lt-tensor 0.0.1a17__py3-none-any.whl → 0.0.1a19__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -7,75 +7,79 @@ from lt_tensor.misc_utils import updateDict
7
7
 
8
8
  class ModelConfig(ABC, OrderedDict):
9
9
  _default_settings: Dict[str, Any] = {}
10
- _forbidden_list: List[str] = ["_default_settings", "_forbidden_list" "path_name"]
10
+ _forbidden_list: List[str] = [
11
+ "_default_settings",
12
+ "_forbidden_list",
13
+ "path_name",
14
+ ]
15
+ path: Optional[str] = None
11
16
 
12
17
  def __init__(
13
18
  self,
14
- settings: Dict[str, Any] = {},
15
- path_name: Optional[Union[str, PathLike]] = None,
19
+ path: Optional[Union[str, PathLike]] = None,
20
+ **settings,
16
21
  ):
17
- assert is_dict(settings, False)
18
- self._default_settings = settings
19
- if path_name is not None and is_pathlike(path_name):
20
- if not str(path_name).endswith(".json"):
21
- self.path_name = str(Path(path_name, "config.json")).replace("\\", "/")
22
- else:
23
- self.path_name = str(path_name).replace("\\", "/")
22
+ self._setup_path_name(path)
23
+ if self.path is not None:
24
+ self._default_settings = load_json(self.path, default=settings)
24
25
  else:
25
- self.path_name = "config.json"
26
- self.reset_settings()
26
+ self._default_settings = settings
27
+
28
+ self.set_state_dict(self._default_settings)
27
29
 
28
30
  def _setup_path_name(self, path_name: Union[str, PathLike]):
29
31
  if is_file(path_name):
30
32
  self.from_path(path_name)
31
- self.path_name = str(path_name).replace("\\", "/")
33
+ self.path = str(path_name).replace("\\", "/")
32
34
  elif is_str(path_name):
33
- self.path_name = str(path_name).replace("\\", "/")
34
- if not self.path_name.endswith((".json")):
35
- self.path_name += ".json"
35
+ self.path = str(path_name).replace("\\", "/")
36
+ if not self.path.endswith((".json")):
37
+ self.path += ".json"
36
38
 
37
39
  def reset_settings(self):
38
- dk_keys = self.__dict__.keys()
39
- for s_name, setting in self._default_settings.items():
40
- if s_name in self._forbidden_list or s_name not in dk_keys:
41
- continue
42
- updateDict(self, {s_name: setting})
40
+ raise NotImplementedError("Not implemented")
43
41
 
44
42
  def save_config(
45
43
  self,
46
- path_name: Optional[Union[PathLike, str]] = None,
44
+ path: Optional[Union[PathLike, str]] = None,
47
45
  ):
48
- if not is_pathlike(path_name, True):
46
+ if not is_pathlike(path, True):
49
47
  assert (
50
- path_name is None
51
- ), f"path_name should be a non-empty string or pathlike object! received instead: {path_name}."
52
- path_name = self.path_name
48
+ path is None
49
+ ), f"path_name should be a non-empty string or pathlike object! received instead: {path}."
50
+ path = self.path
53
51
  else:
54
- self._setup_path_name(path_name)
52
+ self._setup_path_name(path)
55
53
 
56
- base = self.get_state_dict()
57
- save_json(self.path_name, base, indent=2)
54
+ base = self.state_dict()
55
+ save_json(self.path, base, indent=2)
58
56
 
59
57
  def set_value(self, var_name: str, value: str) -> None:
60
- assert var_name in self.__dict__, "Value not registered!"
61
58
  assert var_name not in self._forbidden_list, "Not allowed!"
62
59
  updateDict(self, {var_name: value})
60
+ self.update({var_name: value})
63
61
 
64
62
  def get_value(self, var_name: str) -> Any:
65
63
  return self.__dict__.get(var_name)
66
64
 
67
- def __getattribute__(self, name):
68
- return self.__dict__.get(name)
65
+ def set_state_dict(self, new_state: dict[str, str]):
66
+ new_state = {
67
+ k: y for k, y in new_state.items() if k not in self._forbidden_list
68
+ }
69
+ updateDict(self, new_state)
70
+ self.update(**new_state)
69
71
 
