
  # some functions needs this to be a non-zero or not None value.
76
- self.f_min = max(self.f_min, (self.sample_rate / (self.n_fft - 1)) * 2)
76
+ self.f_min = max(self.f_min, (self.sample_rate / (self.n_fft - 1)) * 2)
77
77
  self.default_f_max = min(
78
78
  default(self.f_max, self.sample_rate // 2), self.sample_rate // 2
79
79
  )
@@ -105,7 +105,6 @@ class AudioProcessor(Model):
105
105
  f_min=self.cfg.f_min,
106
106
  f_max=self.cfg.f_max,
107
107
  mel_scale=self.cfg.mel_scale,
108
- onesided=self.cfg.onesided,
109
108
  normalized=self.cfg.normalized,
110
109
  )
111
110
  self._mel_rscale = torchaudio.transforms.InverseMelScale(
@@ -122,17 +121,15 @@ class AudioProcessor(Model):
122
121
  (torch.hann_window(self.cfg.win_length) if window is None else window),
123
122
  )
124
123
 
125
-
126
-
127
124
  def compute_mel(
128
125
  self,
129
126
  wave: Tensor,
130
- raw_mel_only: bool = False,
131
127
  eps: float = 1e-5,
128
+ raw_mel_only: bool = False,
132
129
  *,
133
130
  _recall: bool = False,
134
131
  ) -> Tensor:
135
- """Returns: [B, M, T]"""
132
+ """Returns: (M, T) or (B, M, T) if batched"""
136
133
  try:
137
134
  mel_tensor = self._mel_spec(wave.to(self.device)) # [M, T]
138
135
  if not raw_mel_only:
@@ -203,13 +200,16 @@ class AudioProcessor(Model):
203
200
  rms_ = []
204
201
  for i in range(B):
205
202
  _t = _comp_rms_helper(i, audio, mel)
206
- _r = librosa.feature.rms(**_t, **rms_kwargs)[
207
- 0
208
- ]
203
+ _r = librosa.feature.rms(**_t, **rms_kwargs)[0]
209
204
  rms_.append(_r)
210
205
  return self.from_numpy_batch(rms_, default_device, default_dtype).squeeze()
211
206
 
212
- def pitch_shift(self, audio: torch.Tensor, sample_rate: Optional[int] = None, n_steps: float = 2.0):
207
+ def pitch_shift(
208
+ self,
209
+ audio: torch.Tensor,
210
+ sample_rate: Optional[int] = None,
211
+ n_steps: float = 2.0,
212
+ ):
213
213
  """
214
214
  Shifts the pitch of an audio tensor by `n_steps` semitones.
215
215
 
@@ -225,21 +225,25 @@ class AudioProcessor(Model):
225
225
  src_dtype = audio.dtype
226
226
  audio = audio.squeeze()
227
227
  sample_rate = default(sample_rate, self.cfg.sample_rate)
228
+
228
229
  def _shift_one(wav):
229
230
  wav_np = self.to_numpy_safe(wav)
230
- shifted_np = librosa.effects.pitch_shift(wav_np, sr=sample_rate, n_steps=n_steps)
231
+ shifted_np = librosa.effects.pitch_shift(
232
+ wav_np, sr=sample_rate, n_steps=n_steps
233
+ )
231
234
  return torch.from_numpy(shifted_np)
232
235
 
233
236
  if audio.ndim == 1:
234
237
  return _shift_one(audio).to(device=src_device, dtype=src_dtype)
235
