lt-tensor 0.0.1a11__py3-none-any.whl → 0.0.1a13__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- lt_tensor/__init__.py +2 -0
- lt_tensor/config_templates.py +97 -0
- lt_tensor/datasets/audio.py +149 -40
- lt_tensor/losses.py +1 -1
- lt_tensor/math_ops.py +1 -1
- lt_tensor/misc_utils.py +108 -2
- lt_tensor/model_base.py +157 -203
- lt_tensor/model_zoo/__init__.py +18 -9
- lt_tensor/model_zoo/{bsc.py → basic.py} +124 -8
- lt_tensor/model_zoo/{disc.py → discriminator.py} +1 -1
- lt_tensor/model_zoo/features.py +416 -0
- lt_tensor/model_zoo/fusion.py +164 -0
- lt_tensor/model_zoo/istft/__init__.py +5 -0
- lt_tensor/model_zoo/{istft.py → istft/generator.py} +67 -25
- lt_tensor/model_zoo/istft/sg.py +142 -0
- lt_tensor/model_zoo/istft/trainer.py +475 -0
- lt_tensor/model_zoo/{pos.py → pos_encoder.py} +2 -2
- lt_tensor/model_zoo/residual.py +217 -0
- lt_tensor/model_zoo/{tfrms.py → transformer.py} +4 -4
- lt_tensor/noise_tools.py +2 -2
- lt_tensor/processors/audio.py +299 -90
- lt_tensor/transform.py +32 -48
- {lt_tensor-0.0.1a11.dist-info → lt_tensor-0.0.1a13.dist-info}/METADATA +8 -5
- lt_tensor-0.0.1a13.dist-info/RECORD +32 -0
- lt_tensor/model_zoo/fsn.py +0 -67
- lt_tensor/model_zoo/gns.py +0 -185
- lt_tensor/model_zoo/rsd.py +0 -237
- lt_tensor-0.0.1a11.dist-info/RECORD +0 -28
- {lt_tensor-0.0.1a11.dist-info → lt_tensor-0.0.1a13.dist-info}/WHEEL +0 -0
- {lt_tensor-0.0.1a11.dist-info → lt_tensor-0.0.1a13.dist-info}/licenses/LICENSE +0 -0
- {lt_tensor-0.0.1a11.dist-info → lt_tensor-0.0.1a13.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,475 @@
|
|
1
|
+
__all__ = ["AudioSettings", "AudioDecoder"]
|
2
|
+
import gc
|
3
|
+
import math
|
4
|
+
import itertools
|
5
|
+
from lt_utils.common import *
|
6
|
+
import torch.nn.functional as F
|
7
|
+
from lt_tensor.torch_commons import *
|
8
|
+
from lt_tensor.model_base import Model
|
9
|
+
from lt_tensor.misc_utils import log_tensor
|
10
|
+
from lt_utils.misc_utils import log_traceback
|
11
|
+
from lt_tensor.processors import AudioProcessor
|
12
|
+
from lt_tensor.misc_utils import set_seed, clear_cache
|
13
|
+
from lt_utils.type_utils import is_dir, is_pathlike, is_file
|
14
|
+
from lt_tensor.config_templates import updateDict, ModelConfig
|
15
|
+
from lt_tensor.model_zoo.istft.generator import iSTFTGenerator
|
16
|
+
from lt_tensor.model_zoo.residual import ResBlock1D, ConvNets, get_weight_norm
|
17
|
+
from lt_tensor.model_zoo.discriminator import MultiPeriodDiscriminator, MultiScaleDiscriminator
|
18
|
+
|
19
|
+
|
20
|
+
def feature_loss(fmap_r, fmap_g):
|
21
|
+
loss = 0
|
22
|
+
for dr, dg in zip(fmap_r, fmap_g):
|
23
|
+
for rl, gl in zip(dr, dg):
|
24
|
+
loss += torch.mean(torch.abs(rl - gl))
|
25
|
+
return loss * 2
|
26
|
+
|
27
|
+
|
28
|
+
def generator_adv_loss(disc_outputs):
|
29
|
+
loss = 0
|
30
|
+
for dg in disc_outputs:
|
31
|
+
l = torch.mean((1 - dg) ** 2)
|
32
|
+
|
33
|
+
loss += l
|
34
|
+
return loss
|
35
|
+
|
36
|
+
|
37
|
+
def discriminator_loss(disc_real_outputs, disc_generated_outputs):
|
38
|
+
loss = 0
|
39
|
+
|
40
|
+
for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
|
41
|
+
r_loss = torch.mean((1 - dr) ** 2)
|
42
|
+
