lt-tensor 0.0.1a0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,210 @@
1
+ __all__ = [
2
+ "FeedForward",
3
+ "MLP",
4
+ "TimestepEmbedder",
5
+ "GRUEncoder",
6
+ "ConvBlock1D",
7
+ "TemporalPredictor",
8
+ "StyleEncoder",
9
+ "PatchEmbed1D",
10
+ "MultiScaleEncoder1D",
11
+ ]
12
+
13
+ from .._torch_commons import *
14
+ from .._basics import Model
15
+ from ..transform import get_sinusoidal_embedding
16
+
17
+
18
+ class FeedForward(Model):
19
+ def __init__(
20
+ self,
21
+ d_model: int,
22
+ ff_dim: int,
23
+ dropout: float = 0.01,
24
+ activation: nn.Module = nn.LeakyReLU(0.1),
25
+ normalizer: nn.Module = nn.Identity(),
26
+ ):
27
+ """Creates a Feed-Forward Layer, with the chosen activation function and the normalizer."""
28
+ super().__init__()
29
+ self.net = nn.Sequential(
30
+ nn.Linear(d_model, ff_dim),
31
+ activation,
32
+ nn.Dropout(dropout),
33
+ nn.Linear(ff_dim, d_model),
34
+ normalizer,
35
+ )
36
+
37
+ def forward(self, x: Tensor):
38
+ return self.net(x)
39
+
40
+
41
+ class MLP(Model):
42
+ def __init__(
43
+ self,
44
+ d_model: int,
45
+ ff_dim: int,
46
+ n_classes: int,
47
+ dropout: float = 0.01,
48
+ activation: nn.Module = nn.LeakyReLU(0.1),
49
+ ):
50
+ """Creates a MLP block, with the chosen activation function and the normalizer."""
51
+ super().__init__()
52
+ self.net = nn.Sequential(
53
+ nn.Linear(d_model, ff_dim),
54
+ activation,
55
+ nn.Dropout(dropout),
56
+ nn.Linear(ff_dim, n_classes),
57
+ )
58
+
59
+ def forward(self, x: Tensor):
60
+ return self.net(x)
61
+
62
+
63
+ class TimestepEmbedder(Model):
64
+ def __init__(self, dim_emb: int, proj_dim: int):
65
+ super().__init__()
66
+ self.net = nn.Sequential(
67
+ nn.Linear(dim_emb, proj_dim),
68
+ nn.SiLU(),
69
+ nn.Linear(proj_dim, proj_dim),
70
+ )
71
+
72
+ def forward(self, t: torch.Tensor) -> torch.Tensor:
73
+ # t: [B] (long)
74
+ emb = get_sinusoidal_embedding(t, self.net[0].in_features) # [B, dim_emb]
75
+ return self.net(emb) # [B, proj_dim]
76
+
77
+
78
+ class GRUEncoder(Model):
79
+ def __init__(
80
+ self,
81
+ input_dim: int,
82
+ hidden_dim: int,
83
+ num_layers: int = 1,
84
+ bidirectional: bool = False,
85
+ ):
86
+ super().__init__()
87
+ self.gru = nn.GRU(
88
+ input_dim,
89
+ hidden_dim,
90
+ num_layers=num_layers,
91
+ batch_first=True,
92
+ bidirectional=bidirectional,
93
+ )
94
+ self.output_dim = hidden_dim * (2 if bidirectional else 1)
95
+
96
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
97
+ # x: [B, T, input_dim]
98
+ output, _ = self.gru(x) # output: [B, T, hidden_dim*D]
99
+ return output
100
+
101
+
102
+ class ConvBlock1D(Model):
103
+ def __init__(
104
+ self,
105
+ in_channels: int,
106
+ out_channels: int,
107
+ kernel_size: int = 3,
108
+ stride: int = 1,
109
+ norm: bool = True,
110
+ residual: bool = False,
111
+ ):
112
+ super().__init__()
113
+ padding = (kernel_size - 1) // 2
114
+ self.conv = nn.Conv1d(in_channels, out_channels, kernel_size, stride, padding)