- return torch.stack([_shift_one(a) for a in audio]).to(device=src_device, dtype=src_dtype)
236
-
238
+ return torch.stack([_shift_one(a) for a in audio]).to(
239
+ device=src_device, dtype=src_dtype
240
+ )
237
241
 
238
242
  @staticmethod
239
- def calc_pitch_fmin(sr:int, frame_length:float):
243
+ def calc_pitch_fmin(sr: int, frame_length: float):
240
244
  """For pitch f_min"""
241
245
  return (sr / (frame_length - 1)) * 2
242
-
246
+
243
247
  def compute_pitch(
244
248
  self,
245
249
  audio: Tensor,
@@ -261,8 +265,10 @@ class AudioProcessor(Model):
261
265
  B = 1
262
266
  sr = default(sr, self.cfg.sample_rate)
263
267
  frame_length = default(frame_length, self.cfg.n_fft)
264
- fmin = max(default(fmin, self.cfg.f_min), self.calc_pitch_fmin(sr, frame_length))
265
- fmax = min(max(default(fmax, self.cfg.default_f_max), fmin+1), sr // 2)
268
+ fmin = max(
269
+ default(fmin, self.cfg.f_min), self.calc_pitch_fmin(sr, frame_length)
270
+ )
271
+ fmax = min(max(default(fmax, self.cfg.default_f_max), fmin + 1), sr // 2)
266
272
  hop_length = default(hop_length, self.cfg.hop_length)
267
273
  center = default(center, self.cfg.center)
268
274
  yn_kwargs = dict(
@@ -361,7 +367,7 @@ class AudioProcessor(Model):
361
367
  The modes available for upsampling are: `nearest`, `linear` (3D-only),
362
368
  `bilinear`, `bicubic` (4D-only), `trilinear` (5D-only)
363
369
  """
364
-
370
+ tensor = tensor.squeeze()
365
371
  if tensor.ndim == 2: # [1, T]
366
372
  tensor = tensor.unsqueeze(1) # [1, 1, T]
367
373
  elif tensor.ndim == 1:
@@ -384,7 +390,7 @@ class AudioProcessor(Model):
384
390
  hop_length: Optional[int] = None,
385
391
  win_length: Optional[int] = None,
386
392
  length: Optional[int] = None,
387
- center: Optional[bool] = None,
393
+ center: bool = True,
388
394
  normalized: Optional[bool] = None,
389
395
  onesided: Optional[bool] = None,
390
396
  return_complex: bool = False,
@@ -403,7 +409,7 @@ class AudioProcessor(Model):
403
409
  hop_length=default(hop_length, self.cfg.hop_length),
404
410
  win_length=default(win_length, self.cfg.win_length),
405
411
  window=window,
406
- center=default(center, self.cfg.center),
412
+ center=center,
407
413
  normalized=default(normalized, self.cfg.normalized),
408
414
  onesided=default(onesided, self.cfg.onesided),
409
415
  length=length,
@@ -421,44 +427,48 @@ class AudioProcessor(Model):
421
427
  self,
422
428
  wave: Tensor,
423
429
  length: Optional[int] = None,
424
- *,
425
- _recall: bool = False,
430
+ center: bool = True,
431
+ n_fft: Optional[int] = None,
432
+ hop_length: Optional[int] = None,
