lt-tensor 0.0.1a15__py3-none-any.whl → 0.0.1a16__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- lt_tensor/model_zoo/__init__.py +8 -6
- lt_tensor/model_zoo/audio_models/__init__.py +1 -0
- lt_tensor/model_zoo/audio_models/diffwave/__init__.py +3 -0
- lt_tensor/model_zoo/{diffwave → audio_models/diffwave}/model.py +1 -0
- lt_tensor/model_zoo/audio_models/hifigan/__init__.py +393 -0
- lt_tensor/model_zoo/audio_models/istft/__init__.py +409 -0
- lt_tensor/model_zoo/basic.py +139 -0
- {lt_tensor-0.0.1a15.dist-info → lt_tensor-0.0.1a16.dist-info}/METADATA +1 -1
- {lt_tensor-0.0.1a15.dist-info → lt_tensor-0.0.1a16.dist-info}/RECORD +12 -15
- lt_tensor/model_zoo/diffwave/__init__.py +0 -0
- lt_tensor/model_zoo/diffwave/params.py +0 -58
- lt_tensor/model_zoo/discriminator.py +0 -314
- lt_tensor/model_zoo/istft/__init__.py +0 -5
- lt_tensor/model_zoo/istft/generator.py +0 -94
- lt_tensor/model_zoo/istft/sg.py +0 -142
- lt_tensor/model_zoo/istft/trainer.py +0 -627
- {lt_tensor-0.0.1a15.dist-info → lt_tensor-0.0.1a16.dist-info}/WHEEL +0 -0
- {lt_tensor-0.0.1a15.dist-info → lt_tensor-0.0.1a16.dist-info}/licenses/LICENSE +0 -0
- {lt_tensor-0.0.1a15.dist-info → lt_tensor-0.0.1a16.dist-info}/top_level.txt +0 -0
lt_tensor/model_zoo/__init__.py
CHANGED
@@ -2,18 +2,20 @@ __all__ = [
|
|
2
2
|
"basic", # basic
|
3
3
|
"residual", # residual
|
4
4
|
"transformer", # transformer
|
5
|
-
"pos_encoder",
|
6
|
-
"fusion",
|
7
|
-
"features",
|
8
|
-
"discriminator",
|
5
|
+
"pos_encoder",
|
6
|
+
"fusion",
|
7
|
+
"features",
|
8
|
+
"discriminator",
|
9
|
+
"audio_models",
|
10
|
+
"hifigan",
|
9
11
|
"istft",
|
10
12
|
]
|
13
|
+
from .audio_models import hifigan, istft
|
11
14
|
from . import (
|
12
15
|
basic,
|
13
|
-
discriminator,
|
14
16
|
features,
|
15
17
|
fusion,
|
16
|
-
|
18
|
+
audio_models,
|
17
19
|
pos_encoder,
|
18
20
|
residual,
|
19
21
|
transformer,
|
@@ -0,0 +1 @@
|
|
1
|
+
from . import diffwave, istft, hifigan
|
@@ -0,0 +1,393 @@
|
|
1
|
+
__all__ = ["HifiganGenerator"]
|
2
|
+
from lt_utils.common import *
|
3
|
+
from lt_tensor.torch_commons import *
|
4
|
+
from lt_tensor.model_zoo.residual import ConvNets
|
5
|
+
from torch.nn import functional as F
|
6
|
+
|
7
|
+
import torch
|
8
|
+
import torch.nn.functional as F
|
9
|
+
import torch.nn as nn
|
10
|
+
|
11
|
+
|
12
|
+
def get_padding(kernel_size, dilation=1):
|
13
|
+
return int((kernel_size * dilation - dilation) / 2)
|
14
|
+
|
15
|
+
|
16
|
+
class ResBlock1(ConvNets):
|
17
|
+
def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)):
|
18
|
+
super().__init__()
|
19
|
+
|
20
|
+
self.convs1 = nn.ModuleList(
|
21
|
+
[
|
22
|
+
weight_norm(
|
23
|
+
nn.Conv1d(