g_loss = torch.mean(dg**2)
|
43
|
+
loss += r_loss + g_loss
|
44
|
+
return loss
|
45
|
+
|
46
|
+
|
47
|
+
"""def feature_loss(fmap_r, fmap_g):
|
48
|
+
loss = 0
|
49
|
+
for dr, dg in zip(fmap_r, fmap_g):
|
50
|
+
for rl, gl in zip(dr, dg):
|
51
|
+
loss += torch.mean(torch.abs(rl - gl))
|
52
|
+
return loss * 2
|
53
|
+
|
54
|
+
|
55
|
+
def generator_adv_loss(fake_preds):
|
56
|
+
loss = 0.0
|
57
|
+
for f in fake_preds:
|
58
|
+
loss += torch.mean((f - 1.0) ** 2)
|
59
|
+
return loss
|
60
|
+
|
61
|
+
|
62
|
+
def discriminator_loss(real_preds, fake_preds):
|
63
|
+
loss = 0.0
|
64
|
+
for r, f in zip(real_preds, fake_preds):
|
65
|
+
loss += torch.mean((r - 1.0) ** 2) + torch.mean(f**2)
|
66
|
+
return loss
|
67
|
+
"""
|
68
|
+
|
69
|
+
|
70
|
+
class AudioSettings(ModelConfig):
|
71
|
+
def __init__(
|
72
|
+
self,
|
73
|
+
n_mels: int = 80,
|
74
|
+
upsample_rates: List[Union[int, List[int]]] = [8, 8],
|
75
|
+
upsample_kernel_sizes: List[Union[int, List[int]]] = [16, 16],
|
76
|
+
upsample_initial_channel: int = 512,
|
77
|
+
resblock_kernel_sizes: List[Union[int, List[int]]] = [3, 7, 11],
|
78
|
+
resblock_dilation_sizes: List[Union[int, List[int]]] = [
|
79
|
+
[1, 3, 5],
|
80
|
+
[1, 3, 5],
|
81
|
+
[1, 3, 5],
|
82
|
+
],
|
83
|
+
n_fft: int = 16,
|
84
|
+
activation: nn.Module = nn.LeakyReLU(0.1),
|
85
|
+
msd_layers: int = 3,
|
86
|
+
mpd_periods: List[int] = [2, 3, 5, 7, 11],
|
87
|
+
seed: Optional[int] = None,
|
88
|
+
lr: float = 1e-5,
|
89
|
+
adamw_betas: List[float] = [0.75, 0.98],
|
90
|
+
scheduler_template: Callable[
|
91
|
+
[optim.Optimizer], optim.lr_scheduler.LRScheduler
|
92
|
+
] = lambda optimizer: optim.lr_scheduler.ExponentialLR(optimizer, gamma=0.998),
|
93
|
+
):
|
94
|
+
self.in_channels = n_mels
|
95
|
+
self.upsample_rates = upsample_rates
|
96
|
+
self.upsample_kernel_sizes = upsample_kernel_sizes
|
97
|
+
self.upsample_initial_channel = upsample_initial_channel
|
98
|
+
self.resblock_kernel_sizes = resblock_kernel_sizes
|
99
|
+
self.resblock_dilation_sizes = resblock_dilation_sizes
|
100
|
+
self.n_fft = n_fft
|
101
|
+
self.activation = activation
|
102
|
+
self.mpd_periods = mpd_periods
|
103
|
+
self.msd_layers = msd_layers
|
104
|
+
self.seed = seed
|
105
|
+
self.lr = lr
|
106
|
+
self.adamw_betas = adamw_betas
|
107
|
+
self.scheduler_template = scheduler_template
|
108
|
+
|
109
|
+
|
110
|
+
class AudioDecoder(Model):
|
111
|
+
def __init__(
|
112
|
+
self,
|
113
|
+
audio_processor: AudioProcessor,
|
114
|
+
settings: Optional[AudioSettings] = None,
|
115
|
+
generator: Optional[Union[Model, "iSTFTGenerator"]] = None, # non initalized!
|
116
|
+
):
|
117
|
+
super().__init__()
|
118
|
+
if settings is None:
|
119
|
+
self.settings = AudioSettings()
|
120
|
+
elif isinstance(settings, dict):
|
121
|
+
self.settings = AudioSettings(**settings)
|
122
|
+
elif isinstance(settings, AudioSettings):
|
123
|
+
self.settings = settings
|
124
|
+
else:
|
125
|
+
raise ValueError(
|
126
|
+
"Cannot initialize the waveDecoder with the given settings. "
|
127
|
+
"Use either a dictionary, or the class WaveSettings to setup the settings. "
|
128
|
+
"Alternatively, leave it None to use the default values."