70
- def get_state_dict(self):
72
+ def state_dict(self):
71
73
  return {k: y for k, y in self.__dict__.items() if k not in self._forbidden_list}
72
74
 
73
75
  @classmethod
74
76
  def from_dict(
75
- cls, dictionary: Dict[str, Any], path: Optional[Union[str, PathLike]] = None
77
+ cls,
78
+ dictionary: Dict[str, Any],
79
+ path: Optional[Union[str, PathLike]] = None,
76
80
  ) -> "ModelConfig":
77
81
  assert is_dict(dictionary)
78
- return ModelConfig(dictionary, path)
82
+ return ModelConfig(path, **dictionary)
79
83
 
80
84
  @classmethod
81
85
  def from_path(cls, path_name: PathLike) -> "ModelConfig":
@@ -102,4 +106,4 @@ class ModelConfig(ABC, OrderedDict):
102
106
  )
103
107
  assert files, "No config file found in the provided directory!"
104
108
  settings.update(load_json(files[-1], {}, errors="ignore"))
105
- return ModelConfig(settings, path_name)
109
+ return ModelConfig(path_name, **settings)
@@ -1,2 +1,3 @@
1
1
  from . import diffwave, istft, hifigan
2
2
 
3
+ __all__ = ["diffwave", "istft", "hifigan"]
@@ -1,29 +1,19 @@
1
- __all__ = ["DiffWave", "SpectrogramUpsampler", "DiffusionEmbedding"]
1
+ __all__ = ["DiffWave", "DiffWaveConfig", "SpectrogramUpsample", "DiffusionEmbedding"]
2
2
 
3
3
  import numpy as np
4
- import torch
5
- import torch.nn as nn
6
- import torch.nn.functional as F
4
+ from lt_tensor.torch_commons import *
5
+ from torch.nn import functional as F
7
6
  from lt_tensor.config_templates import ModelConfig
8
7
  from lt_tensor.torch_commons import *
9
8
  from lt_tensor.model_base import Model
10
9
  from math import sqrt
11
10
  from lt_utils.common import *
12
11
 
13
- F.t
14
-
15
12
 
16
13
  class DiffWaveConfig(ModelConfig):
17
- # Training params
18
- batch_size = 16
19
- learning_rate = 2e-4
20
- max_grad_norm = None
21
- # Data params
22
- sample_rate = 24000
14
+ # Model params
23
15
  n_mels = 80
24
- n_fft = 1024
25
16
  hop_samples = 256
26
- # Model params
27
17
  residual_layers = 30
28
18
  residual_channels = 64
29
19
  dilation_cycle_length = 10
@@ -37,11 +27,30 @@ class DiffWaveConfig(ModelConfig):
37
27
 
38
28
  def __init__(
39
29
  self,
40
- settings: Dict[str, Any] = {},
41
- path_name: Optional[Union[str, PathLike]] = None,
30
+ n_mels = 80,
31
+ hop_samples = 256,
32
+ residual_layers = 30,
33
+ residual_channels = 64,
34
+ dilation_cycle_length = 10,
35
+ unconditional = False,
36
+ noise_schedule: list[int] = np.linspace(1e-4, 0.05, 50).tolist(),
37
+ interpolate_cond = False,
38
+ interpolation_mode: Literal[
39
+ "nearest", "linear", "bilinear", "bicubic", "trilinear", "area", "nearest-exact"
40
+ ] = "nearest",
42
41
  ):
43
- self._forbidden_list.extend()
44
- super().__init__(settings, path_name)
42
+ settings = {
43
+ "n_mels": n_mels,
44
+ "hop_samples": hop_samples,
45
+ "residual_layers": residual_layers,
46
+ "dilation_cycle_length": dilation_cycle_length,
47
+ "residual_channels": residual_channels,
48
+ "unconditional": unconditional,
49
+ "noise_schedule": noise_schedule,
50
+ "interpolate": interpolate_cond,
51
+ "interpolation_mode": interpolation_mode,
52
+ }
53
+ super().__init__(**settings)
45
54
 
