lsst-pipe-base 30.0.1rc1__py3-none-any.whl → 30.2025.5100__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (69) hide show
  1. lsst/pipe/base/_instrument.py +20 -31
  2. lsst/pipe/base/_quantumContext.py +3 -3
  3. lsst/pipe/base/_status.py +10 -43
  4. lsst/pipe/base/_task_metadata.py +2 -2
  5. lsst/pipe/base/all_dimensions_quantum_graph_builder.py +3 -8
  6. lsst/pipe/base/automatic_connection_constants.py +1 -20
  7. lsst/pipe/base/cli/cmd/__init__.py +2 -18
  8. lsst/pipe/base/cli/cmd/commands.py +4 -149
  9. lsst/pipe/base/connectionTypes.py +160 -72
  10. lsst/pipe/base/connections.py +9 -6
  11. lsst/pipe/base/execution_reports.py +5 -0
  12. lsst/pipe/base/graph/graph.py +10 -11
  13. lsst/pipe/base/graph/quantumNode.py +4 -4
  14. lsst/pipe/base/graph_walker.py +10 -8
  15. lsst/pipe/base/log_capture.py +80 -40
  16. lsst/pipe/base/mp_graph_executor.py +15 -51
  17. lsst/pipe/base/pipeline.py +6 -5
  18. lsst/pipe/base/pipelineIR.py +8 -2
  19. lsst/pipe/base/pipelineTask.py +7 -5
  20. lsst/pipe/base/pipeline_graph/_dataset_types.py +2 -2
  21. lsst/pipe/base/pipeline_graph/_edges.py +22 -32
  22. lsst/pipe/base/pipeline_graph/_mapping_views.py +7 -4
  23. lsst/pipe/base/pipeline_graph/_pipeline_graph.py +7 -14
  24. lsst/pipe/base/pipeline_graph/expressions.py +2 -2
  25. lsst/pipe/base/pipeline_graph/io.py +10 -7
  26. lsst/pipe/base/pipeline_graph/visualization/_dot.py +12 -13
  27. lsst/pipe/base/pipeline_graph/visualization/_layout.py +18 -16
  28. lsst/pipe/base/pipeline_graph/visualization/_merge.py +7 -4
  29. lsst/pipe/base/pipeline_graph/visualization/_printer.py +10 -10
  30. lsst/pipe/base/pipeline_graph/visualization/_status_annotator.py +0 -7
  31. lsst/pipe/base/prerequisite_helpers.py +1 -2
  32. lsst/pipe/base/quantum_graph/_common.py +20 -19
  33. lsst/pipe/base/quantum_graph/_multiblock.py +31 -37
  34. lsst/pipe/base/quantum_graph/_predicted.py +13 -111
  35. lsst/pipe/base/quantum_graph/_provenance.py +45 -1136
  36. lsst/pipe/base/quantum_graph/aggregator/__init__.py +1 -0
  37. lsst/pipe/base/quantum_graph/aggregator/_communicators.py +289 -204
  38. lsst/pipe/base/quantum_graph/aggregator/_config.py +9 -87
  39. lsst/pipe/base/quantum_graph/aggregator/_ingester.py +12 -13
  40. lsst/pipe/base/quantum_graph/aggregator/_scanner.py +235 -49
  41. lsst/pipe/base/quantum_graph/aggregator/_structs.py +116 -6
  42. lsst/pipe/base/quantum_graph/aggregator/_supervisor.py +39 -29
  43. lsst/pipe/base/quantum_graph/aggregator/_writer.py +351 -34
  44. lsst/pipe/base/quantum_graph/visualization.py +1 -5
  45. lsst/pipe/base/quantum_graph_builder.py +8 -21
  46. lsst/pipe/base/quantum_graph_executor.py +13 -116
  47. lsst/pipe/base/quantum_graph_skeleton.py +29 -31
  48. lsst/pipe/base/quantum_provenance_graph.py +12 -29
  49. lsst/pipe/base/separable_pipeline_executor.py +3 -19
  50. lsst/pipe/base/single_quantum_executor.py +42 -67
  51. lsst/pipe/base/struct.py +0 -4
  52. lsst/pipe/base/testUtils.py +3 -3
  53. lsst/pipe/base/tests/mocks/_storage_class.py +1 -2
  54. lsst/pipe/base/version.py +1 -1
  55. {lsst_pipe_base-30.0.1rc1.dist-info → lsst_pipe_base-30.2025.5100.dist-info}/METADATA +3 -3
  56. lsst_pipe_base-30.2025.5100.dist-info/RECORD +125 -0
  57. {lsst_pipe_base-30.0.1rc1.dist-info → lsst_pipe_base-30.2025.5100.dist-info}/WHEEL +1 -1
  58. lsst/pipe/base/log_on_close.py +0 -76
  59. lsst/pipe/base/quantum_graph/aggregator/_workers.py +0 -303
  60. lsst/pipe/base/quantum_graph/formatter.py +0 -171
  61. lsst/pipe/base/quantum_graph/ingest_graph.py +0 -413
  62. lsst_pipe_base-30.0.1rc1.dist-info/RECORD +0 -129
  63. {lsst_pipe_base-30.0.1rc1.dist-info → lsst_pipe_base-30.2025.5100.dist-info}/entry_points.txt +0 -0
  64. {lsst_pipe_base-30.0.1rc1.dist-info → lsst_pipe_base-30.2025.5100.dist-info}/licenses/COPYRIGHT +0 -0
  65. {lsst_pipe_base-30.0.1rc1.dist-info → lsst_pipe_base-30.2025.5100.dist-info}/licenses/LICENSE +0 -0
  66. {lsst_pipe_base-30.0.1rc1.dist-info → lsst_pipe_base-30.2025.5100.dist-info}/licenses/bsd_license.txt +0 -0
  67. {lsst_pipe_base-30.0.1rc1.dist-info → lsst_pipe_base-30.2025.5100.dist-info}/licenses/gpl-v3.0.txt +0 -0
  68. {lsst_pipe_base-30.0.1rc1.dist-info → lsst_pipe_base-30.2025.5100.dist-info}/top_level.txt +0 -0
  69. {lsst_pipe_base-30.0.1rc1.dist-info → lsst_pipe_base-30.2025.5100.dist-info}/zip-safe +0 -0
@@ -30,14 +30,130 @@ from __future__ import annotations
30
30
  __all__ = ("Writer",)
31
31
 