|
129
|
+
)
|
130
|
+
if self.settings.seed is not None:
|
131
|
+
set_seed(self.settings.seed)
|
132
|
+
if generator is None:
|
133
|
+
generator = iSTFTGenerator
|
134
|
+
self.generator: iSTFTGenerator = generator(
|
135
|
+
in_channels=self.settings.in_channels,
|
136
|
+
upsample_rates=self.settings.upsample_rates,
|
137
|
+
upsample_kernel_sizes=self.settings.upsample_kernel_sizes,
|
138
|
+
upsample_initial_channel=self.settings.upsample_initial_channel,
|
139
|
+
resblock_kernel_sizes=self.settings.resblock_kernel_sizes,
|
140
|
+
resblock_dilation_sizes=self.settings.resblock_dilation_sizes,
|
141
|
+
n_fft=self.settings.n_fft,
|
142
|
+
activation=self.settings.activation,
|
143
|
+
)
|
144
|
+
self.generator.eval()
|
145
|
+
self.g_optim = None
|
146
|
+
self.d_optim = None
|
147
|
+
self.gan_training = False
|
148
|
+
self.audio_processor = audio_processor
|
149
|
+
self.register_buffer("msd", None, persistent=False)
|
150
|
+
self.register_buffer("mpd", None, persistent=False)
|
151
|
+
|
152
|
+
def setup_training_mode(self, load_weights_from: Optional[PathLike] = None):
|
153
|
+
"""The location must be path not a file!"""
|
154
|
+
self.finish_training_setup()
|
155
|
+
if self.msd is None:
|
156
|
+
self.msd = MultiScaleDiscriminator(self.settings.msd_layers)
|
157
|
+
if self.mpd is None:
|
158
|
+
self.mpd = MultiPeriodDiscriminator(self.settings.mpd_periods)
|
159
|
+
if load_weights_from is not None:
|
160
|
+
if is_dir(path=load_weights_from, validate=False):
|
161
|
+
try:
|
162
|
+
self.msd.load_weights(Path(load_weights_from, "msd.pt"))
|
163
|
+
except Exception as e:
|
164
|
+
log_traceback(e, "MSD Loading")
|
165
|
+
try:
|
166
|
+
self.mpd.load_weights(Path(load_weights_from, "mpd.pt"))
|
167
|
+
except Exception as e:
|
168
|
+
log_traceback(e, "MPD Loading")
|
169
|
+
|
170
|
+
self.update_schedulers_and_optimizer()
|
171
|
+
self.msd.to(device=self.device)
|
172
|
+
self.mpd.to(device=self.device)
|
173
|
+
|
174
|
+
self.gan_training = True
|
175
|
+
return True
|
176
|
+
|
177
|
+
def update_schedulers_and_optimizer(self):
|
178
|
+
self.g_optim = optim.AdamW(
|
179
|
+
self.generator.parameters(),
|
180
|
+
lr=self.settings.lr,
|
181
|
+
betas=self.settings.adamw_betas,
|
182
|
+
)
|
183
|
+
self.g_scheduler = self.settings.scheduler_template(self.g_optim)
|
184
|
+
if any([self.mpd is None, self.msd is None]):
|
185
|
+
return
|
186
|
+
self.d_optim = optim.AdamW(
|
187
|
+
itertools.chain(self.mpd.parameters(), self.msd.parameters()),
|
188
|
+
lr=self.settings.lr,
|
189
|
+
betas=self.settings.adamw_betas,
|
190
|
+
)
|
191
|
+
self.d_scheduler = self.settings.scheduler_template(self.d_optim)
|
192
|
+
|
193
|
+
def set_lr(self, new_lr: float = 1e-4):
|
194
|
+
if self.g_optim is not None:
|
195
|
+
for groups in self.g_optim.param_groups:
|
196
|
+
groups["lr"] = new_lr
|
197
|
+
|
198
|
+
if self.d_optim is not None:
|
199
|
+
for groups in self.d_optim.param_groups:
|
200
|
+
groups["lr"] = new_lr
|
201
|
+
return self.get_lr()
|
202
|
+
|
203
|
+
def get_lr(self) -> Tuple[float, float]:
|
204
|
+
g = float("nan")
|
205
|
+
d = float("nan")
|
206
|
+
if self.g_optim is not None:
|
207
|
+
g = self.g_optim.param_groups[0]["lr"]
|
208
|
+
if self.d_optim is not None:
|
209
|
+
d = self.d_optim.param_groups[0]["lr"]
|
210
|
+
return g, d
|
211
|
+
|
212
|
+
def save_weights(self, path, replace=True):
|
213
|
+
is_pathlike(path, check_if_empty=True, validate=True)
|
214
|
+
if str(path).endswith(".pt"):
|
215
|
+
path = Path(path).parent
|
216
|
+
else:
|
217
|
+
path = Path(path)
|
218
|
+
self.generator.save_weights(Path(path, "generator.pt"), replace)
|
219
|
+
if self.msd is not None:
|
220
|
+
self.msd.save_weights(Path(path, "msp.pt"), replace)
|
221
|
+
if self.mpd is not None:
|
222
|
+
self.mpd.save_weights(Path(path, "mpd.pt"), replace)
|
223
|
+
|
224
|
+
def load_weights(
|
225
|
+
self,
|
226
|
+
path,
|
227
|
+
raise_if_not_exists=False,
|
228
|
+
strict=True,
|
229
|
+
assign=False,
|
230
|
+
weights_only=False,
|
231
|
+
mmap=None,
|
232
|
+
**torch_loader_kwargs
|
233
|
+
):
|
234
|
+
is_pathlike(path, check_if_empty=True, validate=True)
|
235
|
+
if str(path).endswith(".pt"):
|
236
|
+
path = Path(path)
|
237
|
+
else:
|
238
|
+
path = Path(path, "generator.pt")
|
239
|
+
|
240
|
+
self.generator.load_weights(
|
241
|
+
path,
|
242
|
+
raise_if_not_exists,
|
243
|
+
strict,
|
244
|
+
assign,
|
245
|
+
weights_only,
|
246
|
+
mmap,
|
247
|
+
**torch_loader_kwargs,
|
248
|
+
)
|
249
|
+
|
250
|
+
def finish_training_setup(self):
|
251
|
+
gc.collect()
|
252
|
+
self.mpd = None
|
253
|
+
clear_cache()
|
254
|
+
gc.collect()
|
255
|
+
self.msd = None
|
256
|
+
clear_cache()
|
257
|
+
self.gan_training = False
|
258
|
+
|
259
|
+
def forward(self, mel_spec: Tensor) -> Tuple[Tensor, Tensor]:
|
260
|
+
"""Returns the generated spec and phase"""
|
261
|
+
return self.generator.forward(mel_spec)
|
262
|
+
|
263
|
+
def inference(
|
264
|
+
self,
|
265
|
+
mel_spec: Tensor,
|
266
|
+
return_dict: bool = False,
|
267
|
+
) -> Union[Dict[str, Tensor], Tensor]:
|
268
|
+
spec, phase = super().inference(mel_spec)
|
269
|
+
wave = self.audio_processor.inverse_transform(
|
270
|
+
spec,
|
271
|
+
phase,
|
272
|
+
self.settings.n_fft,
|
273
|
+
hop_length=4,
|
274
|
+
win_length=self.settings.n_fft,
|
275
|
+
)
|
276
|
+
if not return_dict:
|
277
|
+
return wave[:, : wave.shape[-1] - 256]
|
278
|
+
return {
|
279
|
+
"wave": wave[:, : wave.shape[-1] - 256],
|
280
|
+
"spec": spec,
|
281
|
+
"phase": phase,
|
282
|
+
}
|
283
|
+
|
284
|
+
def set_device(self, device: str):
|
285
|
+
self.to(device=device)
|
286
|
+
self.generator.to(device=device)
|
287
|
+
self.audio_processor.to(device=device)
|
288
|
+
self.msd.to(device=device)
|
289
|
+
self.mpd.to(device=device)
|
290
|
+
|
291
|
+
def train_step(
|
292
|
+
self,
|
293
|
+
mels: Tensor,
|
294
|
+
real_audio: Tensor,
|
295
|
+
stft_scale: float = 1.0,
|
296
|
+
mel_scale: float = 1.0,
|
297
|
+
adv_scale: float = 1.0,
|
298
|
+
fm_scale: float = 1.0,
|
299
|
+
fm_add: float = 0.0,
|
300
|
+
is_discriminator_frozen: bool = False,
|
301
|
+
is_generator_frozen: bool = False,
|
302
|
+
):
|
303
|
+
if not self.gan_training:
|
304
|
+
self.setup_training_mode()
|
305
|
+
spec, phase = super().train_step(mels)
|
306
|
+
