lt-tensor 0.0.1a14__py3-none-any.whl → 0.0.1a15__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- lt_tensor/datasets/audio.py +23 -6
- lt_tensor/model_base.py +163 -123
- lt_tensor/model_zoo/diffwave/__init__.py +0 -0
- lt_tensor/model_zoo/diffwave/model.py +200 -0
- lt_tensor/model_zoo/diffwave/params.py +58 -0
- lt_tensor/model_zoo/discriminator.py +269 -151
- lt_tensor/model_zoo/features.py +102 -11
- lt_tensor/model_zoo/istft/generator.py +6 -2
- lt_tensor/model_zoo/istft/trainer.py +16 -7
- lt_tensor/model_zoo/residual.py +133 -64
- {lt_tensor-0.0.1a14.dist-info → lt_tensor-0.0.1a15.dist-info}/METADATA +1 -1
- {lt_tensor-0.0.1a14.dist-info → lt_tensor-0.0.1a15.dist-info}/RECORD +15 -12
- {lt_tensor-0.0.1a14.dist-info → lt_tensor-0.0.1a15.dist-info}/WHEEL +0 -0
- {lt_tensor-0.0.1a14.dist-info → lt_tensor-0.0.1a15.dist-info}/licenses/LICENSE +0 -0
- {lt_tensor-0.0.1a14.dist-info → lt_tensor-0.0.1a15.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,58 @@
|
|
1
|
+
# Copyright 2020 LMNT, Inc. All Rights Reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
|
16
|
+
import numpy as np
|
17
|
+
|
18
|
+
|
19
|
+
class AttrDict(dict):
|
20
|
+
def __init__(self, *args, **kwargs):
|
21
|
+
super(AttrDict, self).__init__(*args, **kwargs)
|
22
|
+
self.__dict__ = self
|
23
|
+
|
24
|
+
def override(self, attrs):
|
25
|
+
if isinstance(attrs, dict):
|
26
|
+
self.__dict__.update(**attrs)
|
27
|
+
elif isinstance(attrs, (list, tuple, set)):
|
28
|
+
for attr in attrs:
|
29
|
+
self.override(attr)
|
30
|
+
elif attrs is not None:
|
31
|
+
raise NotImplementedError
|
32
|
+
return self
|
33
|
+
|
34
|
+
|
35
|
+
params = AttrDict(
|
36
|
+
# Training params
|
37
|
+
batch_size=16,
|
38
|
+
learning_rate=2e-4,
|
39
|
+
max_grad_norm=None,
|
40
|
+
|
41
|
+
# Data params
|
42
|
+
sample_rate=22050,
|
43
|
+
n_mels=80,
|
44
|
+
n_fft=1024,
|
45
|
+
hop_samples=256,
|
46
|
+
crop_mel_frames=62, # Probably an error in paper.
|
47
|
+
|
48
|
+
# Model params
|
49
|
+
residual_layers=30,
|
50
|
+
residual_channels=64,
|
51
|
+
dilation_cycle_length=10,
|
52
|
+
unconditional = False,
|
53
|
+
noise_schedule=np.linspace(1e-4, 0.05, 50).tolist(),
|
54
|
+
inference_noise_schedule=[0.0001, 0.001, 0.01, 0.05, 0.2, 0.5],
|
55
|
+
|
56
|
+
# unconditional sample len
|
57
|
+
audio_len = 22050*5, # unconditional_synthesis_samples
|
58
|
+
)
|
@@ -2,85 +2,118 @@ from lt_tensor.torch_commons import *
|
|
2
2
|
import torch.nn.functional as F
|
3
3
|
from lt_tensor.model_base import Model
|
4
4
|
from lt_utils.common import *
|
5
|
+
from einops import rearrange
|
6
|
+
import torchaudio
|
5
7
|
|
6
8
|
|
7
|
-
|
8
|
-
|
9
|
-
|
10
|
-
|
11
|
-
|
12
|
-
|
13
|
-
stride: int = 3,
|
14
|
-
):
|
9
|
+
def get_padding(ks, d):