433
+ win_length: Optional[int] = None,
434
+ normalized: Optional[bool] = None,
435
+ onesided: Optional[bool] = None,
436
+ return_complex: bool = False,
426
437
  ):
427
- try:
428
- spectrogram = torch.stft(
429
- input=wave,
430
- n_fft=self.cfg.n_fft,
431
- hop_length=self.cfg.hop_length,
432
- win_length=self.cfg.win_length,
433
- window=self.window,
434
- center=self.cfg.center,
435
- pad_mode="reflect",
436
- normalized=self.cfg.normalized,
437
- onesided=self.cfg.onesided,
438
- return_complex=True,
439
- )
440
- return torch.istft(
441
- spectrogram
442
- * torch.full(
443
- spectrogram.size(),
444
- fill_value=1,
445
- device=spectrogram.device,
446
- ),
447
- n_fft=self.cfg.n_fft,
448
- hop_length=self.cfg.hop_length,
449
- win_length=self.cfg.win_length,
450
- window=self.window,
451
- length=length,
452
- center=self.cfg.center,
453
- normalized=self.cfg.normalized,
454
- onesided=self.cfg.onesided,
455
- return_complex=False,
456
- )
457
- except RuntimeError as e:
458
- if not _recall and wave.device != self.window.device:
459
- self.window = self.window.to(wave.device)
460
- return self.istft_norm(wave, length, _recall=True)
461
- raise e
438
+
439
+ if win_length is not None and win_length != self.cfg.win_length:
440
+ window = torch.hann_window(win_length, device=wave.device)
441
+ else:
442
+ window = self.window
443
+ spectrogram = torch.stft(
444
+ input=wave,
445
+ n_fft=default(n_fft, self.cfg.n_fft),
446
+ hop_length=default(hop_length, self.cfg.hop_length),
447
+ win_length=default(win_length, self.cfg.win_length),
448
+ window=window,
449
+ center=center,
450
+ pad_mode="reflect",
451
+ normalized=default(normalized, self.cfg.normalized),
452
+ onesided=default(onesided, self.cfg.onesided),
453
+ return_complex=True,
454
+ )
455
+ return torch.istft(
456
+ spectrogram
457
+ * torch.full(
458
+ spectrogram.size(),
459
+ fill_value=1,
460
+ device=spectrogram.device,
461
+ ),
462
+ n_fft=default(n_fft, self.cfg.n_fft),
463
+ hop_length=default(hop_length, self.cfg.hop_length),
464
+ win_length=default(win_length, self.cfg.win_length),
465
+ window=self.window,
466
+ length=length,
467
+ center=center,
468
+ normalized=default(normalized, self.cfg.normalized),
469
+ onesided=default(onesided, self.cfg.onesided),
470
+ return_complex=return_complex,
471
+ )
462
472
 
463
473
  def load_audio(
464
474
  self,
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: lt-tensor
3
- Version: 0.0.1a34
3
+ Version: 0.0.1a36
4
4
  Summary: General utilities for PyTorch and others. Built for general use.
5
5