real_audio = real_audio.squeeze(1)
|
307
|
+
fake_audio = self.audio_processor.inverse_transform(
|
308
|
+
spec,
|
309
|
+
phase,
|
310
|
+
self.settings.n_fft,
|
311
|
+
hop_length=4,
|
312
|
+
win_length=self.settings.n_fft,
|
313
|
+
# length=real_audio.shape[-1]
|
314
|
+
)[:, : real_audio.shape[-1]]
|
315
|
+
|
316
|
+
disc_kwargs = dict(
|
317
|
+
real_audio=real_audio,
|
318
|
+
fake_audio=fake_audio.detach(),
|
319
|
+
am_i_frozen=is_discriminator_frozen,
|
320
|
+
)
|
321
|
+
if is_discriminator_frozen:
|
322
|
+
with torch.no_grad():
|
323
|
+
disc_out = self._discriminator_step(**disc_kwargs)
|
324
|
+
else:
|
325
|
+
disc_out = self._discriminator_step(**disc_kwargs)
|
326
|
+
|
327
|
+
generato_kwargs = dict(
|
328
|
+
mels=mels,
|
329
|
+
real_audio=real_audio,
|
330
|
+
fake_audio=fake_audio,
|
331
|
+
**disc_out,
|
332
|
+
stft_scale=stft_scale,
|
333
|
+
mel_scale=mel_scale,
|
334
|
+
adv_scale=adv_scale,
|
335
|
+
fm_add=fm_add,
|
336
|
+
fm_scale=fm_scale,
|
337
|
+
am_i_frozen=is_generator_frozen,
|
338
|
+
)
|
339
|
+
|
340
|
+
if is_generator_frozen:
|
341
|
+
with torch.no_grad():
|
342
|
+
return self._generator_step(**generato_kwargs)
|
343
|
+
return self._generator_step(**generato_kwargs)
|
344
|
+
|
345
|
+
def _discriminator_step(
|
346
|
+
self,
|
347
|
+
real_audio: Tensor,
|
348
|
+
fake_audio: Tensor,
|
349
|
+
am_i_frozen: bool = False,
|
350
|
+
):
|
351
|
+
# ========== Discriminator Forward Pass ==========
|
352
|
+
|
353
|
+
# MPD
|
354
|
+
real_mpd_preds, _ = self.mpd(real_audio)
|
355
|
+
fake_mpd_preds, _ = self.mpd(fake_audio)
|
356
|
+
# MSD
|
357
|
+
real_msd_preds, _ = self.msd(real_audio)
|
358
|
+
fake_msd_preds, _ = self.msd(fake_audio)
|
359
|
+
|
360
|
+
loss_d_mpd = discriminator_loss(real_mpd_preds, fake_mpd_preds)
|
361
|
+
loss_d_msd = discriminator_loss(real_msd_preds, fake_msd_preds)
|
362
|
+
loss_d = loss_d_mpd + loss_d_msd
|
363
|
+
|
364
|
+
if not am_i_frozen:
|
365
|
+
self.d_optim.zero_grad()
|
366
|
+
loss_d.backward()
|
367
|
+
self.d_optim.step()
|
368
|
+
|
369
|
+
return {
|
370
|
+
"loss_d": loss_d.item(),
|
371
|
+
}
|
372
|
+
|
373
|
+
def _generator_step(
|
374
|
+
self,
|
375
|
+
mels: Tensor,
|
376
|
+
real_audio: Tensor,
|
377
|
+
fake_audio: Tensor,
|
378
|
+
loss_d: float,
|
379
|
+
stft_scale: float = 1.0,
|
380
|
+
mel_scale: float = 1.0,
|
381
|
+
adv_scale: float = 1.0,
|
382
|
+
fm_scale: float = 1.0,
|
383
|
+
fm_add: float = 0.0,
|
384
|
+
am_i_frozen: bool = False,
|
385
|
+
):
|
386
|
+
# ========== Generator Loss ==========
|
387
|
+
real_mpd_feats = self.mpd(real_audio)[1]
|
388
|
+
real_msd_feats = self.msd(real_audio)[1]
|
389
|
+
|
390
|
+
fake_mpd_preds, fake_mpd_feats = self.mpd(fake_audio)
|
391
|
+
fake_msd_preds, fake_msd_feats = self.msd(fake_audio)
|
392
|
+
|
393
|
+
loss_adv_mpd = generator_adv_loss(fake_mpd_preds)
|
394
|
+
loss_adv_msd = generator_adv_loss(fake_msd_preds)
|
395
|
+
loss_fm_mpd = feature_loss(real_mpd_feats, fake_mpd_feats)
|
396
|
+
loss_fm_msd = feature_loss(real_msd_feats, fake_msd_feats)
|
397
|
+
|
398
|
+
loss_stft = self.audio_processor.stft_loss(fake_audio, real_audio) * stft_scale
|