115
+ self.norm = nn.BatchNorm1d(out_channels) if norm else nn.Identity()
116
+ self.act = nn.LeakyReLU(0.1)
117
+ self.residual = residual and in_channels == out_channels
118
+
119
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
120
+ y = self.act(self.norm(self.conv(x)))
121
+ return x + y if self.residual else y
122
+
123
+
124
+ class TemporalPredictor(Model):
125
+ def __init__(
126
+ self,
127
+ d_model: int,
128
+ hidden_dim: int = 128,
129
+ n_layers: int = 2,
130
+ dropout: float = 0.1,
131
+ ):
132
+ super().__init__()
133
+ layers = []
134
+ for _ in range(n_layers):
135
+ layers.append(nn.Conv1d(d_model, hidden_dim, kernel_size=3, padding=1))
136
+ layers.append(nn.ReLU())
137
+ layers.append(nn.LayerNorm(hidden_dim))
138
+ layers.append(nn.Dropout(dropout))
139
+ d_model = hidden_dim
140
+ self.network = nn.Sequential(*layers)
141
+ self.proj = nn.Linear(hidden_dim, 1)
142
+
143
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
144
+ # x: [B, T, D]
145
+ x = x.transpose(1, 2) # [B, D, T]
146
+ x = self.network(x) # [B, H, T]
147
+ x = x.transpose(1, 2) # [B, T, H]
148
+ return self.proj(x).squeeze(-1) # [B, T]
149
+
150
+
151
+ class StyleEncoder(Model):
152
+ def __init__(self, in_channels: int = 80, hidden: int = 128, out_dim: int = 256):
153
+ super().__init__()
154
+ self.net = nn.Sequential(
155
+ nn.Conv1d(in_channels, hidden, kernel_size=3, stride=2, padding=1),
156
+ nn.ReLU(),
157
+ nn.Conv1d(hidden, hidden, kernel_size=3, stride=2, padding=1),
158
+ nn.ReLU(),
159
+ nn.AdaptiveAvgPool1d(1),
160
+ )
161
+ self.linear = nn.Linear(hidden, out_dim)
162
+
163
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
164
+ # x: [B, Mels, T]
165
+ x = self.net(x).squeeze(-1) # [B, hidden]
166
+ return self.linear(x) # [B, out_dim]
167
+
168
+
169
+ class PatchEmbed1D(Model):
170
+ def __init__(self, in_channels: int, patch_size: int, embed_dim: int):
171
+ """
172
+ Args:
173
+ in_channels: number of input channels (e.g., mel bins)
174
+ patch_size: number of time-steps per patch
175
+ embed_dim: dimension of the patch embedding
176
+ """
177
+ super().__init__()
178
+ self.patch_size = patch_size
179
+ self.proj = nn.Conv1d(
180
+ in_channels, embed_dim, kernel_size=patch_size, stride=patch_size
181
+ )
182
+
183
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
184
+ # x: [B, C, T]
185
+ x = self.proj(x) # [B, embed_dim, T//patch_size]
186
+ return x.transpose(1, 2) # [B, T_patches, embed_dim]
187
+
188
+
189
+ class MultiScaleEncoder1D(Model):
190
+ def __init__(
191
+ self, in_channels: int, hidden: int, num_layers: int = 4, kernel_size: int = 3
192
+ ):
193
+ super().__init__()
194
+ layers = []
195
+ for i in range(num_layers):
196
+ layers.append(
197
+ nn.Conv1d(
198
+ in_channels if i == 0 else hidden,
199
+ hidden,
200
+ kernel_size=kernel_size,
201
+ dilation=2**i,
202
+ padding=(kernel_size - 1) * (2**i) // 2,
203
+ )
204
+ )
205
+ layers.append(nn.GELU())
206