  Home-page: https://github.com/gr1336/lt-tensor/
6
6
  Author: gr1336
@@ -0,0 +1,43 @@
1
+ lt_tensor/__init__.py,sha256=nBbiGH1byHU0aTTKKorRj8MIEO2oEMBXl7kt5DOCatU,441
2
+ lt_tensor/config_templates.py,sha256=F9UvL8paAjkSvio890kp8WznpYeI50pYnm9iqQroBxk,2797
3
+ lt_tensor/losses.py,sha256=Heco_WyoC1HkNkcJEircOAzS9umusATHiNAG-FKGyzc,8918
4
+ lt_tensor/lr_schedulers.py,sha256=6_vcfaPHrozfH3wvmNEdKSFYl6iTIijYoHL8vuG-45U,7651
5
+ lt_tensor/math_ops.py,sha256=ahX6Z1Mt3X-FhmwSZYZea5mB1B0S8GDuvKPfAm5e_FQ,2646
6
+ lt_tensor/misc_utils.py,sha256=stL6q3M7S2N4FBICFYbgYpdPDrJRlwmr24-iCXMRifM,28933
7
+ lt_tensor/model_base.py,sha256=5T4dbAh4MXbQmPRpihGtMYwTY8sJTQOhY6An3VboM58,18086
8
+ lt_tensor/monotonic_align.py,sha256=LhBd8p1xdBzg6jQrQX1j7b4PNeYGwIqM24zcU-pHOLE,2239
9
+ lt_tensor/noise_tools.py,sha256=wFeAsHhLhSlEc5XU5LbFKaXoHeVxrWjiMeljjGdIKyM,11363
10
+ lt_tensor/torch_commons.py,sha256=8l0bxmrAzwvyqjivCIVISXlbvKarlg4DdE0BOGSnMuQ,812
11
+ lt_tensor/transform.py,sha256=dZm8T_ov0blHMQu6nGiehsdG1VSB7bZBUVmTkT-PBdc,13257
12
+ lt_tensor/model_zoo/__init__.py,sha256=yPUVchgVhU2nAJ2ocA4HFfG7IMEiBu8qOi8I1KWTTkU,404
13
+ lt_tensor/model_zoo/basic.py,sha256=pI8HyiHK-cmWcEEaVY_EduUJOjZW6HOtXvJd8Rbhq30,15452
14
+ lt_tensor/model_zoo/convs.py,sha256=Tws0jrPfs9m7OLmJ30W0AfkAvZgppW7lNi4xt0e-qRU,3518
15
+ lt_tensor/model_zoo/features.py,sha256=DO8dlE0kmPKTNC1Xkv9wKegOOYkQa_rkxM4hhcNwJWA,15655
16
+ lt_tensor/model_zoo/fusion.py,sha256=usC1bcjQRNivDc8xzkIS5T1glm78OLcs2V_tPqfp-eI,5422
17
+ lt_tensor/model_zoo/pos_encoder.py,sha256=3d1EYLinCU9UAy-WuEWeYMGhMqaGknCiQ5qEmhw_UYM,4487
18
+ lt_tensor/model_zoo/residual.py,sha256=tMXgif9Ggep9bk75K93yueeU5vk5S25AGCRFwOQOyB8,6452
19
+ lt_tensor/model_zoo/transformer.py,sha256=HUFoFFh7EQJErxdd9XIxhssdjvNVx2tNGDJOTUfwG2A,4301
20
+ lt_tensor/model_zoo/activations/__init__.py,sha256=f_IsuC-SaFsX6w4OtBWa5bbS4TqR90X-cvLxGUgYfjk,67
21
+ lt_tensor/model_zoo/activations/alias_free/__init__.py,sha256=dgLjatRm9nusoPVOl1pvCef5rZsaRfS3BJUs05SPYzw,64
22
+ lt_tensor/model_zoo/activations/alias_free/act.py,sha256=1wxmab2kMD88L6wsQgf3t25dBwR7_he2eM1DlV0FQak,1424
23
+ lt_tensor/model_zoo/activations/alias_free/filter.py,sha256=5TvXESv31toD5sePBe_OUJJfMXv6Ohwmx2YawjQL-pk,6004
24
+ lt_tensor/model_zoo/activations/alias_free/resample.py,sha256=3iM4fNr9fLNXXMyXvzW-MwkSjOZOrMZLfS80UHs6zk0,3386
25
+ lt_tensor/model_zoo/activations/snake/__init__.py,sha256=AtOAbJuMinxmKkppITGMzRbcbPQaALnl9mCtl1c3x0Q,4356
26
+ lt_tensor/model_zoo/audio_models/__init__.py,sha256=WwiP9MekJreMOfKPWLl24VkRJIpLk6hhL8ch0aKgOss,103
27
+ lt_tensor/model_zoo/audio_models/resblocks.py,sha256=u-foHxaFDUICjxSkpyHXljQYQG9zMxVYaOGqLR_nJ-k,7978