32
32
  import dataclasses
33
+ import itertools
34
+ import logging
35
+ import operator
36
+ import uuid
37
+ from typing import TypeVar
33
38
 
39
+ import networkx
34
40
  import zstandard
35
41
 
36
- from ...log_on_close import LogOnClose
42
+ from lsst.utils.packages import Packages
43
+
44
+ from ... import automatic_connection_constants as acc
37
45
  from ...pipeline_graph import TaskImportMode
38
- from .._predicted import PredictedQuantumGraphComponents, PredictedQuantumGraphReader
39
- from .._provenance import ProvenanceQuantumGraphWriter, ProvenanceQuantumScanData
46
+ from .._common import BaseQuantumGraphWriter
47
+ from .._multiblock import Compressor, MultiblockWriter
48
+ from .._predicted import PredictedDatasetModel, PredictedQuantumGraphComponents, PredictedQuantumGraphReader
49
+ from .._provenance import (
50
+ DATASET_ADDRESS_INDEX,
51
+ DATASET_MB_NAME,
52
+ LOG_ADDRESS_INDEX,
53
+ LOG_MB_NAME,
54
+ METADATA_ADDRESS_INDEX,
55
+ METADATA_MB_NAME,
56
+ QUANTUM_ADDRESS_INDEX,
57
+ QUANTUM_MB_NAME,
58
+ ProvenanceDatasetModel,
59
+ ProvenanceInitQuantaModel,
60
+ ProvenanceInitQuantumModel,
61
+ ProvenanceQuantumModel,
62
+ )
40
63
  from ._communicators import WriterCommunicator
64
+ from ._structs import WriteRequest
65
+
66
+
67
+ @dataclasses.dataclass
68
+ class _DataWriters:
69
+ """A struct of low-level writer objects for the main components of a
70
+ provenance quantum graph.
71
+
72
+ Parameters
73
+ ----------
74
+ comms : `WriterCommunicator`
75
+ Communicator helper object for the writer.
76
+ predicted : `.PredictedQuantumGraphComponents`
77
+ Components of the predicted graph.
78
+ indices : `dict` [ `uuid.UUID`, `int` ]
79
+ Mapping from UUID to internal integer ID, including both quanta and
80
+ datasets.
81
+ compressor : `Compressor`
82
+ Object that can compress `bytes`.
83
+ cdict_data : `bytes` or `None`, optional
84
+ Bytes representation of the compression dictionary used by the
85
+ compressor.
86
+ """
87
+
88
+ def __init__(
89
+ self,
90
+ comms: WriterCommunicator,
91
+ predicted: PredictedQuantumGraphComponents,
92
+ indices: dict[uuid.UUID, int],
93
+ compressor: Compressor,
94
+ cdict_data: bytes | None = None,
95
+ ) -> None:
96
+ assert comms.config.output_path is not None
97
+ header = predicted.header.model_copy()
98
+ header.graph_type = "provenance"
99
+ self.graph = comms.enter(
100
+ BaseQuantumGraphWriter.open(
101
+ comms.config.output_path,
102
+ header,
103
+ predicted.pipeline_graph,
104
+ indices,
105
+ address_filename="nodes",
106
+ compressor=compressor,
107
+ cdict_data=cdict_data,
108
+ ),
109
+ on_close="Finishing writing provenance quantum graph.",
110
+ is_progress_log=True,
111
+ )
112
+ self.graph.address_writer.addresses = [{}, {}, {}, {}]
113
+ self.logs = comms.enter(
114
+ MultiblockWriter.open_in_zip(self.graph.zf, LOG_MB_NAME, header.int_size, use_tempfile=True),
115
+ on_close="Copying logs into zip archive.",
116
+ is_progress_log=True,
117
+ )
118
+ self.graph.address_writer.addresses[LOG_ADDRESS_INDEX] = self.logs.addresses
119
+ self.metadata = comms.enter(
120
+ MultiblockWriter.open_in_zip(self.graph.zf, METADATA_MB_NAME, header.int_size, use_tempfile=True),
121
+ on_close="Copying metadata into zip archive.",
122
+ is_progress_log=True,
123
+ )