|
10
|
+
return int((ks * d - d) / 2)
|
11
|
+
|
12
|
+
|
13
|
+
class DiscriminatorP(Model):
|
14
|
+
def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
|
15
15
|
super().__init__()
|
16
16
|
self.period = period
|
17
|
-
|
18
|
-
self.kernel_size = kernel_size
|
19
|
-
self.norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
20
|
-
|
21
|
-
self.channels = [32, 128, 512, 1024, 1024]
|
22
|
-
self.first_pass = nn.Sequential(
|
23
|
-
self.norm_f(
|
24
|
-
nn.Conv2d(
|
25
|
-
1, self.channels[0], (kernel_size, 1), (stride, 1), padding=(2, 0)
|
26
|
-
)
|
27
|
-
),
|
28
|
-
nn.LeakyReLU(0.1),
|
29
|
-
)
|
30
|
-
|
17
|
+
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
31
18
|
self.convs = nn.ModuleList(
|
32
19
|
[
|
33
|
-
|
34
|
-
|
20
|
+
norm_f(
|
21
|
+
nn.Conv2d(
|
22
|
+
1,
|
23
|
+
32,
|
24
|
+
(kernel_size, 1),
|
25
|
+
(stride, 1),
|
26
|
+
padding=(get_padding(5, 1), 0),
|
27
|
+
)
|
28
|
+
),
|
29
|
+
norm_f(
|
30
|
+
nn.Conv2d(
|
31
|
+
32,
|
32
|
+
128,
|
33
|
+
(kernel_size, 1),
|
34
|
+
(stride, 1),
|
35
|
+
padding=(get_padding(5, 1), 0),
|
36
|
+
)
|
37
|
+
),
|
38
|
+
norm_f(
|
39
|
+
nn.Conv2d(
|
40
|
+
128,
|
41
|
+
512,
|
42
|
+
(kernel_size, 1),
|
43
|
+
(stride, 1),
|
44
|
+
padding=(get_padding(5, 1), 0),
|
45
|
+
)
|
46
|
+
),
|
47
|
+
norm_f(
|
48
|
+
nn.Conv2d(
|
49
|
+
512,
|
50
|
+
1024,
|
51
|
+
(kernel_size, 1),
|
52
|
+
(stride, 1),
|
53
|
+
padding=(get_padding(5, 1), 0),
|
54
|
+
)
|
55
|
+
),
|
56
|
+
norm_f(nn.Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(2, 0))),
|
35
57
|
]
|
36
58
|
)
|
59
|
+
self.conv_post = norm_f(nn.Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
|
60
|
+
self.activation = nn.LeakyReLU(0.1)
|
37
61
|
|
38
|
-
|
39
|
-
|
40
|
-
|
41
|
-
|
42
|
-
|
43
|
-
|
44
|
-
self.
|
45
|
-
|
46
|
-
|
47
|
-
|
48
|
-
|
49
|
-
|
50
|
-
|
51
|
-
|
52
|
-
)
|
53
|
-
|
62
|
+
def forward(self, x):
|
63
|
+
fmap = []
|
64
|
+
|
65
|
+
# 1d to 2d
|
66
|
+
b, c, t = x.shape
|
67
|
+
if t % self.period != 0: # pad first
|
68
|
+
n_pad = self.period - (t % self.period)
|
69
|
+
x = F.pad(x, (0, n_pad), "reflect")
|
70
|
+
t = t + n_pad
|
71
|
+
x = x.view(b, c, t // self.period, self.period)
|
72
|
+
|
73
|
+
for l in self.convs:
|
74
|
+
x = l(x)
|
75
|
+
x = self.activation(x)
|
76
|
+
fmap.append(x)
|
77
|
+
x = self.conv_post(x)
|
78
|
+
fmap.append(x)
|
79
|
+
x = torch.flatten(x, 1, -1)
|
80
|
+
|
81
|
+
return x, fmap
|
82
|
+
|
83
|
+
|
84
|
+
class MultiPeriodDiscriminator(Model):
|
85
|
+
def __init__(self):
|
86
|
+
super().__init__()
|
87
|
+
self.discriminators = nn.ModuleList(
|
88
|
+
[
|
89
|
+
DiscriminatorP(2),
|
90
|
+
DiscriminatorP(3),
|
91
|
+
DiscriminatorP(5),
|
92
|
+
DiscriminatorP(7),
|
93
|
+
DiscriminatorP(11),
|