28
+ lt_tensor/model_zoo/audio_models/bigvgan/__init__.py,sha256=4EZG8Non75dHoDCizMHbMTvPrKwdUlPYGHc7hkfT_nw,8526
29
+ lt_tensor/model_zoo/audio_models/diffwave/__init__.py,sha256=PDuDYN1omD1RoAXcmxH3tEgfAuM3ZHAWzimD6ElMqEQ,9073
30
+ lt_tensor/model_zoo/audio_models/hifigan/__init__.py,sha256=ITSXHg3c0Um1P2HaPaXkQKI7meG5Ne60wTbyyYju3hY,6360
31
+ lt_tensor/model_zoo/audio_models/istft/__init__.py,sha256=blICjLX_z_IFmR3_TCz_dJiSayLYGza9eG6fd9aKyvE,7448
32
+ lt_tensor/model_zoo/losses/__init__.py,sha256=B9RAUxBiOZwooztnij1oLeRwZ7_MjnN3mPoum7saD6s,59
33
+ lt_tensor/model_zoo/losses/discriminators.py,sha256=o4cicNdOv0jH3ink7jTNeDqOnwmkmRtEj9E7IUIGnEI,31866
34
+ lt_tensor/model_zoo/losses/CQT/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
35
+ lt_tensor/model_zoo/losses/CQT/transforms.py,sha256=Vkid0J9dqLnlINfyyUlQf-qB3gOQAgU7W9j7xLOjDFw,13218
36
+ lt_tensor/model_zoo/losses/CQT/utils.py,sha256=twGw6FVD7V5Ksfx_1BUEN3EP1tAS6wo-9LL3VnuHB8c,16751
37
+ lt_tensor/processors/__init__.py,sha256=Pvxhh0KR65zLCgUd53_k5Z0y5JWWcO0ZBXFK9rv0o5w,109
38
+ lt_tensor/processors/audio.py,sha256=3YzyEpMwh124rb1KMAly62qweeruF200BnM-vQIbzy0,18645
39
+ lt_tensor-0.0.1a36.dist-info/licenses/LICENSE,sha256=TbiyJWLgNqqgqhfCnrGwFIxy7EqGNrIZZcKhHrefcuU,11354
40
+ lt_tensor-0.0.1a36.dist-info/METADATA,sha256=mTmnoWn8EG48j_VOM3rr_8RLLgaxB5pWZE1tkPdFrac,1062
41
+ lt_tensor-0.0.1a36.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
42
+ lt_tensor-0.0.1a36.dist-info/top_level.txt,sha256=35FuhFeXnUyvHWdbVHGPh0hS8euofafnJ_GJAVSF4Kk,10
43
+ lt_tensor-0.0.1a36.dist-info/RECORD,,
@@ -1 +0,0 @@
1
- from . import *
@@ -1,37 +0,0 @@
1
- lt_tensor/__init__.py,sha256=WAGPuMPq5c4DGAJ57x1Ykgzg3vMlLq9BiWk5EdJcUsU,441
2
- lt_tensor/config_templates.py,sha256=F9UvL8paAjkSvio890kp8WznpYeI50pYnm9iqQroBxk,2797
3
- lt_tensor/losses.py,sha256=fHVMqOFo3ekjORYy89R_aRjmtT6lo27Z1egzOYjQ1W8,8646
4
- lt_tensor/lr_schedulers.py,sha256=LSZzqrOOLzSthD8k-W4cYPJt0vCjmHkiJkLr5e3yRTE,3659
5
- lt_tensor/math_ops.py,sha256=ahX6Z1Mt3X-FhmwSZYZea5mB1B0S8GDuvKPfAm5e_FQ,2646
6
- lt_tensor/misc_utils.py,sha256=N2r3UmxC4RM2BZBQhpjDZ_BKLrzsyIlKzopTzJbnjFU,28962
7
- lt_tensor/model_base.py,sha256=5T4dbAh4MXbQmPRpihGtMYwTY8sJTQOhY6An3VboM58,18086
8
- lt_tensor/monotonic_align.py,sha256=LhBd8p1xdBzg6jQrQX1j7b4PNeYGwIqM24zcU-pHOLE,2239
9
- lt_tensor/noise_tools.py,sha256=wFeAsHhLhSlEc5XU5LbFKaXoHeVxrWjiMeljjGdIKyM,11363
10
- lt_tensor/torch_commons.py,sha256=8l0bxmrAzwvyqjivCIVISXlbvKarlg4DdE0BOGSnMuQ,812
11
- lt_tensor/transform.py,sha256=dZm8T_ov0blHMQu6nGiehsdG1VSB7bZBUVmTkT-PBdc,13257
12