|
24
|
+
channels,
|
25
|
+
channels,
|
26
|
+
kernel_size,
|
27
|
+
1,
|
28
|
+
dilation=dilation[0],
|
29
|
+
padding=get_padding(kernel_size, dilation[0]),
|
30
|
+
)
|
31
|
+
),
|
32
|
+
weight_norm(
|
33
|
+
nn.Conv1d(
|
34
|
+
channels,
|
35
|
+
channels,
|
36
|
+
kernel_size,
|
37
|
+
1,
|
38
|
+
dilation=dilation[1],
|
39
|
+
padding=get_padding(kernel_size, dilation[1]),
|
40
|
+
)
|
41
|
+
),
|
42
|
+
weight_norm(
|
43
|
+
nn.Conv1d(
|
44
|
+
channels,
|
45
|
+
channels,
|
46
|
+
kernel_size,
|
47
|
+
1,
|
48
|
+
dilation=dilation[2],
|
49
|
+
padding=get_padding(kernel_size, dilation[2]),
|
50
|
+
)
|
51
|
+
),
|
52
|
+
]
|
53
|
+
)
|
54
|
+
self.convs1.apply(self.init_weights)
|
55
|
+
|
56
|
+
self.convs2 = nn.ModuleList(
|
57
|
+
[
|
58
|
+
weight_norm(
|
59
|
+
nn.Conv1d(
|
60
|
+
channels,
|
61
|
+
channels,
|
62
|
+
kernel_size,
|
63
|
+
1,
|
64
|
+
dilation=1,
|
65
|
+
padding=get_padding(kernel_size, 1),
|
66
|
+
)
|
67
|
+
),
|
68
|
+
weight_norm(
|
69
|
+
nn.Conv1d(
|
70
|
+
channels,
|
71
|
+
channels,
|
72
|
+
kernel_size,
|
73
|
+
1,
|
74
|
+
dilation=1,
|
75
|
+
padding=get_padding(kernel_size, 1),
|
76
|
+
)
|
77
|
+
),
|
78
|
+
weight_norm(
|
79
|
+
nn.Conv1d(
|
80
|
+
channels,
|
81
|
+
channels,
|
82
|
+
kernel_size,
|
83
|
+
1,
|
84
|
+
dilation=1,
|
85
|
+
padding=get_padding(kernel_size, 1),
|
86
|
+
)
|
87
|
+
),
|
88
|
+
]
|
89
|
+
)
|
90
|
+
self.convs2.apply(self.init_weights)
|
91
|
+
self.activation = nn.LeakyReLU(0.1)
|
92
|
+
|
93
|
+
def forward(self, x):
|
94
|
+
for c1, c2 in zip(self.convs1, self.convs2):
|
95
|
+
xt = c1(self.activation(x))
|
96
|
+
xt = c2(self.activation(xt))
|
97
|
+
x = xt + x
|
98
|
+
return x
|
99
|
+
|
100
|
+
def remove_weight_norm(self):
|
101
|
+
for l in self.convs1:
|
102
|
+
remove_weight_norm(l)
|
103
|
+
for l in self.convs2:
|
104
|
+
remove_weight_norm(l)
|
105
|
+
|
106
|
+
|
107
|
+
class ResBlock2(ConvNets):
|
108
|
+
def __init__(self, channels, kernel_size=3, dilation=(1, 3)):
|
109
|
+
super().__init__()
|
110
|
+
self.convs = nn.ModuleList(
|
111
|
+
[
|
112
|
+
weight_norm(
|
113
|
+
nn.Conv1d(
|
114
|
+
channels,
|
115
|
+
channels,
|
116
|
+
kernel_size,
|
117
|
+
1,
|
118
|
+
dilation=dilation[0],
|
119
|
+
padding=get_padding(kernel_size, dilation[0]),
|
120
|
+
)
|
121
|
+
),
|
122
|
+
weight_norm(
|
123
|
+
nn.Conv1d(
|
124
|
+
channels,
|
125
|
+
channels,
|
126
|
+
kernel_size,
|
127
|
+
1,
|
128
|
+
dilation=dilation[1],
|
129
|
+
padding=get_padding(kernel_size, dilation[1]),
|
130
|
+
)
|
131
|
+
),
|
132
|
+
]
|
133
|
+
)
|
134
|
+
self.convs.apply(self.init_weights)
|
135
|
+
self.activation = nn.LeakyReLU(0.1)
|
136
|
+
|
137
|
+