94
|
+
]
|
54
95
|
)
|
55
96
|
|
56
|
-
def forward(self,
|
57
|
-
|
58
|
-
|
59
|
-
|
60
|
-
|
61
|
-
|
62
|
-
|
63
|
-
|
64
|
-
|
65
|
-
|
66
|
-
|
67
|
-
|
68
|
-
|
69
|
-
|
70
|
-
|
71
|
-
|
72
|
-
|
73
|
-
f_map.append(x)
|
74
|
-
x = self.post_conv(x)
|
75
|
-
f_map.append(x)
|
76
|
-
return x.flatten(1, -1), f_map
|
77
|
-
|
78
|
-
|
79
|
-
class ScaleDiscriminator(nn.Module):
|
97
|
+
def forward(self, y, y_hat):
|
98
|
+
y_d_rs = []
|
99
|
+
y_d_gs = []
|
100
|
+
fmap_rs = []
|
101
|
+
fmap_gs = []
|
102
|
+
for i, d in enumerate(self.discriminators):
|
103
|
+
y_d_r, fmap_r = d(y)
|
104
|
+
y_d_g, fmap_g = d(y_hat)
|
105
|
+
y_d_rs.append(y_d_r)
|
106
|
+
fmap_rs.append(fmap_r)
|
107
|
+
y_d_gs.append(y_d_g)
|
108
|
+
fmap_gs.append(fmap_g)
|
109
|
+
|
110
|
+
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
111
|
+
|
112
|
+
|
113
|
+
class DiscriminatorS(Model):
|
80
114
|
def __init__(self, use_spectral_norm=False):
|
81
115
|
super().__init__()
|
82
116
|
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
83
|
-
self.activation = nn.LeakyReLU(0.1)
|
84
117
|
self.convs = nn.ModuleList(
|
85
118
|
[
|
86
119
|
norm_f(nn.Conv1d(1, 128, 15, 1, padding=7)),
|
@@ -92,105 +125,190 @@ class ScaleDiscriminator(nn.Module):
|
|
92
125
|
norm_f(nn.Conv1d(1024, 1024, 5, 1, padding=2)),
|
93
126
|
]
|
94
127
|
)
|
95
|
-
self.
|
128
|
+
self.activation = nn.LeakyReLU(0.1)
|
129
|
+
self.conv_post = norm_f(nn.Conv1d(1024, 1, 3, 1, padding=1))
|
96
130
|
|
97
|
-
def forward(self, x
|
98
|
-
|
99
|
-
|
100
|
-
|
101
|
-
|
102
|
-
|
103
|
-
|
104
|
-
|
105
|
-
|
106
|
-
|
107
|
-
|
108
|
-
return x.flatten(1, -1), f_map
|
131
|
+
def forward(self, x):
|
132
|
+
fmap = []
|
133
|
+
for l in self.convs:
|
134
|
+
x = l(x)
|
135
|
+
x = self.activation(x)
|
136
|
+
fmap.append(x)
|
137
|
+
x = self.conv_post(x)
|
138
|
+
fmap.append(x)
|
139
|
+
x = torch.flatten(x, 1, -1)
|
140
|
+
|
141
|
+
return x, fmap
|
109
142
|
|
110
143
|
|
111
144
|
class MultiScaleDiscriminator(Model):
|
112
|
-
def __init__(self
|
145
|
+
def __init__(self):
|
113
146
|
super().__init__()
|
114
|
-
self.pooling = nn.AvgPool1d(4, 2, padding=2)
|
115
147
|
self.discriminators = nn.ModuleList(
|
116
|
-
[
|
148
|
+
[
|
149
|
+
DiscriminatorS(use_spectral_norm=True),
|
150
|
+
DiscriminatorS(),
|
151
|
+
DiscriminatorS(),
|
152
|
+
]
|
153
|
+
)
|
154
|
+
self.meanpools = nn.ModuleList(
|
155
|
+
[nn.AvgPool1d(4, 2, padding=2), nn.AvgPool1d(4, 2, padding=2)]
|
117
156
|
)
|
118
157
|
|
119
|
-
def forward(self,
|
120
|
-
|
121
|
-
|
122
|
-
|
123
|
-
|
124
|
-
outputs = []
|
125
|
-
features = []
|
158
|
+
def forward(self, y, y_hat):
|
159
|
+
y_d_rs = []
|
160
|
+
y_d_gs = []
|
161
|
+
fmap_rs = []
|
162
|
+
fmap_gs = []
|
126
163