46
55
 
47
56
  def Conv1d(*args, **kwargs):
@@ -86,7 +95,7 @@ class DiffusionEmbedding(Model):
86
95
  return table
87
96
 
88
97
 
89
- class SpectrogramUpsampler(Model):
98
+ class SpectrogramUpsample(Model):
90
99
  def __init__(self):
91
100
  super().__init__()
92
101
  self.conv1 = nn.ConvTranspose2d(1, 1, [3, 32], stride=[1, 16], padding=[1, 8])
@@ -162,7 +171,7 @@ class DiffWave(Model):
162
171
  if self.params.unconditional: # use unconditional model
163
172
  self.spectrogram_upsample = None
164
173
  else:
165
- self.spectrogram_upsample = SpectrogramUpsampler()
174
+ self.spectrogram_upsample = SpectrogramUpsample()
166
175
 
167
176
  self.residual_layers = nn.ModuleList(
168
177
  [
@@ -1,18 +1,63 @@
1
- __all__ = ["HifiganGenerator"]
1
+ __all__ = ["HifiganGenerator", "HifiganConfig"]
2
2
  from lt_utils.common import *
3
3
  from lt_tensor.torch_commons import *
4
4
  from lt_tensor.model_zoo.residual import ConvNets
5
5
  from torch.nn import functional as F
6
6
 
7
- import torch
8
- import torch.nn.functional as F
9
- import torch.nn as nn
10
-
11
7
 
12
8
  def get_padding(kernel_size, dilation=1):
13
9
  return int((kernel_size * dilation - dilation) / 2)
14
10
 
15
11
 
12
+ from lt_tensor.config_templates import ModelConfig
13
+
14
+
15
+ class HifiganConfig(ModelConfig):
16
+ # Training params
17
+ in_channels: int = 80
18
+ upsample_rates: List[Union[int, List[int]]] = [8, 8]
19
+ upsample_kernel_sizes: List[Union[int, List[int]]] = [16, 16]
20
+ upsample_initial_channel: int = 512
21
+ resblock_kernel_sizes: List[Union[int, List[int]]] = [3, 7, 11]
22
+ resblock_dilation_sizes: List[Union[int, List[int]]] = [
23
+ [1, 3, 5],
24
+ [1, 3, 5],
25
+ [1, 3, 5],
26
+ ]
27
+
28
+ activation: nn.Module = nn.LeakyReLU(0.1)
29
+ resblock: int = 0
30
+
31
+ def __init__(
32
+ self,
33
+ in_channels: int = 80,
34
+ upsample_rates: List[Union[int, List[int]]] = [8, 8],
35
+ upsample_kernel_sizes: List[Union[int, List[int]]] = [16, 16],
36
+ upsample_initial_channel: int = 512,
37
+ resblock_kernel_sizes: List[Union[int, List[int]]] = [3, 7, 11],
38
+ resblock_dilation_sizes: List[Union[int, List[int]]] = [
39
+ [1, 3, 5],
40
+ [1, 3, 5],
41
+ [1, 3, 5],
42
+ ],
43
+ activation: nn.Module = nn.LeakyReLU(0.1),
44
+ resblock: int = 0,
45
+ *args,
46
+ **kwargs,
47
+ ):
48
+ settings = {
49
+ "in_channels": in_channels,
50
+ "upsample_rates": upsample_rates,
51
+ "upsample_kernel_sizes": upsample_kernel_sizes,
52
+ "upsample_initial_channel": upsample_initial_channel,
53
+ "resblock_kernel_sizes": resblock_kernel_sizes,
54
+ "resblock_dilation_sizes": resblock_dilation_sizes,
55
+ "activation": activation,
56
+ "resblock": resblock,
57
+ }
58
+ super().__init__(**settings)
59
+
60
+
16
61
  class ResBlock1(ConvNets):
17
62
  def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)):
18
63
  super().__init__()
@@ -142,23 +187,23 @@ class ResBlock2(ConvNets):
142
187
 