def forward(self, x):
|
138
|
+
for c in self.convs:
|
139
|
+
xt = c(self.activation(x))
|
140
|
+
x = xt + x
|
141
|
+
return x
|
142
|
+
|
143
|
+
|
144
|
+
class HifiganGenerator(ConvNets):
|
145
|
+
def __init__(self, h):
|
146
|
+
super().__init__()
|
147
|
+
self.h = h
|
148
|
+
self.num_kernels = len(h.resblock_kernel_sizes)
|
149
|
+
self.num_upsamples = len(h.upsample_rates)
|
150
|
+
self.conv_pre = weight_norm(
|
151
|
+
nn.Conv1d(80, h.upsample_initial_channel, 7, 1, padding=3)
|
152
|
+
)
|
153
|
+
resblock = ResBlock1 if h.resblock == "1" else ResBlock2
|
154
|
+
self.activation = nn.LeakyReLU(0.1)
|
155
|
+
self.ups = nn.ModuleList()
|
156
|
+
for i, (u, k) in enumerate(zip(h.upsample_rates, h.upsample_kernel_sizes)):
|
157
|
+
self.ups.append(
|
158
|
+
weight_norm(
|
159
|
+
nn.ConvTranspose1d(
|
160
|
+
h.upsample_initial_channel // (2**i),
|
161
|
+
h.upsample_initial_channel // (2 ** (i + 1)),
|
162
|
+
k,
|
163
|
+
u,
|
164
|
+
padding=(k - u) // 2,
|
165
|
+
)
|
166
|
+
)
|
167
|
+
)
|
168
|
+
|
169
|
+
self.resblocks = nn.ModuleList()
|
170
|
+
for i in range(len(self.ups)):
|
171
|
+
ch = h.upsample_initial_channel // (2 ** (i + 1))
|
172
|
+
for j, (k, d) in enumerate(
|
173
|
+
zip(h.resblock_kernel_sizes, h.resblock_dilation_sizes)
|
174
|
+
):
|
175
|
+
self.resblocks.append(resblock(h, ch, k, d))
|
176
|
+
|
177
|
+
self.conv_post = weight_norm(nn.Conv1d(ch, 1, 7, 1, padding=3))
|
178
|
+
self.ups.apply(self.init_weights)
|
179
|
+
self.conv_post.apply(self.init_weights)
|
180
|
+
|
181
|
+
def forward(self, x):
|
182
|
+
x = self.conv_pre(x)
|
183
|
+
for i in range(self.num_upsamples):
|
184
|
+
x = self.ups[i](self.activation(x))
|
185
|
+
xs = None
|
186
|
+
for j in range(self.num_kernels):
|
187
|
+
if xs is None:
|
188
|
+
xs = self.resblocks[i * self.num_kernels + j](x)
|
189
|
+
else:
|
190
|
+
xs += self.resblocks[i * self.num_kernels + j](x)
|
191
|
+
x = xs / self.num_kernels
|
192
|
+
x = self.conv_post(self.activation(x))
|
193
|
+
x = torch.tanh(x)
|
194
|
+
|
195
|
+
return x
|
196
|
+
|
197
|
+
|
198
|
+
class DiscriminatorP(ConvNets):
|
199
|
+
def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
|
200
|
+
super(DiscriminatorP, self).__init__()
|
201
|
+
self.period = period
|
202
|
+
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
203
|
+
self.convs = nn.ModuleList(
|
204
|
+
[
|
205
|
+
norm_f(
|
206
|
+
nn.Conv2d(
|
207
|
+
1,
|
208
|
+
32,
|
209
|
+
(kernel_size, 1),
|
210
|
+
(stride, 1),
|
211
|
+
padding=(get_padding(5, 1), 0),
|
212
|
+
)
|
213
|
+
),
|
214
|
+
norm_f(
|
215
|
+
nn.Conv2d(
|
216
|
+
32,
|
217
|
+
128,
|
218
|
+
(kernel_size, 1),
|
219
|
+
(stride, 1),