399
|
+
loss_mel = (
|
400
|
+
F.huber_loss(self.audio_processor.compute_mel(fake_audio), mels) * mel_scale
|
401
|
+
)
|
402
|
+
loss_fm = ((loss_fm_mpd + loss_fm_msd) * fm_scale) + fm_add
|
403
|
+
|
404
|
+
loss_adv = (loss_adv_mpd + loss_adv_msd) * adv_scale
|
405
|
+
|
406
|
+
loss_g = loss_adv + loss_fm + loss_stft # + loss_mel
|
407
|
+
if not am_i_frozen:
|
408
|
+
self.g_optim.zero_grad()
|
409
|
+
loss_g.backward()
|
410
|
+
self.g_optim.step()
|
411
|
+
return {
|
412
|
+
"loss_g": loss_g.item(),
|
413
|
+
"loss_d": loss_d,
|
414
|
+
"loss_adv": loss_adv.item(),
|
415
|
+
"loss_fm": loss_fm.item(),
|
416
|
+
"loss_stft": loss_stft.item(),
|
417
|
+
"loss_mel": loss_mel.item(),
|
418
|
+
"lr_g": self.g_optim.param_groups[0]["lr"],
|
419
|
+
"lr_d": self.d_optim.param_groups[0]["lr"],
|
420
|
+
}
|
421
|
+
|
422
|
+
def step_scheduler(
|
423
|
+
self, is_disc_frozen: bool = False, is_generator_frozen: bool = False
|
424
|
+
):
|
425
|
+
if self.d_scheduler is not None and not is_disc_frozen:
|
426
|
+
self.d_scheduler.step()
|
427
|
+
if self.g_scheduler is not None and not is_generator_frozen:
|
428
|
+
self.g_scheduler.step()
|
429
|
+
|
430
|
+
def reset_schedulers(self, lr: Optional[float] = None):
|
431
|
+
"""
|
432
|
+
In case you have adopted another strategy, with this function,
|
433
|
+
it is possible restart the scheduler and set the lr to another value.
|
434
|
+
"""
|
435
|
+
if lr is not None:
|
436
|
+
self.set_lr(lr)
|
437
|
+
if self.d_optim is not None:
|
438
|
+
self.d_scheduler = None
|
439
|
+
self.d_scheduler = self.settings.scheduler_template(self.d_optim)
|
440
|
+
if self.g_optim is not None:
|
441
|
+
self.g_scheduler = None
|
442
|
+
self.g_scheduler = self.settings.scheduler_template(self.g_optim)
|
443
|
+
|
444
|
+
|
445
|
+
class ResBlocks(ConvNets):
|
446
|
+
def __init__(
|
447
|
+
self,
|
448
|
+
channels: int,
|
449
|
+
resblock_kernel_sizes: List[Union[int, List[int]]] = [3, 7, 11],
|
450
|
+
resblock_dilation_sizes: List[Union[int, List[int]]] = [
|
451
|
+
[1, 3, 5],
|
452
|
+
[1, 3, 5],
|
453
|
+
[1, 3, 5],
|
454
|
+
],
|
455
|
+
activation: nn.Module = nn.LeakyReLU(0.1),
|
456
|
+
):
|
457
|
+
super().__init__()
|
458
|
+
self.num_kernels = len(resblock_kernel_sizes)
|
459
|
+
self.rb = nn.ModuleList()
|
460
|
+
self.activation = activation
|
461
|
+
|
462
|
+
for k, j in zip(resblock_kernel_sizes, resblock_dilation_sizes):
|
463
|
+
self.rb.append(ResBlock1D(channels, k, j, activation))
|
464
|
+
|
465
|
+
self.rb.apply(self.init_weights)
|
466
|
+
|
467
|
+
def forward(self, x: torch.Tensor):
|
468
|
+
xs = None
|
469
|
+
for i, block in enumerate(self.rb):
|
470
|
+
if i == 0:
|
471
|
+
xs = block(x)
|
472
|
+
else:
|
473
|
+
xs += block(x)
|
474
|
+
x = xs / self.num_kernels
|
475
|
+
return self.activation(x)
|
@@ -0,0 +1,217 @@
|
|
1
|
+
__all__ = [
|
2
|
+
"spectral_norm_select",
|
3
|
+
"get_weight_norm",
|
4
|
+
"ResBlock1D",
|
5
|
+
"ResBlock2D",
|
6
|
+
"ResBlock1DShuffled",
|
7
|
+
"AdaResBlock1D",
|
8
|
+
]
|
9
|
+
import math
|
10
|
+
from lt_utils.common import *
|
11
|
+
from lt_tensor.torch_commons import *
|
12
|
+
from lt_tensor.model_base import Model