|
for i, d in enumerate(self.discriminators):
|
127
164
|
if i != 0:
|
128
|
-
|
129
|
-
|
130
|
-
|
131
|
-
|
132
|
-
|
165
|
+
y = self.meanpools[i - 1](y)
|
166
|
+
y_hat = self.meanpools[i - 1](y_hat)
|
167
|
+
y_d_r, fmap_r = d(y)
|
168
|
+
y_d_g, fmap_g = d(y_hat)
|
169
|
+
y_d_rs.append(y_d_r)
|
170
|
+
fmap_rs.append(fmap_r)
|
171
|
+
y_d_gs.append(y_d_g)
|
172
|
+
fmap_gs.append(fmap_g)
|
133
173
|
|
174
|
+
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
134
175
|
|
135
|
-
class MultiPeriodDiscriminator(Model):
|
136
|
-
def __init__(self, periods: List[int] = [2, 3, 5, 7, 11]):
|
137
|
-
super().__init__()
|
138
|
-
self.discriminators = nn.ModuleList([PeriodDiscriminator(p) for p in periods])
|
139
176
|
|
140
|
-
|
177
|
+
class MultiResolutionDiscriminator(Model):
|
178
|
+
"""Source: https://github.com/gemelo-ai/vocos/blob/main/vocos/discriminators.py"""
|
179
|
+
|
180
|
+
def __init__(
|
181
|
+
self,
|
182
|
+
fft_sizes: Tuple[int, ...] = (2048, 1024, 512),
|
183
|
+
num_embeddings: Optional[int] = None,
|
184
|
+
):
|
141
185
|
"""
|
142
|
-
|
143
|
-
|
186
|
+
|
187
|
+
Args:
|
188
|
+
fft_sizes (tuple[int]): Tuple of window lengths for FFT. Defaults to (2048, 1024, 512).
|
189
|
+
num_embeddings (int, optional): Number of embeddings. None means non-conditional discriminator.
|
190
|
+
Defaults to None.
|
144
191
|
"""
|
145
|
-
|
146
|
-
|
147
|
-
|
192
|
+
|
193
|
+
super().__init__()
|
194
|
+
self.discriminators = nn.ModuleList(
|
195
|
+
[
|
196
|
+
DiscriminatorR(window_length=w, num_embeddings=num_embeddings)
|
197
|
+
for w in fft_sizes
|
198
|
+
]
|
199
|
+
)
|
200
|
+
|
201
|
+
def forward(
|
202
|
+
self, y: torch.Tensor, y_hat: torch.Tensor, bandwidth_id: torch.Tensor = None
|
203
|
+
) -> Tuple[
|
204
|
+
List[torch.Tensor],
|
205
|
+
List[torch.Tensor],
|
206
|
+
List[List[torch.Tensor]],
|
207
|
+
List[List[torch.Tensor]],
|
208
|
+
]:
|
209
|
+
y_d_rs = []
|
210
|
+
y_d_gs = []
|
211
|
+
fmap_rs = []
|
212
|
+
fmap_gs = []
|
213
|
+
|
148
214
|
for d in self.discriminators:
|
149
|
-
|
150
|
-
|
151
|
-
|
152
|
-
|
153
|
-
|
154
|
-
|
155
|
-
|
156
|
-
|
157
|
-
|
158
|
-
|
159
|
-
|
160
|
-
|
161
|
-
|
162
|
-
|
163
|
-
|
164
|
-
|
165
|
-
|
166
|
-
|
167
|
-
|
168
|
-
|
169
|
-
|
170
|
-
|
171
|
-
|
172
|
-
|
173
|
-
|
174
|
-
|
175
|
-
|
176
|
-
|
177
|
-
|
178
|
-
|
179
|
-
|
180
|
-
|
181
|
-
|
182
|
-
|
183
|
-
|
184
|
-
|
185
|
-
|
186
|
-
|
187
|
-
|
188
|
-
|
189
|
-
|
190
|
-
|
191
|
-
|
192
|
-
|
193
|
-
|
194
|
-
|
195
|
-
|
196
|
-
|
215
|
+
y_d_r, fmap_r = d(x=y, cond_embedding_id=bandwidth_id)
|
216
|
+
y_d_g, fmap_g = d(x=y_hat, cond_embedding_id=bandwidth_id)
|
217
|
+
y_d_rs.append(y_d_r)
|
218
|
+
fmap_rs.append(fmap_r)
|
219
|
+
y_d_gs.append(y_d_g)