143
188
 
144
189
  class HifiganGenerator(ConvNets):
145
- def __init__(self, h):
190
+ def __init__(self, cfg: HifiganConfig = HifiganConfig()):
146
191
  super().__init__()
147
- self.h = h
148
- self.num_kernels = len(h.resblock_kernel_sizes)
149
- self.num_upsamples = len(h.upsample_rates)
192
+ self.cfg = cfg
193
+ self.num_kernels = len(cfg.resblock_kernel_sizes)
194
+ self.num_upsamples = len(cfg.upsample_rates)
150
195
  self.conv_pre = weight_norm(
151
- nn.Conv1d(80, h.upsample_initial_channel, 7, 1, padding=3)
196
+ nn.Conv1d(cfg.in_channels, cfg.upsample_initial_channel, 7, 1, padding=3)
152
197
  )
153
- resblock = ResBlock1 if h.resblock == "1" else ResBlock2
154
- self.activation = nn.LeakyReLU(0.1)
198
+ resblock = ResBlock1 if cfg.resblock == 0 else ResBlock2
199
+ self.activation = cfg.activation
155
200
  self.ups = nn.ModuleList()
156
- for i, (u, k) in enumerate(zip(h.upsample_rates, h.upsample_kernel_sizes)):
201
+ for i, (u, k) in enumerate(zip(cfg.upsample_rates, cfg.upsample_kernel_sizes)):
157
202
  self.ups.append(
158
203
  weight_norm(
159
204
  nn.ConvTranspose1d(
160
- h.upsample_initial_channel // (2**i),
161
- h.upsample_initial_channel // (2 ** (i + 1)),
205
+ cfg.upsample_initial_channel // (2**i),
206
+ cfg.upsample_initial_channel // (2 ** (i + 1)),
162
207
  k,
163
208
  u,
164
209
  padding=(k - u) // 2,
@@ -168,17 +213,17 @@ class HifiganGenerator(ConvNets):
168
213
 
169
214
  self.resblocks = nn.ModuleList()
170
215
  for i in range(len(self.ups)):
171
- ch = h.upsample_initial_channel // (2 ** (i + 1))
216
+ ch = cfg.upsample_initial_channel // (2 ** (i + 1))
172
217
  for j, (k, d) in enumerate(
173
- zip(h.resblock_kernel_sizes, h.resblock_dilation_sizes)
218
+ zip(cfg.resblock_kernel_sizes, cfg.resblock_dilation_sizes)
174
219
  ):
175
- self.resblocks.append(resblock(h, ch, k, d))
220
+ self.resblocks.append(resblock(ch, k, d))
176
221
 
177
222
  self.conv_post = weight_norm(nn.Conv1d(ch, 1, 7, 1, padding=3))
178
223
  self.ups.apply(self.init_weights)
179
224
  self.conv_post.apply(self.init_weights)
180
225
 