|
220
|
+
padding=(get_padding(5, 1), 0),
|
221
|
+
)
|
222
|
+
),
|
223
|
+
norm_f(
|
224
|
+
nn.Conv2d(
|
225
|
+
128,
|
226
|
+
512,
|
227
|
+
(kernel_size, 1),
|
228
|
+
(stride, 1),
|
229
|
+
padding=(get_padding(5, 1), 0),
|
230
|
+
)
|
231
|
+
),
|
232
|
+
norm_f(
|
233
|
+
nn.Conv2d(
|
234
|
+
512,
|
235
|
+
1024,
|
236
|
+
(kernel_size, 1),
|
237
|
+
(stride, 1),
|
238
|
+
padding=(get_padding(5, 1), 0),
|
239
|
+
)
|
240
|
+
),
|
241
|
+
norm_f(nn.Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(2, 0))),
|
242
|
+
]
|
243
|
+
)
|
244
|
+
self.conv_post = norm_f(nn.Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
|
245
|
+
self.activation = nn.LeakyReLU(0.1)
|
246
|
+
|
247
|
+
def forward(self, x):
|
248
|
+
fmap = []
|
249
|
+
|
250
|
+
# 1d to 2d
|
251
|
+
b, c, t = x.shape
|
252
|
+
if t % self.period != 0: # pad first
|
253
|
+
n_pad = self.period - (t % self.period)
|
254
|
+
x = F.pad(x, (0, n_pad), "reflect")
|
255
|
+
t = t + n_pad
|
256
|
+
x = x.view(b, c, t // self.period, self.period)
|
257
|
+
|
258
|
+
for l in self.convs:
|
259
|
+
x = l(x)
|
260
|
+
x = self.activation(x)
|
261
|
+
fmap.append(x)
|
262
|
+
x = self.conv_post(x)
|
263
|
+
fmap.append(x)
|
264
|
+
x = torch.flatten(x, 1, -1)
|
265
|
+
|
266
|
+
return x, fmap
|
267
|
+
|
268
|
+
|
269
|
+
class MultiPeriodDiscriminator(ConvNets):
|
270
|
+
def __init__(self):
|
271
|
+
super(MultiPeriodDiscriminator, self).__init__()
|
272
|
+
self.discriminators = nn.ModuleList(
|
273
|
+
[
|
274
|
+
DiscriminatorP(2),
|
275
|
+
DiscriminatorP(3),
|
276
|
+
DiscriminatorP(5),
|
277
|
+
DiscriminatorP(7),
|
278
|
+
DiscriminatorP(11),
|
279
|
+
]
|
280
|
+
)
|
281
|
+
|
282
|
+
def forward(self, y, y_hat):
|
283
|
+
y_d_rs = []
|
284
|
+
y_d_gs = []
|
285
|
+
fmap_rs = []
|
286
|
+
fmap_gs = []
|
287
|
+
for i, d in enumerate(self.discriminators):
|
288
|
+
y_d_r, fmap_r = d(y)
|
289
|
+
y_d_g, fmap_g = d(y_hat)
|
290
|
+
y_d_rs.append(y_d_r)
|
291
|
+
fmap_rs.append(fmap_r)
|
292
|
+
y_d_gs.append(y_d_g)
|
293
|
+
fmap_gs.append(fmap_g)
|
294
|
+
|
295
|
+
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
296
|
+
|
297
|
+
|
298
|
+
class DiscriminatorS(ConvNets):
|
299
|
+
def __init__(self, use_spectral_norm=False):
|
300
|
+
super(DiscriminatorS, self).__init__()
|
301
|
+
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
302
|
+
self.convs = nn.ModuleList(
|
303
|
+
[
|
304
|
+
norm_f(nn.Conv1d(1, 128, 15, 1, padding=7)),
|
305
|
+
norm_f(nn.Conv1d(128, 128, 41, 2, groups=4, padding=20)),
|
306
|
+
norm_f(nn.Conv1d(128, 256, 41, 2, groups=16, padding=20)),
|
307
|
+
norm_f(nn.Conv1d(256, 512, 41, 4, groups=16, padding=20)),
|
308
|
+