124
+ self.graph.address_writer.addresses[METADATA_ADDRESS_INDEX] = self.metadata.addresses
125
+ self.datasets = comms.enter(
126
+ MultiblockWriter.open_in_zip(self.graph.zf, DATASET_MB_NAME, header.int_size, use_tempfile=True),
127
+ on_close="Copying dataset provenance into zip archive.",
128
+ is_progress_log=True,
129
+ )
130
+ self.graph.address_writer.addresses[DATASET_ADDRESS_INDEX] = self.datasets.addresses
131
+ self.quanta = comms.enter(
132
+ MultiblockWriter.open_in_zip(self.graph.zf, QUANTUM_MB_NAME, header.int_size, use_tempfile=True),
133
+ on_close="Copying quantum provenance into zip archive.",
134
+ is_progress_log=True,
135
+ )
136
+ self.graph.address_writer.addresses[QUANTUM_ADDRESS_INDEX] = self.quanta.addresses
137
+
138
+ graph: BaseQuantumGraphWriter
139
+ """The parent graph writer."""
140
+
141
+ datasets: MultiblockWriter
142
+ """A writer for dataset provenance."""
143
+
144
+ quanta: MultiblockWriter
145
+ """A writer for quantum provenance."""
146
+
147
+ metadata: MultiblockWriter
148
+ """A writer for metadata content."""
149
+
150
+ logs: MultiblockWriter
151
+ """A writer for log content."""
152
+
153
+ @property
154
+ def compressor(self) -> Compressor:
155
+ """Object that should be used to compress all JSON blocks."""
156
+ return self.graph.compressor
41
157
 
42
158
 
43
159
  @dataclasses.dataclass
@@ -55,13 +171,46 @@ class Writer:
55
171
  predicted: PredictedQuantumGraphComponents = dataclasses.field(init=False)
56
172
  """Components of the predicted quantum graph."""
57
173
 
58
- pending_compression_training: list[ProvenanceQuantumScanData] = dataclasses.field(default_factory=list)
174
+ existing_init_outputs: dict[uuid.UUID, set[uuid.UUID]] = dataclasses.field(default_factory=dict)
175
+ """Mapping that tracks which init-outputs exist.
176
+
177
+ This mapping is updated as scanners inform the writer about init-output
178
+ existence, since we want to write that provenance information out only at
179
+ the end.
180
+ """
181
+
182
+ indices: dict[uuid.UUID, int] = dataclasses.field(default_factory=dict)
183
+ """Mapping from UUID to internal integer ID, including both quanta and
184
+ datasets.
185
+
186
+ This is fully initialized at construction.
187
+ """
188
+
189
+ output_dataset_ids: set[uuid.UUID] = dataclasses.field(default_factory=set)
190
+ """The IDs of all datasets that are produced by this graph.
191
+
192
+ This is fully initialized at construction.
193
+ """
194
+
195
+ overall_inputs: dict[uuid.UUID, PredictedDatasetModel] = dataclasses.field(default_factory=dict)
196
+ """All datasets that are not produced by any quantum in this graph."""
197
+
198
+ xgraph: networkx.DiGraph = dataclasses.field(default_factory=networkx.DiGraph)
199
+ """A bipartite NetworkX graph linking datasets to quanta and quanta to
200
+ datasets.
201
+
202
+ This is fully initialized at construction. There are no node or edge
203
+ attributes in this graph; we only need it to store adjacency information
204
+ with datasets as well as with quanta.
205
+ """
206
+
207
+ pending_compression_training: list[WriteRequest] = dataclasses.field(default_factory=list)
59
208
  """Unprocessed quantum scans that are being accumulated in order to
60
209
  build a compression dictionary.
61
210
  """
62
211
 