+ self.net = nn.Sequential(*layers)
207
+
208
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
209
+ # x: [B, C, T]
210
+ return self.net(x) # [B, hidden, T]
@@ -0,0 +1,181 @@
1
+ __all__ = [
2
+ "Downsample1D",
3
+ "Upsample1D",
4
+ "DiffusionUNet",
5
+ "UNetConvBlock1D",
6
+ "UNetUpBlock1D",
7
+ "NoisePredictor1D",
8
+ ]
9
+
10
+ from .._torch_commons import *
11
+ from .._basics import Model
12
+ from .rsd import ResBlock1D
13
+ from ..misc_utils import log_tensor
14
+
15
+
16
+ class Downsample1D(Model):
17
+ def __init__(
18
+ self,
19
+ in_channels: int,
20
+ out_channels: int,
21
+ ):
22
+ super().__init__()
23
+ self.pool = nn.Conv1d(in_channels, out_channels, 4, stride=2, padding=1)
24
+
25
+ def forward(self, x):
26
+ return self.pool(x)
27
+
28
+
29
+ class Upsample1D(Model):
30
+ def __init__(
31
+ self,
32
+ in_channels: int,
33
+ out_channels: int,
34
+ activation=nn.ReLU(inplace=True),
35
+ ):
36
+ super().__init__()
37
+ self.up = nn.Sequential(
38
+ nn.ConvTranspose1d(
39
+ in_channels, out_channels, kernel_size=4, stride=2, padding=1
40
+ ),
41
+ nn.BatchNorm1d(out_channels),
42
+ activation,
43
+ )
44
+
45
+ def forward(self, x):
46
+ return self.up(x)
47
+
48
+
49
+ class DiffusionUNet(Model):
50
+ def __init__(self, in_channels=1, base_channels=64, out_channels=1, depth=4):
51
+ super().__init__()
52
+
53
+ self.depth = depth
54
+ self.encoder_blocks = nn.ModuleList()
55
+ self.downsamples = nn.ModuleList()
56
+ self.upsamples = nn.ModuleList()
57
+ self.decoder_blocks = nn.ModuleList()
58
+ # Keep track of channel sizes per layer for skip connections
59
+ self.channels = [in_channels] # starting input channel
60
+ for i in range(depth):
61
+ enc_in = self.channels[-1]
62
+ enc_out = base_channels * (2**i)
63
+ # Encoder block and downsample
64
+ self.encoder_blocks.append(ResBlock1D(enc_in, enc_out))
65
+ self.downsamples.append(
66
+ Downsample1D(enc_out, enc_out)
67
+ ) # halve time, keep channels
68
+ self.channels.append(enc_out)
69
+ # Bottleneck
70
+ bottleneck_ch = self.channels[-1]
71
+ self.bottleneck = ResBlock1D(bottleneck_ch, bottleneck_ch)
72
+ # Decoder blocks (reverse channel flow)
73
+ for i in reversed(range(depth)):
74
+ skip_ch = self.channels[i + 1] # from encoder
75
+ dec_out = self.channels[i] # match earlier stage's output
76
+ self.upsamples.append(Upsample1D(skip_ch, skip_ch))
77
+ self.decoder_blocks.append(ResBlock1D(skip_ch * 2, dec_out))
78
+ # Final output projection (out_channels)
79
+ self.final = nn.Conv1d(in_channels, out_channels, kernel_size=1)
80
+
81
+ def forward(self, x: Tensor):
82
+ skips = []
83
+
84
+ # Encoder
85
+ for enc, down in zip(self.encoder_blocks, self.downsamples):
86
+ # log_tensor(x, "before enc")
87
+ x = enc(x)
88
+ skips.append(x)
89
+ x = down(x)
90
+
91
+ # Bottleneck
92
+ x = self.bottleneck(x)
93
+
94
+ # Decoder
95
+ for up, dec, skip in zip(self.upsamples, self.decoder_blocks, reversed(skips)):
96
+ x = up(x)
97