|
13
|
+
from lt_tensor.misc_utils import log_tensor
|
14
|
+
import torch.nn.functional as F
|
15
|
+
from lt_tensor.model_zoo.fusion import AdaFusion1D, AdaIN1D
|
16
|
+
|
17
|
+
|
18
|
+
def spectral_norm_select(module: nn.Module, enabled: bool):
|
19
|
+
if enabled:
|
20
|
+
return spectral_norm(module)
|
21
|
+
return module
|
22
|
+
|
23
|
+
|
24
|
+
def get_weight_norm(norm_type: Optional[Literal["weight", "spectral"]] = None):
|
25
|
+
if not norm_type:
|
26
|
+
return lambda x: x
|
27
|
+
if norm_type == "weight":
|
28
|
+
return lambda x: weight_norm(x)
|
29
|
+
return lambda x: spectral_norm(x)
|
30
|
+
|
31
|
+
|
32
|
+
class ConvNets(Model):
|
33
|
+
def remove_weight_norm(self):
|
34
|
+
for module in self.modules():
|
35
|
+
try:
|
36
|
+
remove_weight_norm(module)
|
37
|
+
except ValueError:
|
38
|
+
pass
|
39
|
+
|
40
|
+
@staticmethod
|
41
|
+
def init_weights(m, mean=0.0, std=0.01):
|
42
|
+
classname = m.__class__.__name__
|
43
|
+
if "Conv" in classname:
|
44
|
+
m.weight.data.normal_(mean, std)
|
45
|
+
|
46
|
+
|
47
|
+
class ResBlock1D(ConvNets):
|
48
|
+
def __init__(
|
49
|
+
self,
|
50
|
+
channels,
|
51
|
+
kernel_size=3,
|
52
|
+
dilation=(1, 3, 5),
|
53
|
+
activation: nn.Module = nn.LeakyReLU(0.1),
|
54
|
+
):
|
55
|
+
super().__init__()
|
56
|
+
|
57
|
+
self.conv_nets = nn.ModuleList(
|
58
|
+
[
|
59
|
+
self._get_conv_layer(i, channels, kernel_size, 1, dilation, activation)
|
60
|
+
for i in range(3)
|
61
|
+
]
|
62
|
+
)
|
63
|
+
self.conv_nets.apply(self.init_weights)
|
64
|
+
self.last_index = len(self.conv_nets) - 1
|
65
|
+
|
66
|
+
def _get_conv_layer(self, id, ch, k, stride, d, actv):
|
67
|
+
get_padding = lambda ks, d: int((ks * d - d) / 2)
|
68
|
+
return nn.Sequential(
|
69
|
+
actv, # 1
|
70
|
+
weight_norm(
|
71
|
+
nn.Conv1d(
|
72
|
+
ch, ch, k, stride, dilation=d[id], padding=get_padding(k, d[id])
|
73
|
+
)
|
74
|
+
), # 2
|
75
|
+
actv, # 3
|
76
|
+
weight_norm(
|
77
|
+
nn.Conv1d(ch, ch, k, stride, dilation=1, padding=get_padding(k, 1))
|
78
|
+
), # 4
|
79
|
+
)
|
80
|
+
|
81
|
+
def forward(self, x: Tensor):
|
82
|
+
for cnn in self.conv_nets:
|
83
|
+
x = cnn(x) + x
|
84
|
+
return x
|
85
|
+
|
86
|
+
|
87
|
+
class ResBlock1DShuffled(ConvNets):
|
88
|
+
def __init__(
|
89
|
+
self,
|
90
|
+
channels,
|
91
|
+
kernel_size=3,
|
92
|
+
dilation=(1, 3, 5),
|
93
|
+
activation: nn.Module = nn.LeakyReLU(0.1),
|
94
|
+
add_channel_shuffle: bool = False, # requires pytorch 2.7.0 +
|
95
|
+
channel_shuffle_groups=1,
|
96
|
+
):
|
97
|
+
super().__init__()
|
98
|
+
|
99
|
+
self.channel_shuffle = (
|
100
|
+
nn.ChannelShuffle(channel_shuffle_groups)
|
101
|
+
if add_channel_shuffle
|
102
|
+
else nn.Identity()
|
103
|
+
)
|
104
|
+
|
105
|
+
self.conv_nets = nn.ModuleList(
|
106
|
+
[
|
107
|
+
self._get_conv_layer(i, channels, kernel_size, 1, dilation, activation)
|
108
|
+
for i in range(3)
|
109
|
+
]
|
110
|
+
)
|
111
|
+
self.conv_nets.apply(self.init_weights)
|
112
|
+
self.last_index = len(self.conv_nets) - 1
|
113
|
+
|
114
|
+
def _get_conv_layer(self, id, ch, k, stride, d, actv):
|
115
|
+
get_padding = lambda ks, d: int((ks * d - d) / 2)