|
220
|
+
fmap_gs.append(fmap_g)
|
221
|
+
|
222
|
+
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
223
|
+
|
224
|
+
|
225
|
+
class DiscriminatorR(Model):
|
226
|
+
def __init__(
|
227
|
+
self,
|
228
|
+
window_length: int,
|
229
|
+
num_embeddings: Optional[int] = None,
|
230
|
+
channels: int = 32,
|
231
|
+
hop_factor: float = 0.25,
|
232
|
+
bands: Tuple[Tuple[float, float], ...] = (
|
233
|
+
(0.0, 0.1),
|
234
|
+
(0.1, 0.25),
|
235
|
+
(0.25, 0.5),
|
236
|
+
(0.5, 0.75),
|
237
|
+
(0.75, 1.0),
|
238
|
+
),
|
239
|
+
):
|
240
|
+
super().__init__()
|
241
|
+
self.window_length = window_length
|
242
|
+
self.hop_factor = hop_factor
|
243
|
+
self.spec_fn = torchaudio.transforms.Spectrogram(
|
244
|
+
n_fft=window_length,
|
245
|
+
hop_length=int(window_length * hop_factor),
|
246
|
+
win_length=window_length,
|
247
|
+
power=None,
|
248
|
+
)
|
249
|
+
n_fft = window_length // 2 + 1
|
250
|
+
bands = [(int(b[0] * n_fft), int(b[1] * n_fft)) for b in bands]
|
251
|
+
self.bands = bands
|
252
|
+
convs = lambda: nn.ModuleList(
|
253
|
+
[
|
254
|
+
weight_norm(nn.Conv2d(2, channels, (3, 9), (1, 1), padding=(1, 4))),
|
255
|
+
weight_norm(
|
256
|
+
nn.Conv2d(channels, channels, (3, 9), (1, 2), padding=(1, 4))
|
257
|
+
),
|
258
|
+
weight_norm(
|
259
|
+
nn.Conv2d(channels, channels, (3, 9), (1, 2), padding=(1, 4))
|
260
|
+
),
|
261
|
+
weight_norm(
|
262
|
+
nn.Conv2d(channels, channels, (3, 9), (1, 2), padding=(1, 4))
|
263
|
+
),
|
264
|
+
weight_norm(
|
265
|
+
nn.Conv2d(channels, channels, (3, 3), (1, 1), padding=(1, 1))
|
266
|
+
),
|
267
|
+
]
|
268
|
+
)
|
269
|
+
self.band_convs = nn.ModuleList([convs() for _ in range(len(self.bands))])
|
270
|
+
|
271
|
+
if num_embeddings is not None:
|
272
|
+
self.emb = torch.nn.Embedding(
|
273
|
+
num_embeddings=num_embeddings, embedding_dim=channels
|
274
|
+
)
|
275
|
+
torch.nn.init.zeros_(self.emb.weight)
|
276
|
+
|
277
|
+
self.conv_post = weight_norm(
|
278
|
+
nn.Conv2d(channels, 1, (3, 3), (1, 1), padding=(1, 1))
|
279
|
+
)
|
280
|
+
|
281
|
+
def spectrogram(self, x):
|
282
|
+
# Remove DC offset
|
283
|
+
x = x - x.mean(dim=-1, keepdims=True)
|
284
|
+
# Peak normalize the volume of input audio
|
285
|
+
x = 0.8 * x / (x.abs().max(dim=-1, keepdim=True)[0] + 1e-9)
|
286
|
+
x = self.spec_fn(x)
|
287
|
+
x = torch.view_as_real(x)
|
288
|
+
x = rearrange(x, "b f t c -> b c t f")
|
289
|
+
# Split into bands
|
290
|
+
x_bands = [x[..., b[0] : b[1]] for b in self.bands]
|
291
|
+
return x_bands
|
292
|
+
|
293
|
+
def forward(self, x: torch.Tensor, cond_embedding_id: torch.Tensor = None):
|
294
|
+
x_bands = self.spectrogram(x)
|
295
|
+
fmap = []
|
296
|
+
x = []
|
297
|
+
for band, stack in zip(x_bands, self.band_convs):
|
298
|
+