63
212
  def __post_init__(self) -> None:
64
- assert self.comms.config.is_writing_provenance, "Writer should not be used if writing is disabled."
213
+ assert self.comms.config.output_path is not None, "Writer should not be used if writing is disabled."
65
214
  self.comms.log.info("Reading predicted quantum graph.")
66
215
  with PredictedQuantumGraphReader.open(
67
216
  self.predicted_path, import_mode=TaskImportMode.DO_NOT_IMPORT
@@ -71,6 +220,58 @@ class Writer:
71
220
  self.comms.check_for_cancel()
72
221
  reader.read_quantum_datasets()
73
222
  self.predicted = reader.components
223
+ for predicted_init_quantum in self.predicted.init_quanta.root:
224
+ self.existing_init_outputs[predicted_init_quantum.quantum_id] = set()
225
+ self.comms.check_for_cancel()
226
+ self.comms.log.info("Generating integer indexes and identifying outputs.")
227
+ self._populate_indices_and_outputs()
228
+ self.comms.check_for_cancel()
229
+ self._populate_xgraph_and_inputs()
230
+ self.comms.check_for_cancel()
231
+ self.comms.log_progress(
232
+ # We add one here for 'packages', which we do ingest but don't
233
+ # record provenance for.
234
+ logging.INFO,
235
+ f"Graph has {len(self.output_dataset_ids) + 1} predicted output dataset(s).",
236
+ )
237
+
238
+ def _populate_indices_and_outputs(self) -> None:
239
+ all_uuids = set(self.predicted.quantum_datasets.keys())
240
+ for quantum in self.comms.periodically_check_for_cancel(
241
+ itertools.chain(
242
+ self.predicted.init_quanta.root,
243
+ self.predicted.quantum_datasets.values(),
244
+ )
245
+ ):
246
+ if not quantum.task_label:
247
+ # Skip the 'packages' producer quantum.
248
+ continue
249
+ all_uuids.update(quantum.iter_input_dataset_ids())
250
+ self.output_dataset_ids.update(quantum.iter_output_dataset_ids())
251
+ all_uuids.update(self.output_dataset_ids)
252
+ self.indices = {
253
+ node_id: node_index
254
+ for node_index, node_id in self.comms.periodically_check_for_cancel(
255
+ enumerate(sorted(all_uuids, key=operator.attrgetter("int")))
256
+ )
257
+ }
258
+
259
+ def _populate_xgraph_and_inputs(self) -> None:
260
+ for predicted_quantum in self.comms.periodically_check_for_cancel(
261
+ itertools.chain(
262
+ self.predicted.init_quanta.root,
263
+ self.predicted.quantum_datasets.values(),
264
+ )
265
+ ):
266
+ if not predicted_quantum.task_label:
267
+ # Skip the 'packages' producer quantum.
268
+ continue
269
+ for predicted_input in itertools.chain.from_iterable(predicted_quantum.inputs.values()):
270
+ self.xgraph.add_edge(predicted_input.dataset_id, predicted_quantum.quantum_id)
271
+ if predicted_input.dataset_id not in self.output_dataset_ids:
272
+ self.overall_inputs.setdefault(predicted_input.dataset_id, predicted_input)
273
+ for predicted_output in itertools.chain.from_iterable(predicted_quantum.outputs.values()):
274
+ self.xgraph.add_edge(predicted_quantum.quantum_id, predicted_output.dataset_id)
74
275
 
75
276
  @staticmethod
76
277
  def run(predicted_path: str, comms: WriterCommunicator) -> None:
@@ -86,7 +287,7 @@ class Writer:
86
287
  Notes
87
288
  -----
88
289
  This method is designed to run as the ``target`` in
89
- `WorkerFactory.make_worker`.
290
+ `WorkerContext.make_worker`.
90
291
  """
91
292
  with comms:
92
293
  writer = Writer(predicted_path, comms)
@@ -94,59 +295,52 @@ class Writer:
94
295
 