|
116
|
+
return nn.Sequential(
|
117
|
+
actv, # 1
|
118
|
+
weight_norm(
|
119
|
+
nn.Conv1d(
|
120
|
+
ch, ch, k, stride, dilation=d[id], padding=get_padding(k, d[id])
|
121
|
+
)
|
122
|
+
), # 2
|
123
|
+
actv, # 3
|
124
|
+
weight_norm(
|
125
|
+
nn.Conv1d(ch, ch, k, stride, dilation=1, padding=get_padding(k, 1))
|
126
|
+
), # 4
|
127
|
+
)
|
128
|
+
|
129
|
+
def forward(self, x: Tensor):
|
130
|
+
b = x.clone() * 0.5
|
131
|
+
for cnn in self.conv_nets:
|
132
|
+
x = cnn(self.channel_shuffle(x)) + b
|
133
|
+
return x
|
134
|
+
|
135
|
+
|
136
|
+
class ResBlock2D(Model):
|
137
|
+
def __init__(
|
138
|
+
self,
|
139
|
+
in_channels,
|
140
|
+
out_channels,
|
141
|
+
downsample=False,
|
142
|
+
):
|
143
|
+
super().__init__()
|
144
|
+
stride = 2 if downsample else 1
|
145
|
+
|
146
|
+
self.block = nn.Sequential(
|
147
|
+
nn.Conv2d(in_channels, out_channels, 3, stride, 1),
|
148
|
+
nn.LeakyReLU(0.2),
|
149
|
+
nn.Conv2d(out_channels, out_channels, 3, 1, 1),
|
150
|
+
)
|
151
|
+
|
152
|
+
self.skip = nn.Identity()
|
153
|
+
if downsample or in_channels != out_channels:
|
154
|
+
self.skip = spectral_norm_select(
|
155
|
+
nn.Conv2d(in_channels, out_channels, 1, stride)
|
156
|
+
)
|
157
|
+
# on less to be handled every cicle
|
158
|
+
self.sqrt_2 = math.sqrt(2)
|
159
|
+
|
160
|
+
def forward(self, x: Tensor):
|
161
|
+
return (self.block(x) + self.skip(x)) / self.sqrt_2
|
162
|
+
|
163
|
+
|
164
|
+
class AdaResBlock1D(ConvNets):
|
165
|
+
def __init__(
|
166
|
+
self,
|
167
|
+
res_block_channels: int,
|
168
|
+
ada_channel_in: int,
|
169
|
+
kernel_size=3,
|
170
|
+
dilation=(1, 3, 5),
|
171
|
+
activation: nn.Module = nn.LeakyReLU(0.1),
|
172
|
+
):
|
173
|
+
super().__init__()
|
174
|
+
|
175
|
+
self.conv_nets = nn.ModuleList(
|
176
|
+
[
|
177
|
+
self._get_conv_layer(
|
178
|
+
i,
|
179
|
+
res_block_channels,
|
180
|
+
ada_channel_in,
|
181
|
+
kernel_size,
|
182
|
+
1,
|
183
|
+
dilation,
|
184
|
+
)
|
185
|
+
for i in range(3)
|
186
|
+
]
|
187
|
+
)
|
188
|
+
self.conv_nets.apply(self.init_weights)
|
189
|
+
self.last_index = len(self.conv_nets) - 1
|
190
|
+
self.activation = activation
|
191
|
+
|
192
|
+
def _get_conv_layer(self, id, ch, ada_ch, k, stride, d):
|
193
|
+
get_padding = lambda ks, d: int((ks * d - d) / 2)
|
194
|
+
return nn.ModuleDict(
|
195
|
+
dict(
|
196
|
+
norm1=AdaFusion1D(ada_ch, ch),
|
197
|
+
norm2=AdaFusion1D(ada_ch, ch),
|
198
|
+
alpha1=nn.Parameter(torch.ones(1, ada_ch, 1)),
|
199
|
+
alpha2=nn.Parameter(torch.ones(1, ada_ch, 1)),
|
200
|
+
conv1=weight_norm(
|
201
|
+
nn.Conv1d(
|
202
|
+
ch, ch, k, stride, dilation=d[id], padding=get_padding(k, d[id])
|
203
|
+
)
|
204
|
+
), # 2
|
205
|
+
conv2=weight_norm(
|
206
|
+
nn.Conv1d(ch, ch, k, stride, dilation=1, padding=get_padding(k, 1))
|
207
|
+
), # 4
|
208
|
+
)
|
209
|
+
)
|
210
|
+
|
211
|
+
def forward(self, x: torch.Tensor, y: torch.Tensor):
|
212
|
+
for cnn in self.conv_nets:
|
213
|
+
xt = self.activation(cnn["norm1"](x, y, cnn["alpha1"]))
|
214
|
+
xt = cnn["conv1"](xt)
|
215
|
+
xt = self.activation(cnn["norm2"](xt, y, cnn["alpha2"]))
|
216
|
+
x = cnn["conv2"](xt) + x
|
217
|
+
return x
|