for i, layer in enumerate(stack):
|
299
|
+
band = layer(band)
|
300
|
+
band = torch.nn.functional.leaky_relu(band, 0.1)
|
301
|
+
if i > 0:
|
302
|
+
fmap.append(band)
|
303
|
+
x.append(band)
|
304
|
+
x = torch.cat(x, dim=-1)
|
305
|
+
if cond_embedding_id is not None:
|
306
|
+
emb = self.emb(cond_embedding_id)
|
307
|
+
h = (emb.view(1, -1, 1, 1) * x).sum(dim=1, keepdims=True)
|
308
|
+
else:
|
309
|
+
h = 0
|
310
|
+
x = self.conv_post(x)
|
311
|
+
fmap.append(x)
|
312
|
+
x += h
|
313
|
+
|
314
|
+
return x, fmap
|
lt_tensor/model_zoo/features.py
CHANGED
@@ -323,8 +323,11 @@ class AudioEncoder(Model):
|
|
323
323
|
|
324
324
|
def __init__(
|
325
325
|
self,
|
326
|
-
channels: int
|
326
|
+
channels: int,
|
327
327
|
alpha: float = 4.0,
|
328
|
+
feat_channels: int = 64,
|
329
|
+
out_features: Optional[int] = None,
|
330
|
+
out_channels: int = 1,
|
328
331
|
interp_mode: Literal[
|
329
332
|
"nearest",
|
330
333
|
"linear",
|
@@ -338,16 +341,60 @@ class AudioEncoder(Model):
|
|
338
341
|
|
339
342
|
self.net = nn.Sequential(
|
340
343
|
nn.Conv1d(
|
341
|
-
channels,
|
344
|
+
channels, feat_channels, kernel_size=3, stride=1, padding=5, groups=1
|
342
345
|
),
|
343
346
|
nn.LeakyReLU(0.1),
|
344
|
-
nn.Conv1d(
|
347
|
+
nn.Conv1d(
|
348
|
+
feat_channels,
|
349
|
+
feat_channels,
|
350
|
+
kernel_size=3,
|
351
|
+
stride=2,
|
352
|
+
padding=1,
|
353
|
+
groups=feat_channels,
|
354
|
+
),
|
355
|
+
nn.LeakyReLU(0.1),
|
356
|
+
nn.Conv1d(
|
357
|
+
feat_channels,
|
358
|
+
feat_channels,
|
359
|
+
kernel_size=3,
|
360
|
+
stride=1,
|
361
|
+
padding=1,
|
362
|
+
groups=feat_channels // 8,
|
363
|
+
),
|
364
|
+
nn.LeakyReLU(0.1),
|
365
|
+
nn.Conv1d(
|
366
|
+
feat_channels,
|
367
|
+
feat_channels,
|
368
|
+
kernel_size=7,
|
369
|
+
stride=1,
|
370
|
+
padding=1,
|
371
|
+
groups=1,
|
372
|
+
),
|
345
373
|
)
|
346
|
-
self.fc = nn.Linear(
|
374
|
+
self.fc = nn.Linear(feat_channels, channels)
|
375
|
+
self.feat_channels = feat_channels
|
347
376
|
self.activation = activation
|
348
377
|
self.channels = channels
|
349
378
|
self.mode = interp_mode
|
350
379
|
self.alpha = alpha
|
380
|
+
self.post_conv = nn.Conv1d(
|
381
|
+
channels,
|
382
|
+
out_channels,
|
383
|
+
kernel_size=1,
|
384
|
+
stride=1,
|
385
|
+
padding=0,
|
386
|
+
dilation=1,
|
387
|
+
groups=1,
|
388
|
+
bias=True,
|
389
|
+
)
|
390
|
+
if out_features is not None:
|
391
|
+
self.format_out = lambda tensor: F.interpolate(
|
392
|
+
tensor,
|
393
|
+
size=out_features,
|
394
|
+
mode=interp_mode,
|
395
|
+
)
|
396
|
+
else:
|
397
|
+
self.format_out = nn.Identity()
|
351
398
|
|
352
399
|
def forward(self, mels: Tensor, cr_audio: Tensor):
|
353
400
|
sin = torch.asin(cr_audio)
|
@@ -367,14 +414,20 @@ class AudioEncoder(Model):
|
|
367