+
98
+ # Match lengths via trimming or padding
99
+ if x.shape[-1] > skip.shape[-1]:
100
+ x = x[..., : skip.shape[-1]]
101
+ elif x.shape[-1] < skip.shape[-1]:
102
+ diff = skip.shape[-1] - x.shape[-1]
103
+ x = F.pad(x, (0, diff))
104
+
105
+ x = torch.cat([x, skip], dim=1) # concat on channels
106
+ x = dec(x)
107
+
108
+ # Final 1x1 conv
109
+ return self.final(x)
110
+
111
+
112
+ class UNetConvBlock1D(Model):
113
+ def __init__(self, in_channels: int, out_channels: int, down: bool = True):
114
+ super().__init__()
115
+ self.down = down
116
+ self.conv = nn.Sequential(
117
+ nn.Conv1d(
118
+ in_channels,
119
+ out_channels,
120
+ kernel_size=3,
121
+ stride=2 if down else 1,
122
+ padding=1,
123
+ ),
124
+ nn.BatchNorm1d(out_channels),
125
+ nn.LeakyReLU(0.2),
126
+ nn.Conv1d(out_channels, out_channels, kernel_size=3, padding=1),
127
+ nn.BatchNorm1d(out_channels),
128
+ nn.LeakyReLU(0.2),
129
+ )
130
+ self.downsample = (
131
+ nn.Conv1d(in_channels, out_channels, kernel_size=1, stride=2 if down else 1)
132
+ if in_channels != out_channels
133
+ else nn.Identity()
134
+ )
135
+
136
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
137
+ # x: [B, C, T]
138
+ residual = self.downsample(x)
139
+ return self.conv(x) + residual
140
+
141
+
142
+ class UNetUpBlock1D(Model):
143
+ def __init__(self, in_channels: int, out_channels: int):
144
+ super().__init__()
145
+ self.conv = nn.Sequential(
146
+ nn.Conv1d(in_channels, out_channels, kernel_size=3, padding=1),
147
+ nn.BatchNorm1d(out_channels),
148
+ nn.LeakyReLU(0.2),
149
+ nn.Conv1d(out_channels, out_channels, kernel_size=3, padding=1),
150
+ nn.BatchNorm1d(out_channels),
151
+ nn.LeakyReLU(0.2),
152
+ )
153
+ self.upsample = nn.Upsample(scale_factor=2, mode="nearest")
154
+
155
+ def forward(self, x: torch.Tensor, skip: torch.Tensor) -> torch.Tensor:
156
+ x = self.upsample(x)
157
+ x = torch.cat([x, skip], dim=1) # skip connection
158
+ return self.conv(x)
159
+
160
+
161
+ class NoisePredictor1D(Model):
162
+ def __init__(self, in_channels: int, cond_dim: int = 0, hidden: int = 128):
163
+ """
164
+ Args:
165
+ in_channels: channels of the noisy input [B, C, T]
166
+ cond_dim: optional condition vector [B, cond_dim]
167
+ """
168
+ super().__init__()
169
+ self.proj = nn.Linear(cond_dim, hidden) if cond_dim > 0 else None
170
+ self.net = nn.Sequential(
171
+ nn.Conv1d(in_channels, hidden, kernel_size=3, padding=1),
172
+ nn.SiLU(),
173
+ nn.Conv1d(hidden, in_channels, kernel_size=3, padding=1),
174
+ )
175
+
176
+ def forward(self, x: torch.Tensor, cond: Optional[torch.Tensor] = None):
177
+ # x: [B, C, T], cond: [B, cond_dim]
178
+ if cond is not None:
179
+ cond_proj = self.proj(cond).unsqueeze(-1) # [B, hidden, 1]
180
+ x = x + cond_proj # simple conditioning
181
+ return self.net(x) # [B, C, T]
@@ -0,0 +1,67 @@
1
+ __all__ = [
2
+ "ConcatFusion",
3
+ "FiLMFusion",
4
+ "BilinearFusion",
5
+ "CrossAttentionFusion",
6
+ "GatedFusion",
7
+ ]