95
296
  def loop(self) -> None:
96
297
  """Run the main loop for the writer."""
97
- qg_writer: ProvenanceQuantumGraphWriter | None = None
298
+ data_writers: _DataWriters | None = None
98
299
  if not self.comms.config.zstd_dict_size:
99
- qg_writer = self.make_qg_writer()
300
+ data_writers = self.make_data_writers()
100
301
  self.comms.log.info("Polling for write requests from scanners.")
101
302
  for request in self.comms.poll():
102
- if qg_writer is None:
303
+ if data_writers is None:
103
304
  self.pending_compression_training.append(request)
104
305
  if len(self.pending_compression_training) >= self.comms.config.zstd_dict_n_inputs:
105
- qg_writer = self.make_qg_writer()
306
+ data_writers = self.make_data_writers()
106
307
  else:
107
- qg_writer.write_scan_data(request)
108
- self.comms.report_write()
109
- if qg_writer is None:
110
- qg_writer = self.make_qg_writer()
111
- self.comms.log.info("Writing init outputs.")
112
- qg_writer.write_init_outputs(assume_existence=False)
308
+ self.process_request(request, data_writers)
309
+ if data_writers is None:
310
+ data_writers = self.make_data_writers()
311
+ self.write_init_outputs(data_writers)
113
312
 
114
- def make_qg_writer(self) -> ProvenanceQuantumGraphWriter:
313
+ def make_data_writers(self) -> _DataWriters:
115
314
  """Make a compression dictionary, open the low-level writers, and
116
315
  write any accumulated scans that were needed to make the compression
117
316
  dictionary.
118
317
 
119
318
  Returns
120
319
  -------
121
- qg_writer : `ProvenanceQuantumGraphWriter`
320
+ data_writers : `_DataWriters`
122
321
  Low-level writers struct.
123
322
  """
124
323
  cdict = self.make_compression_dictionary()
125
324
  self.comms.send_compression_dict(cdict.as_bytes())
126
- assert self.comms.config.is_writing_provenance and self.comms.config.output_path is not None
127
- self.comms.log.info("Opening output files and processing predicted graph.")
128
- qg_writer = ProvenanceQuantumGraphWriter(
129
- self.comms.config.output_path,
130
- exit_stack=self.comms.exit_stack,
131
- log_on_close=LogOnClose(self.comms.log_progress),
132
- predicted=self.predicted,
133
- zstd_level=self.comms.config.zstd_level,
325
+ assert self.comms.config.output_path is not None
326
+ self.comms.log.info("Opening output files.")
327
+ data_writers = _DataWriters(
328
+ self.comms,
329
+ self.predicted,
330
+ self.indices,
331
+ compressor=zstandard.ZstdCompressor(self.comms.config.zstd_level, cdict),
134
332
  cdict_data=cdict.as_bytes(),
135
- loop_wrapper=self.comms.periodically_check_for_cancel,
136
- log=self.comms.log,
137
333
  )
138
334
  self.comms.check_for_cancel()
139
335
  self.comms.log.info("Compressing and writing queued scan requests.")
140
336
  for request in self.pending_compression_training:
141
- qg_writer.write_scan_data(request)
142
- self.comms.report_write()
337
+ self.process_request(request, data_writers)
143
338
  del self.pending_compression_training
144
339
  self.comms.check_for_cancel()
145
- self.comms.log.info("Writing overall inputs.")
146
- qg_writer.write_overall_inputs(self.comms.periodically_check_for_cancel)
147
- qg_writer.write_packages()
340
+ self.write_overall_inputs(data_writers)
341
+ self.write_packages(data_writers)
148
342
  self.comms.log.info("Returning to write request loop.")
149
- return qg_writer
343
+ return data_writers
150
344
 