414
|
.contiguous()
|
368
415
|
)
|
369
416
|
x = self.activation(x)
|
370
|
-
|
417
|
+
|
418
|
+
xt = self.fc(x).transpose(-1, -2)
|
419
|
+
out = self.post_conv(xt)
|
420
|
+
return self.format_out(out)
|
371
421
|
|
372
422
|
|
373
423
|
class AudioEncoderAttn(Model):
|
374
424
|
def __init__(
|
375
425
|
self,
|
376
|
-
channels: int
|
426
|
+
channels: int,
|
427
|
+
feat_channels: int = 64,
|
377
428
|
alpha: float = 4.0,
|
429
|
+
out_channels: Optional[int] = None,
|
430
|
+
out_features: int = 1,
|
378
431
|
interp_mode: Literal[
|
379
432
|
"nearest",
|
380
433
|
"linear",
|
@@ -388,16 +441,54 @@ class AudioEncoderAttn(Model):
|
|
388
441
|
|
389
442
|
self.net = nn.Sequential(
|
390
443
|
nn.Conv1d(
|
391
|
-
channels,
|
444
|
+
channels, feat_channels, kernel_size=3, stride=1, padding=1, groups=1
|
445
|
+
),
|
446
|
+
nn.LeakyReLU(0.1),
|
447
|
+
nn.Conv1d(
|
448
|
+
feat_channels,
|
449
|
+
feat_channels,
|
450
|
+
kernel_size=3,
|
451
|
+
stride=2,
|
452
|
+
padding=5,
|
453
|
+
groups=feat_channels,
|
392
454
|
),
|
393
455
|
nn.LeakyReLU(0.1),
|
394
|
-
nn.Conv1d(
|
456
|
+
nn.Conv1d(
|
457
|
+
feat_channels,
|
458
|
+
feat_channels,
|
459
|
+
kernel_size=3,
|
460
|
+
stride=1,
|
461
|
+
padding=1,
|
462
|
+
groups=feat_channels // 8,
|
463
|
+
),
|
464
|
+
nn.LeakyReLU(0.1),
|
465
|
+
nn.Conv1d(
|
466
|
+
feat_channels, channels, kernel_size=7, stride=1, padding=1, groups=1
|
467
|
+
),
|
395
468
|
)
|
396
469
|
self.fusion = CrossAttentionFusion(channels, channels, 2, d_model=channels)
|
397
470
|
self.channels = channels
|
398
471
|
self.mode = interp_mode
|
399
472
|
self.alpha = alpha
|
400
473
|
self.activation = activation
|
474
|
+
self.post_conv = nn.Conv1d(
|
475
|
+
channels,
|
476
|
+
out_channels,
|
477
|
+
kernel_size=1,
|
478
|
+
stride=1,
|
479
|
+
padding=0,
|
480
|
+
dilation=1,
|
481
|
+
groups=1,
|
482
|
+
bias=True,
|
483
|
+
)
|
484
|
+
if out_features is not None:
|
485
|
+
self.format_out = lambda tensor: F.interpolate(
|
486
|
+
tensor,
|
487
|
+
size=out_features,
|
488
|
+
mode=interp_mode,
|
489
|
+
)
|
490
|
+
else:
|
491
|
+
self.format_out = nn.Identity()
|
401
492
|
|
402
493
|
def forward(self, mels: Tensor, cr_audio: Tensor):
|
403
494
|
sin = torch.asin(cr_audio)
|
@@ -408,9 +499,9 @@ class AudioEncoderAttn(Model):
|
|
408
499
|
)
|
409
500
|
x = self.activation(self.net(mod))
|
410
501
|
x = F.interpolate(x, size=mels.shape[-1], mode=self.mode)
|
411
|
-
|
412
|
-
# Ensure contiguous before transpose
|
413
502
|
x_t = x.transpose(-2, -1).contiguous()
|
414
503
|
mels_t = mels.transpose(-2, -1).contiguous()
|
415
504
|
|
416
|
-
|
505
|
+
xt = self.fusion(x_t, mels_t).transpose(-2, -1)
|
506
|
+
out = self.post_conv(xt)
|
507
|
+
return self.format_out(out)
|