8
+
9
+ from .._torch_commons import *
10
+ from .._basics import Model
11
+
12
+
13
+ class ConcatFusion(Model):
14
+ def __init__(self, in_dim_a: int, in_dim_b: int, out_dim: int):
15
+ super().__init__()
16
+ self.proj = nn.Linear(in_dim_a + in_dim_b, out_dim)
17
+
18
+ def forward(self, a: Tensor, b: Tensor) -> Tensor:
19
+ x = torch.cat([a, b], dim=-1)
20
+ return self.proj(x)
21
+
22
+
23
+ class FiLMFusion(Model):
24
+ def __init__(self, cond_dim: int, feature_dim: int):
25
+ super().__init__()
26
+ self.modulator = nn.Linear(cond_dim, 2 * feature_dim)
27
+
28
+ def forward(self, x: Tensor, cond: Tensor) -> Tensor:
29
+ scale, shift = self.modulator(cond).chunk(2, dim=-1)
30
+ return x * scale + shift
31
+
32
+
33
+ class BilinearFusion(Model):
34
+ def __init__(self, in_dim_a: int, in_dim_b: int, out_dim: int):
35
+ super().__init__()
36
+ self.bilinear = nn.Bilinear(in_dim_a, in_dim_b, out_dim)
37
+
38
+ def forward(self, a: Tensor, b: Tensor) -> Tensor:
39
+ return self.bilinear(a, b)
40
+
41
+
42
+ class CrossAttentionFusion(nn.Module):
43
+ def __init__(self, q_dim: int, kv_dim: int, n_heads: int = 4, d_model: int = 256):
44
+ super().__init__()
45
+ self.q_proj = nn.Linear(q_dim, d_model)
46
+ self.k_proj = nn.Linear(kv_dim, d_model)
47
+ self.v_proj = nn.Linear(kv_dim, d_model)
48
+ self.attn = nn.MultiheadAttention(
49
+ embed_dim=d_model, num_heads=n_heads, batch_first=True
50
+ )
51
+
52
+ def forward(self, query: Tensor, context: Tensor, mask: Tensor = None) -> Tensor:
53
+ Q = self.q_proj(query)
54
+ K = self.k_proj(context)
55
+ V = self.v_proj(context)
56
+ output, _ = self.attn(Q, K, V, key_padding_mask=mask)
57
+ return output
58
+
59
+
60
+ class GatedFusion(nn.Module):
61
+ def __init__(self, in_dim: int):
62
+ super().__init__()
63
+ self.gate = nn.Sequential(nn.Linear(in_dim * 2, in_dim), nn.Sigmoid())
64
+
65
+ def forward(self, a: Tensor, b: Tensor) -> Tensor:
66
+ gate = self.gate(torch.cat([a, b], dim=-1))
67
+ return gate * a + (1 - gate) * b
@@ -0,0 +1,121 @@
1
+ __all__ = [
2
+ "RotaryEmbedding",
3
+ "PositionalEncoding",
4
+ "LearnedPositionalEncoding",
5
+ ]
6
+
7
+ import math
8
+ from .._torch_commons import *
9
+ from .._basics import Model
10
+
11
+
12
+ class RotaryEmbedding(Module):
13
+ def __init__(self, dim: int, base: int = 10000):
14
+ """
15
+ Rotary Positional Embedding Module.
16
+ Args:
17
+ dim (int): The dimension of the rotary embedding (must be even).
18
+ base (int): The base frequency scale (default: 10000).
19
+ """
20
+ super().__init__()
21
+ assert dim % 2 == 0, "Rotary dimension must be even"
22
+ self.dim = dim
23
+ self.base = base
24
+
25
+ def forward(self, x, seq_len=None):
26
+ """
27
+ Apply rotary embeddings to input tensor.
28
+ Args:
29
+ x (torch.Tensor): Input tensor of shape [batch, seq_len, dim].
30
+ seq_len (int, optional): Override for sequence length.
31
+ Returns:
32
+ torch.Tensor: Tensor with rotary embeddings applied.