181
- def forward(self, x):
226
+ def forward(self, x: Tensor):
182
227
  x = self.conv_pre(x)
183
228
  for i in range(self.num_upsamples):
184
229
  x = self.ups[i](self.activation(x))
@@ -1,8 +1,61 @@
1
- __all__ = ["iSTFTGenerator"]
1
+ __all__ = ["iSTFTNetGenerator", "iSTFTNetConfig"]
2
2
  from lt_utils.common import *
3
3
  from lt_tensor.torch_commons import *
4
4
  from lt_tensor.model_zoo.residual import ConvNets
5
5
  from torch.nn import functional as F
6
+ from lt_tensor.config_templates import ModelConfig
7
+
8
+
9
+ class iSTFTNetConfig(ModelConfig):
10
+ # Training params
11
+ in_channels: int = 80
12
+ upsample_rates: List[Union[int, List[int]]] = [8, 8]
13
+ upsample_kernel_sizes: List[Union[int, List[int]]] = [16, 16]
14
+ upsample_initial_channel: int = 512
15
+ resblock_kernel_sizes: List[Union[int, List[int]]] = [3, 7, 11]
16
+ resblock_dilation_sizes: List[Union[int, List[int]]] = [
17
+ [1, 3, 5],
18
+ [1, 3, 5],
19
+ [1, 3, 5],
20
+ ]
21
+
22
+ activation: nn.Module = nn.LeakyReLU(0.1)
23
+ resblock: int = 0
24
+ gen_istft_n_fft: int = 16
25
+ sampling_rate: Number = 24000
26
+
27
+ def __init__(
28
+ self,
29
+ in_channels: int = 80,
30
+ upsample_rates: List[Union[int, List[int]]] = [8, 8],
31
+ upsample_kernel_sizes: List[Union[int, List[int]]] = [16, 16],
32
+ upsample_initial_channel: int = 512,
33
+ resblock_kernel_sizes: List[Union[int, List[int]]] = [3, 7, 11],
34
+ resblock_dilation_sizes: List[Union[int, List[int]]] = [
35
+ [1, 3, 5],
36
+ [1, 3, 5],
37
+ [1, 3, 5],
38
+ ],
39
+ activation: nn.Module = nn.LeakyReLU(0.1),
40
+ resblock: int = 0,
41
+ gen_istft_n_fft: int = 16,
42
+ sampling_rate: Number = 24000,
43
+ *args,
44
+ **kwargs,
45
+ ):
46
+ settings = {
47
+ "in_channels": in_channels,
48
+ "upsample_rates": upsample_rates,
49
+ "upsample_kernel_sizes": upsample_kernel_sizes,
50
+ "upsample_initial_channel": upsample_initial_channel,
51
+ "resblock_kernel_sizes": resblock_kernel_sizes,
52
+ "resblock_dilation_sizes": resblock_dilation_sizes,
53
+ "activation": activation,
54
+ "resblock": resblock,
55
+ "gen_istft_n_fft": gen_istft_n_fft,
56
+ "sampling_rate": sampling_rate,
57
+ }
58
+ super().__init__(**settings)
6
59
 
7
60
 
8
61
  def get_padding(ks, d):
@@ -10,9 +63,8 @@ def get_padding(ks, d):
10
63
 
11
64
 
12
65
  class ResBlock1(ConvNets):
13
- def __init__(self, h, channels, kernel_size=3, dilation=(1, 3, 5)):
66
+ def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)):
14
67
  super().__init__()
15
- self.h = h
16
68
  self.convs1 = nn.ModuleList(
17
69
  [
18
70
  weight_norm(
@@ -95,10 +147,10 @@ class ResBlock1(ConvNets):
95
147
  x = xt + x
96
148
  return x
97
149
 
150
+
98
151
  class ResBlock2(ConvNets):
99
- def __init__(self, h, channels, kernel_size=3, dilation=(1, 3)):
152
+ def __init__(self, channels, kernel_size=3, dilation=(1, 3)):
100
153
  super().__init__()
101
- self.h = h
102
154
  self.convs = nn.ModuleList(
103
155
  [
104
156
  weight_norm(
@@ -134,25 +186,25 @@ class ResBlock2(ConvNets):
134
186
  return x
135
187
 
136
188
 
137
- class iSTFTGenerator(ConvNets):
138
- def __init__(self, h):
189
+ class iSTFTNetGenerator(ConvNets):
190
+ def __init__(self, cfg: iSTFTNetConfig = iSTFTNetConfig()):
139
191
  super().__init__()
140
- self.h = h
141
- self.num_kernels = len(h.resblock_kernel_sizes)
142
- self.num_upsamples = len(h.upsample_rates)
192
+ self.cfg = cfg
193
+ self.num_kernels = len(cfg.resblock_kernel_sizes)
194
+ self.num_upsamples = len(cfg.upsample_rates)
143
195
  self.conv_pre = weight_norm(
144
- nn.Conv1d(80, h.upsample_initial_channel, 7, 1, padding=3)
196
+ nn.Conv1d(cfg.in_channels, cfg.upsample_initial_channel, 7, 1, padding=3)
145
197
  )
146
- resblock = ResBlock1 if h.resblock == "1" else ResBlock2
198
+ resblock = ResBlock1 if cfg.resblock == 0 else ResBlock2
147
199
 