- lt_tensor/model_zoo/__init__.py,sha256=yPUVchgVhU2nAJ2ocA4HFfG7IMEiBu8qOi8I1KWTTkU,404
13
- lt_tensor/model_zoo/basic.py,sha256=pI8HyiHK-cmWcEEaVY_EduUJOjZW6HOtXvJd8Rbhq30,15452
14
- lt_tensor/model_zoo/convs.py,sha256=YQRxek75Qpsha8nfc7wLhmJS9XxPeCa4WxuftLg6IcE,3927
15
- lt_tensor/model_zoo/features.py,sha256=DO8dlE0kmPKTNC1Xkv9wKegOOYkQa_rkxM4hhcNwJWA,15655
16
- lt_tensor/model_zoo/fusion.py,sha256=usC1bcjQRNivDc8xzkIS5T1glm78OLcs2V_tPqfp-eI,5422
17
- lt_tensor/model_zoo/pos_encoder.py,sha256=3d1EYLinCU9UAy-WuEWeYMGhMqaGknCiQ5qEmhw_UYM,4487
18
- lt_tensor/model_zoo/residual.py,sha256=tMXgif9Ggep9bk75K93yueeU5vk5S25AGCRFwOQOyB8,6452
19
- lt_tensor/model_zoo/transformer.py,sha256=HUFoFFh7EQJErxdd9XIxhssdjvNVx2tNGDJOTUfwG2A,4301
20
- lt_tensor/model_zoo/activations/alias_free_torch/__init__.py,sha256=ovguP4wzQEDNguczwiZnhMm4dRRVcvnzmHrfQtlRCNQ,15
21
- lt_tensor/model_zoo/activations/alias_free_torch/act.py,sha256=h79C93GzbSrCq4ui6iO7DjJLuJ7QK_ag_TU-WAcj0NI,1405
22
- lt_tensor/model_zoo/activations/alias_free_torch/filter.py,sha256=5TvXESv31toD5sePBe_OUJJfMXv6Ohwmx2YawjQL-pk,6004
23
- lt_tensor/model_zoo/activations/alias_free_torch/resample.py,sha256=3iM4fNr9fLNXXMyXvzW-MwkSjOZOrMZLfS80UHs6zk0,3386
24
- lt_tensor/model_zoo/activations/snake/__init__.py,sha256=Adb_xe-7YdYsNxvlSSO9zkae-cu7ElxkBKE3trDtOus,4517
25
- lt_tensor/model_zoo/audio_models/__init__.py,sha256=MoG9YjxLyvscq_6njK1ljGBletK9iedBXt66bplzW-s,83
26
- lt_tensor/model_zoo/audio_models/diffwave/__init__.py,sha256=PDuDYN1omD1RoAXcmxH3tEgfAuM3ZHAWzimD6ElMqEQ,9073
27
- lt_tensor/model_zoo/audio_models/hifigan/__init__.py,sha256=7GJqKLw7-juXpfp5IFzjASLut0uouDhjZ1CQknf3H68,16533
28
- lt_tensor/model_zoo/audio_models/istft/__init__.py,sha256=ltIuD9t1gmS3bTmCqZIwJHKrhC6DYya3OaXlskWX9kw,17606
29
- lt_tensor/model_zoo/losses/__init__.py,sha256=B9RAUxBiOZwooztnij1oLeRwZ7_MjnN3mPoum7saD6s,59
30
- lt_tensor/model_zoo/losses/discriminators.py,sha256=ZpyByFgc7L7uV_XRBsV9vkdVItbJO3z--Y6LlvTvtwY,20765
31
- lt_tensor/processors/__init__.py,sha256=Pvxhh0KR65zLCgUd53_k5Z0y5JWWcO0ZBXFK9rv0o5w,109
32
- lt_tensor/processors/audio.py,sha256=HNr1GS-6M2q0Rda4cErf5y2Jlc9f4jD58FvpX2ua9d4,18369
33
- lt_tensor-0.0.1a34.dist-info/licenses/LICENSE,sha256=TbiyJWLgNqqgqhfCnrGwFIxy7EqGNrIZZcKhHrefcuU,11354
34
- lt_tensor-0.0.1a34.dist-info/METADATA,sha256=WkTafcY5nYZbrZ7WzUc3JXnmg9NtUAXrchx42dCok9I,1062
35
- lt_tensor-0.0.1a34.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
36
- lt_tensor-0.0.1a34.dist-info/top_level.txt,sha256=35FuhFeXnUyvHWdbVHGPh0hS8euofafnJ_GJAVSF4Kk,10
37
- lt_tensor-0.0.1a34.dist-info/RECORD,,