33
+ """
34
+ bsz, seq_len = x.shape[0], seq_len or x.shape[1]
35
+ device = x.device
36
+
37
+ pos = torch.arange(seq_len, dtype=torch.float32, device=device).unsqueeze(1)
38
+ freqs = torch.pow(
39
+ self.base, -torch.arange(0, self.dim, 2, device=device).float() / self.dim
40
+ )
41
+ angle = pos * freqs # [seq_len, dim/2]
42
+
43
+ sin = torch.sin(angle)
44
+ cos = torch.cos(angle)
45
+
46
+ # Expand and interleave to [seq_len, dim]
47
+ sin = torch.stack((sin, sin), dim=-1).reshape(seq_len, self.dim)
48
+ cos = torch.stack((cos, cos), dim=-1).reshape(seq_len, self.dim)
49
+
50
+ sin = sin.unsqueeze(0).expand(bsz, -1, -1) # [batch, seq_len, dim]
51
+ cos = cos.unsqueeze(0).expand(bsz, -1, -1)
52
+
53
+ return self.apply_rotary(x, sin, cos)
54
+
55
+ def _apply_rotary(self, x, sin, cos):
56
+ """This version may still be useful, but for now its the problem for the text model"""
57
+ x1, x2 = x.chunk(2, dim=-1)
58
+ return torch.cat((x1 * cos - x2 * sin, x2 * cos + x1 * sin), dim=-1)
59
+
60
+ def apply_rotary(self, x, sin, cos):
61
+ """x: [batch, seq_len, dim] → assume dim is even"""
62
+ b, s, d = x.shape
63
+ x = x.view(b, s, d // 2, 2) # [b, s, d//2, 2]
64
+ sin = sin.view(b, s, d // 2, 2)
65
+ cos = cos.view(b, s, d // 2, 2)
66
+
67
+ # Apply rotation: even, odd = x[..., 0], x[..., 1]
68
+ x_rotated = torch.stack(
69
+ [
70
+ x[..., 0] * cos[..., 0] - x[..., 1] * sin[..., 0],
71
+ x[..., 0] * sin[..., 0] + x[..., 1] * cos[..., 0],
72
+ ],
73
+ dim=-1,
74
+ )
75
+
76
+ return x_rotated.view(b, s, d) # Back to [b, s, d]
77
+
78
+
79
+ class PositionalEncoding(Module):
80
+ def __init__(self, d_model: int, max_len: int = 8192):
81
+ super().__init__()
82
+ # create a matrix of [seq_len, hidden_dim] representing positional encoding for each token in sequence
83
+ pe = torch.zeros(max_len, d_model)
84
+ position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(
85
+ 1
86
+ ) # (max_len, 1)
87
+ div_term = torch.exp(
88
+ torch.arange(0, d_model, 2, dtype=torch.float)
89
+ * (-math.log(10000.0) / d_model)
90
+ )
91
+ pe[:, 0::2] = torch.sin(position * div_term)
92
+ pe[:, 1::2] = torch.cos(position * div_term)
93
+ pe = pe.unsqueeze(0)
94
+ self.register_buffer("pe", pe, persistent=False) # Shape: (1, max_len, d_model)
95
+
96
+ def forward(self, x: Tensor, seq_len: Optional[Tensor] = None):
97
+ # x shape: (batch_size, seq_len, d_model)
98
+ s_sz = seq_len or x.size(1)
99
+ x = x + self.pe[:, :s_sz]
100
+ return x
101
+
102
+
103
+ class LearnedPositionalEncoding(Module):
104
+ def __init__(self, max_len: int, dim_model: int, dropout: float = 0.1):
105
+ super().__init__()
106
+ self.embedding = nn.Embedding(max_len, dim_model)
107
+ self.dropout = nn.Dropout(dropout)
108
+ self.max_len = max_len
109
+
110
+ def forward(self, x: torch.Tensor, offset: int = 0) -> torch.Tensor:
111
+ # x: [B, T, D] or [T, D]
112
+ seq_len = x.size(1 if x.dim() == 3 else 0)
113
+ if seq_len + offset > self.max_len:
114
+ raise ValueError(
115
+ f"Sequence length {seq_len + offset} exceeds max length {self.max_len}"
116
+ )
117
+ positions = torch.arange(offset, offset + seq_len, device=x.device)
118
+ pos_embed = self.embedding(positions)
119
+ if x.dim() == 3:
120
+ pos_embed = pos_embed.unsqueeze(0).expand(x.size(0), -1, -1) # [B, T, D]
121
+ return self.dropout(x + pos_embed)