148
200
  self.ups = nn.ModuleList()
149
- for i, (u, k) in enumerate(zip(h.upsample_rates, h.upsample_kernel_sizes)):
150
- if h.sampling_rate % 16000:
201
+ for i, (u, k) in enumerate(zip(cfg.upsample_rates, cfg.upsample_kernel_sizes)):
202
+ if cfg.sampling_rate % 16000:
151
203
  self.ups.append(
152
204
  weight_norm(
153
205
  nn.ConvTranspose1d(
154
- h.upsample_initial_channel // (2**i),
155
- h.upsample_initial_channel // (2 ** (i + 1)),
206
+ cfg.upsample_initial_channel // (2**i),
207
+ cfg.upsample_initial_channel // (2 ** (i + 1)),
156
208
  k,
157
209
  u,
158
210
  padding=(k - u) // 2,
@@ -163,8 +215,8 @@ class iSTFTGenerator(ConvNets):
163
215
  self.ups.append(
164
216
  weight_norm(
165
217
  nn.ConvTranspose1d(
166
- h.upsample_initial_channel // (2**i),
167
- h.upsample_initial_channel // (2 ** (i + 1)),
218
+ cfg.upsample_initial_channel // (2**i),
219
+ cfg.upsample_initial_channel // (2 ** (i + 1)),
168
220
  k,
169
221
  u,
170
222
  padding=(u // 2 + u % 2),
@@ -175,19 +227,19 @@ class iSTFTGenerator(ConvNets):
175
227
 
176
228
  self.resblocks = nn.ModuleList()
177
229
  for i in range(len(self.ups)):
178
- ch = h.upsample_initial_channel // (2 ** (i + 1))
230
+ ch = cfg.upsample_initial_channel // (2 ** (i + 1))
179
231
  for j, (k, d) in enumerate(
180
- zip(h.resblock_kernel_sizes, h.resblock_dilation_sizes)
232
+ zip(cfg.resblock_kernel_sizes, cfg.resblock_dilation_sizes)
181
233
  ):
182
- self.resblocks.append(resblock(h, ch, k, d))
234
+ self.resblocks.append(resblock(ch, k, d))
183
235
 
184
- self.post_n_fft = h.gen_istft_n_fft
236
+ self.post_n_fft = cfg.gen_istft_n_fft
185
237
  self.conv_post = weight_norm(
186
238
  nn.Conv1d(ch, self.post_n_fft + 2, 7, 1, padding=3)
187
239
  )
188
240
  self.ups.apply(self.init_weights)
189
241
  self.conv_post.apply(self.init_weights)
190
- self.activation = nn.LeakyReLU(0.1)
242
+ self.activation = cfg.activation
191
243
  self.reflection_pad = torch.nn.ReflectionPad1d((1, 0))
192
244
 
