lt-tensor 0.0.1a29__py3-none-any.whl → 0.0.1a31__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- lt_tensor/model_base.py +36 -20
- lt_tensor/model_zoo/losses/discriminators.py +16 -4
- {lt_tensor-0.0.1a29.dist-info → lt_tensor-0.0.1a31.dist-info}/METADATA +1 -1
- {lt_tensor-0.0.1a29.dist-info → lt_tensor-0.0.1a31.dist-info}/RECORD +7 -7
- {lt_tensor-0.0.1a29.dist-info → lt_tensor-0.0.1a31.dist-info}/WHEEL +0 -0
- {lt_tensor-0.0.1a29.dist-info → lt_tensor-0.0.1a31.dist-info}/licenses/LICENSE +0 -0
- {lt_tensor-0.0.1a29.dist-info → lt_tensor-0.0.1a31.dist-info}/top_level.txt +0 -0
lt_tensor/model_base.py
CHANGED
@@ -70,6 +70,7 @@ class LossTracker:
|
|
70
70
|
|
71
71
|
class _Devices_Base(nn.Module):
|
72
72
|
_device: torch.device = ROOT_DEVICE
|
73
|
+
_setting_device: bool = False
|
73
74
|
|
74
75
|
@property
|
75
76
|
def device(self):
|
@@ -136,25 +137,35 @@ class _Devices_Base(nn.Module):
|
|
136
137
|
f"Item '{module_or_name}' is not a valid module, parameter or tensor."
|
137
138
|
)
|
138
139
|
|
139
|
-
def
|
140
|
-
"""
|
141
|
-
|
142
|
-
|
143
|
-
|
144
|
-
|
145
|
-
|
146
|
-
|
147
|
-
|
148
|
-
|
149
|
-
|
150
|
-
|
151
|
-
|
152
|
-
|
153
|
-
|
154
|
-
|
155
|
-
|
156
|
-
|
157
|
-
|
140
|
+
def apply_device(self):
|
141
|
+
"""Helps to apply devices towards all the internal components"""
|
142
|
+
if self._setting_device:
|
143
|
+
return
|
144
|
+
|
145
|
+
self._setting_device = True
|
146
|
+
|
147
|
+
try:
|
148
|
+
for modules in self.modules():
|
149
|
+
try:
|
150
|
+
modules.to(self.device)
|
151
|
+
except:
|
152
|
+
pass
|
153
|
+
|
154
|
+
for buffer in self.buffers():
|
155
|
+
try:
|
156
|
+
buffer.to(self.device)
|
157
|
+
except:
|
158
|
+
pass
|
159
|
+
|
160
|
+
for tensor in self.parameters():
|
161
|
+
try:
|
162
|
+
tensor.to(self.device)
|
163
|
+
except:
|
164
|
+
pass
|
165
|
+
except:
|
166
|
+
pass
|
167
|
+
finally:
|
168
|
+
self._setting_device = False
|
158
169
|
|
159
170
|
def _to_dvc(
|
160
171
|
self, device_name: str, device_id: Optional[Union[int, torch.device]] = None
|
@@ -166,7 +177,11 @@ class _Devices_Base(nn.Module):
|
|
166
177
|
elif hasattr(device_id, "index"):
|
167
178
|
device += ":" + str(device_id.index)
|
168
179
|
self.device = device
|
169
|
-
self.
|
180
|
+
if not self._setting_device:
|
181
|
+
self.apply_device()
|
182
|
+
|
183
|
+
def _to(self, *args, **kwargs):
|
184
|
+
self.to(*args, _internal=True, **kwargs)
|
170
185
|
|
171
186
|
def to(self, *args, **kwargs):
|
172
187
|
device, dtype, non_blocking, convert_to_format = torch._C._nn._parse_to(
|
@@ -378,6 +393,7 @@ class Model(_Devices_Base, ABC):
|
|
378
393
|
state_dict = self.state_dict()
|
379
394
|
if not save_with_adapters or isinstance(self.low_rank_adapter, nn.Identity):
|
380
395
|
state_dict.pop("low_rank_adapter", None)
|
396
|
+
state_dict.pop("_setting_device", None)
|
381
397
|
torch.save(obj=state_dict, f=str(model_dir))
|
382
398
|
|
383
399
|
def save_lora(
|
@@ -20,6 +20,7 @@ def get_padding(kernel_size, dilation=1):
|
|
20
20
|
|
21
21
|
class MultiDiscriminatorWrapper(ConvNets):
|
22
22
|
"""Base for all multi-steps type of discriminators"""
|
23
|
+
|
23
24
|
def __init__(self, *args, **kwargs):
|
24
25
|
super().__init__(*args, **kwargs)
|
25
26
|
self.leaky_relu = nn.LeakyReLU(kwargs.get("negative_slope", 0.1))
|
@@ -207,7 +208,7 @@ class MultiPeriodDiscriminator(MultiDiscriminatorWrapper):
|
|
207
208
|
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
208
209
|
|
209
210
|
|
210
|
-
class EnvelopeExtractor(
|
211
|
+
class EnvelopeExtractor(Model):
|
211
212
|
"""Extracts the amplitude envelope of the audio signal."""