norm_f(nn.Conv1d(512, 1024, 41, 4, groups=16, padding=20)),
|
309
|
+
norm_f(nn.Conv1d(1024, 1024, 41, 1, groups=16, padding=20)),
|
310
|
+
norm_f(nn.Conv1d(1024, 1024, 5, 1, padding=2)),
|
311
|
+
]
|
312
|
+
)
|
313
|
+
self.conv_post = norm_f(nn.Conv1d(1024, 1, 3, 1, padding=1))
|
314
|
+
self.activation = nn.LeakyReLU(0.1)
|
315
|
+
|
316
|
+
def forward(self, x):
|
317
|
+
fmap = []
|
318
|
+
for l in self.convs:
|
319
|
+
x = l(x)
|
320
|
+
x = self.activation(x)
|
321
|
+
fmap.append(x)
|
322
|
+
x = self.conv_post(x)
|
323
|
+
fmap.append(x)
|
324
|
+
x = torch.flatten(x, 1, -1)
|
325
|
+
|
326
|
+
return x, fmap
|
327
|
+
|
328
|
+
|
329
|
+
class MultiScaleDiscriminator(ConvNets):
|
330
|
+
def __init__(self):
|
331
|
+
super(MultiScaleDiscriminator, self).__init__()
|
332
|
+
self.discriminators = nn.ModuleList(
|
333
|
+
[
|
334
|
+
DiscriminatorS(use_spectral_norm=True),
|
335
|
+
DiscriminatorS(),
|
336
|
+
DiscriminatorS(),
|
337
|
+
]
|
338
|
+
)
|
339
|
+
self.meanpools = nn.ModuleList(
|
340
|
+
[nn.AvgPool1d(4, 2, padding=2), nn.AvgPool1d(4, 2, padding=2)]
|
341
|
+
)
|
342
|
+
|
343
|
+
def forward(self, y, y_hat):
|
344
|
+
y_d_rs = []
|
345
|
+
y_d_gs = []
|
346
|
+
fmap_rs = []
|
347
|
+
fmap_gs = []
|
348
|
+
for i, d in enumerate(self.discriminators):
|
349
|
+
if i != 0:
|
350
|
+
y = self.meanpools[i - 1](y)
|
351
|
+
y_hat = self.meanpools[i - 1](y_hat)
|
352
|
+
y_d_r, fmap_r = d(y)
|
353
|
+
y_d_g, fmap_g = d(y_hat)
|
354
|
+
y_d_rs.append(y_d_r)
|
355
|
+
fmap_rs.append(fmap_r)
|
356
|
+
y_d_gs.append(y_d_g)
|
357
|
+
fmap_gs.append(fmap_g)
|
358
|
+
|
359
|
+
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
360
|
+
|
361
|
+
|
362
|
+
def feature_loss(fmap_r, fmap_g):
|
363
|
+
loss = 0
|
364
|
+
for dr, dg in zip(fmap_r, fmap_g):
|
365
|
+
for rl, gl in zip(dr, dg):
|
366
|
+
loss += torch.mean(torch.abs(rl - gl))
|
367
|
+
|
368
|
+
return loss * 2
|
369
|
+
|
370
|
+
|
371
|
+
def discriminator_loss(disc_real_outputs, disc_generated_outputs):
|
372
|
+
loss = 0
|
373
|
+
r_losses = []
|
374
|
+
g_losses = []
|
375
|
+
for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
|
376
|
+
r_loss = torch.mean((1 - dr) ** 2)
|
377
|
+
g_loss = torch.mean(dg**2)
|
378
|
+
loss += r_loss + g_loss
|
379
|
+
r_losses.append(r_loss.item())
|
380
|
+
g_losses.append(g_loss.item())
|
381
|
+
|
382
|
+
return loss, r_losses, g_losses
|
383
|
+
|
384
|
+
|
385
|
+
def generator_loss(disc_outputs):
|
386
|
+
loss = 0
|
387
|
+
gen_losses = []
|
388
|
+
for dg in disc_outputs:
|
389
|
+
l = torch.mean((1 - dg) ** 2)
|
390
|
+
gen_losses.append(l)
|
391
|
+
loss += l
|
392
|
+
|
393
|
+
return loss, gen_losses
|