193
245
  def forward(self, x):
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: lt-tensor
3
- Version: 0.0.1a17
3
+ Version: 0.0.1a19
4
4
  Summary: General utilities for PyTorch and others. Built for general use.
5
5
  Home-page: https://github.com/gr1336/lt-tensor/
6
6
  Author: gr1336
@@ -1,5 +1,5 @@
1
1
  lt_tensor/__init__.py,sha256=XxNCGcVL-haJyMpifr-GRaamo32R6jmqe3iOuS4ecfs,469
2
- lt_tensor/config_templates.py,sha256=xWZhktYVlkwvJVreqyACpWo-lJ5htG9vTZyqZ6OexzA,3899
2
+ lt_tensor/config_templates.py,sha256=9hLt7OLq3z1y8FKNoGY_sIJHHnVoXsLcuI4x2zoE0Q4,3634
3
3
  lt_tensor/losses.py,sha256=zvkCOnE5XpF3v6ymivRIdqPTsMM5zc94ZMom7YDi3zM,4946
4
4
  lt_tensor/lr_schedulers.py,sha256=LSZzqrOOLzSthD8k-W4cYPJt0vCjmHkiJkLr5e3yRTE,3659
5
5
  lt_tensor/math_ops.py,sha256=TkD4WQG42KsQ9Fg7FXOjf8f-ixtW0apf2XjaooecVx4,2257
@@ -18,14 +18,14 @@ lt_tensor/model_zoo/fusion.py,sha256=usC1bcjQRNivDc8xzkIS5T1glm78OLcs2V_tPqfp-eI
18
18
  lt_tensor/model_zoo/pos_encoder.py,sha256=3d1EYLinCU9UAy-WuEWeYMGhMqaGknCiQ5qEmhw_UYM,4487
19
19
  lt_tensor/model_zoo/residual.py,sha256=i5V4ju7DB3WesKBVm6KH_LyPoKGDUOyo2Usfs-PyP58,9394
20
20
  lt_tensor/model_zoo/transformer.py,sha256=HUFoFFh7EQJErxdd9XIxhssdjvNVx2tNGDJOTUfwG2A,4301
21
- lt_tensor/model_zoo/audio_models/__init__.py,sha256=CmoakfBLoxqtJuYc1NYrB_z0x1kS2WQNaYQRmCaC5ko,40
22
- lt_tensor/model_zoo/audio_models/diffwave/__init__.py,sha256=8DbKJpQ44s9iPlajfs7_A2N1diYGXzkhet_wS4hX6mU,7421
23
- lt_tensor/model_zoo/audio_models/hifigan/__init__.py,sha256=BOBZSK2HFOdMcFyjrzwZi_TeAtBGIcpb8pQxiGlwLEE,12302
24
- lt_tensor/model_zoo/audio_models/istft/__init__.py,sha256=o7Ie1qI22u_g9t1252PX4vl4uF6JHynAJryuz2lAZE0,12920
21
+ lt_tensor/model_zoo/audio_models/__init__.py,sha256=MoG9YjxLyvscq_6njK1ljGBletK9iedBXt66bplzW-s,83
22
+ lt_tensor/model_zoo/audio_models/diffwave/__init__.py,sha256=vSrQJ0NXYvTbjOyjLjiMNy95Ib7VO1BJ5UqhoQ7dzYo,8032
23
+ lt_tensor/model_zoo/audio_models/hifigan/__init__.py,sha256=JNebaYO3nsyyqpYCCOyL13zY2uxLY3NOCeNynF6-96k,13940
24
+ lt_tensor/model_zoo/audio_models/istft/__init__.py,sha256=JdFChpPhURaI2qb9mDV6vzDcZN757FBGGtgzN3vxtJ0,14821
25
25
  lt_tensor/processors/__init__.py,sha256=4b9MxAJolXiJfSm20ZEspQTDm1tgLazwlPWA_jB1yLM,63
26
26
  lt_tensor/processors/audio.py,sha256=SMqNSl4Den-x1awTCQ8-TcR-0jPiv5lDaUpU93SRRaw,14749
27
- lt_tensor-0.0.1a17.dist-info/licenses/LICENSE,sha256=HUnu_iSPpnDfZS_PINhO3AoVizJD1A2vee8WX7D7uXo,11358
28
- lt_tensor-0.0.1a17.dist-info/METADATA,sha256=nHIAMKShjCnhr2KdEiAhi8IIqP9PoTWnGHgsSfNcTDs,1033
29
- lt_tensor-0.0.1a17.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
30
- lt_tensor-0.0.1a17.dist-info/top_level.txt,sha256=35FuhFeXnUyvHWdbVHGPh0hS8euofafnJ_GJAVSF4Kk,10
31
- lt_tensor-0.0.1a17.dist-info/RECORD,,
27
+ lt_tensor-0.0.1a19.dist-info/licenses/LICENSE,sha256=HUnu_iSPpnDfZS_PINhO3AoVizJD1A2vee8WX7D7uXo,11358
28
+ lt_tensor-0.0.1a19.dist-info/METADATA,sha256=lkXND2y0Ue6-y_1LDUcpbPWEJ9jnUG71zJMfcSwKdJs,1033
29
+ lt_tensor-0.0.1a19.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
30
+ lt_tensor-0.0.1a19.dist-info/top_level.txt,sha256=35FuhFeXnUyvHWdbVHGPh0hS8euofafnJ_GJAVSF4Kk,10
31
+ lt_tensor-0.0.1a19.dist-info/RECORD,,