|
212
213
|
|
213
214
|
def __init__(self, kernel_size=101):
|
@@ -216,7 +217,7 @@ class EnvelopeExtractor(nn.Module):
|
|
216
217
|
self.kernel_size = kernel_size
|
217
218
|
self.register_buffer("kernel", torch.ones(1, 1, kernel_size) / kernel_size)
|
218
219
|
|
219
|
-
def forward(self, x):
|
220
|
+
def forward(self, x: Tensor):
|
220
221
|
# x: (B, 1, T) -> abs(x)
|
221
222
|
envelope = torch.abs(x)
|
222
223
|
# Apply low-pass smoothing (via conv1d)
|
@@ -274,7 +275,6 @@ class MultiEnvelopeDiscriminator(MultiDiscriminatorWrapper):
|
|
274
275
|
def forward(self, y, y_hat):
|
275
276
|
y_d_rs, y_d_gs = [], []
|
276
277
|
fmap_rs, fmap_gs = [], []
|
277
|
-
|
278
278
|
for i, d in enumerate(self.discriminators):
|
279
279
|
if i != 0:
|
280
280
|
y = self.meanpools[i - 1](y)
|
@@ -555,7 +555,19 @@ class MultiResolutionDiscriminator(MultiDiscriminatorWrapper):
|
|
555
555
|
|
556
556
|
|
557
557
|
class MultiDiscriminatorStep(Model):
|
558
|
-
def __init__(
|
558
|
+
def __init__(
|
559
|
+
self, list_discriminator: List[MultiDiscriminatorWrapper]
|
560
|
+
):
|
561
|
+
"""Setup example:
|
562
|
+
model_d = MultiDiscriminatorStep(
|
563
|
+
[
|
564
|
+
MultiEnvelopeDiscriminator(),
|
565
|
+
MultiBandDiscriminator(),
|
566
|
+
MultiResolutionDiscriminator(),
|
567
|
+
MultiPeriodDiscriminator(0.5),
|
568
|
+
]
|
569
|
+
)
|
570
|
+
"""
|
559
571
|
super().__init__()
|
560
572
|
self.disc: Sequence[MultiDiscriminatorWrapper] = nn.ModuleList(
|
561
573
|
list_discriminator
|
@@ -4,7 +4,7 @@ lt_tensor/losses.py,sha256=zvkCOnE5XpF3v6ymivRIdqPTsMM5zc94ZMom7YDi3zM,4946
|
|
4
4
|
lt_tensor/lr_schedulers.py,sha256=LSZzqrOOLzSthD8k-W4cYPJt0vCjmHkiJkLr5e3yRTE,3659
|
5
5
|
lt_tensor/math_ops.py,sha256=TkD4WQG42KsQ9Fg7FXOjf8f-ixtW0apf2XjaooecVx4,2257
|
6
6
|
lt_tensor/misc_utils.py,sha256=N2r3UmxC4RM2BZBQhpjDZ_BKLrzsyIlKzopTzJbnjFU,28962
|
7
|
-
lt_tensor/model_base.py,sha256=
|
7
|
+
lt_tensor/model_base.py,sha256=5T4dbAh4MXbQmPRpihGtMYwTY8sJTQOhY6An3VboM58,18086
|
8
8
|
lt_tensor/monotonic_align.py,sha256=LhBd8p1xdBzg6jQrQX1j7b4PNeYGwIqM24zcU-pHOLE,2239
|
9
9
|
lt_tensor/noise_tools.py,sha256=wFeAsHhLhSlEc5XU5LbFKaXoHeVxrWjiMeljjGdIKyM,11363
|
10
10
|
lt_tensor/torch_commons.py,sha256=8l0bxmrAzwvyqjivCIVISXlbvKarlg4DdE0BOGSnMuQ,812
|
@@ -27,11 +27,11 @@ lt_tensor/model_zoo/audio_models/diffwave/__init__.py,sha256=PDuDYN1omD1RoAXcmxH
|
|
27
27
|
lt_tensor/model_zoo/audio_models/hifigan/__init__.py,sha256=7GJqKLw7-juXpfp5IFzjASLut0uouDhjZ1CQknf3H68,16533
|
28
28
|
lt_tensor/model_zoo/audio_models/istft/__init__.py,sha256=ltIuD9t1gmS3bTmCqZIwJHKrhC6DYya3OaXlskWX9kw,17606
|
29
29
|
lt_tensor/model_zoo/losses/__init__.py,sha256=B9RAUxBiOZwooztnij1oLeRwZ7_MjnN3mPoum7saD6s,59
|
30
|
-
lt_tensor/model_zoo/losses/discriminators.py,sha256=
|
30
|
+
lt_tensor/model_zoo/losses/discriminators.py,sha256=ZA7Qqrhe8kELrI1-IITadGSl8JCgpgPKFCW6qvSOk1E,20724
|
31
31
|
lt_tensor/processors/__init__.py,sha256=Pvxhh0KR65zLCgUd53_k5Z0y5JWWcO0ZBXFK9rv0o5w,109
|
32
32
|
lt_tensor/processors/audio.py,sha256=1JuxxexfUsXkLjVjWUk-oTRU-QNnCCwvKX3eP0m7LGE,16452
|
33
|
-
lt_tensor-0.0.
|
34
|
-
lt_tensor-0.0.
|
35
|
-
lt_tensor-0.0.
|
36
|
-
lt_tensor-0.0.
|
37
|
-
lt_tensor-0.0.
|
33
|
+
lt_tensor-0.0.1a31.dist-info/licenses/LICENSE,sha256=tQHc38scHOba4kDBNG4U0U6PpObaloiZG-FvKSgv2b0,11336
|
34
|
+
lt_tensor-0.0.1a31.dist-info/METADATA,sha256=qhs6RI_KE0LNjKiD7kky9d_4wcolq6PHyInLPVePzNo,1062
|
35
|
+
lt_tensor-0.0.1a31.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
36
|
+
lt_tensor-0.0.1a31.dist-info/top_level.txt,sha256=35FuhFeXnUyvHWdbVHGPh0hS8euofafnJ_GJAVSF4Kk,10
|
37
|
+
lt_tensor-0.0.1a31.dist-info/RECORD,,
|
File without changes
|
File without changes
|
File without changes
|