151
345
  def make_compression_dictionary(self) -> zstandard.ZstdCompressionDict:
152
346
  """Make the compression dictionary.
@@ -182,3 +376,126 @@ class Writer:
182
376
  training_inputs.append(write_request.metadata)
183
377
  training_inputs.append(write_request.logs)
184
378
  return zstandard.train_dictionary(self.comms.config.zstd_dict_size, training_inputs)
379
+
380
+ def write_init_outputs(self, data_writers: _DataWriters) -> None:
381
+ """Write provenance for init-output datasets and init-quanta.
382
+
383
+ Parameters
384
+ ----------
385
+ data_writers : `_DataWriters`
386
+ Low-level writers struct.
387
+ """
388
+ self.comms.log.info("Writing init outputs.")
389
+ init_quanta = ProvenanceInitQuantaModel()
390
+ for predicted_init_quantum in self.predicted.init_quanta.root:
391
+ if not predicted_init_quantum.task_label:
392
+ # Skip the 'packages' producer quantum.
393
+ continue
394
+ existing_outputs = self.existing_init_outputs[predicted_init_quantum.quantum_id]
395
+ for predicted_output in itertools.chain.from_iterable(predicted_init_quantum.outputs.values()):
396
+ provenance_output = ProvenanceDatasetModel.from_predicted(
397
+ predicted_output,
398
+ producer=predicted_init_quantum.quantum_id,
399
+ consumers=self.xgraph.successors(predicted_output.dataset_id),
400
+ )
401
+ provenance_output.produced = predicted_output.dataset_id in existing_outputs
402
+ data_writers.datasets.write_model(
403
+ provenance_output.dataset_id, provenance_output, data_writers.compressor
404
+ )
405
+ init_quanta.root.append(ProvenanceInitQuantumModel.from_predicted(predicted_init_quantum))
406
+ data_writers.graph.write_single_model("init_quanta", init_quanta)
407
+
408
+ def write_overall_inputs(self, data_writers: _DataWriters) -> None:
409
+ """Write provenance for overall-input datasets.
410
+
411
+ Parameters
412
+ ----------
413
+ data_writers : `_DataWriters`
414
+ Low-level writers struct.
415
+ """
416
+ self.comms.log.info("Writing overall inputs.")
417
+ for predicted_input in self.comms.periodically_check_for_cancel(self.overall_inputs.values()):
418
+ if predicted_input.dataset_id not in data_writers.datasets.addresses:
419
+ data_writers.datasets.write_model(
420
+ predicted_input.dataset_id,
421
+ ProvenanceDatasetModel.from_predicted(
422
+ predicted_input,
423
+ producer=None,
424
+ consumers=self.xgraph.successors(predicted_input.dataset_id),
425
+ ),
426
+ data_writers.compressor,
427
+ )
428
+ del self.overall_inputs
429
+
430
+ @staticmethod
431
+ def write_packages(data_writers: _DataWriters) -> None:
432
+ """Write package version information to the provenance graph.
433
+
434
+ Parameters
435
+ ----------
436
+ data_writers : `_DataWriters`
437
+ Low-level writers struct.
438
+ """
439
+ packages = Packages.fromSystem(include_all=True)
440
+ data = packages.toBytes("json")
441
+ data_writers.graph.write_single_block("packages", data)
442
+
443
+ def process_request(self, request: WriteRequest, data_writers: _DataWriters) -> None:
444
+ """Process a `WriteRequest` into `_ScanData`.
445
+
446
+ Parameters
447
+ ----------
448
+ request : `WriteRequest`
449
+ Result of a quantum scan.
450
+ data_writers : `_DataWriters`
451
+ Low-level writers struct.
452
+ """
453
+ if (existing_init_outputs := self.existing_init_outputs.get(request.quantum_id)) is not None:
454
+ self.comms.log.debug("Handling init-output scan for %s.", request.quantum_id)
455
+ existing_init_outputs.update(request.existing_outputs)
456
+ self.comms.report_write()
457
+ return
458
+ self.comms.log.debug("Handling quantum scan for %s.", request.quantum_id)
459
+ predicted_quantum = self.predicted.quantum_datasets[request.quantum_id]
460
+ outputs: dict[uuid.UUID, bytes] = {}
461
+ for predicted_output in itertools.chain.from_iterable(predicted_quantum.outputs.values()):
462
+ provenance_output = ProvenanceDatasetModel.from_predicted(
463
+ predicted_output,
464
+ producer=predicted_quantum.quantum_id,
465
+ consumers=self.xgraph.successors(predicted_output.dataset_id),
466
+ )
467
+ provenance_output.produced = provenance_output.dataset_id in request.existing_outputs
468
+ outputs[provenance_output.dataset_id] = data_writers.compressor.compress(
469
+ provenance_output.model_dump_json().encode()
470
+ )
471
+ if not request.quantum:
472
+ request.quantum = (
473
+ ProvenanceQuantumModel.from_predicted(predicted_quantum).model_dump_json().encode()
474
+ )
475
+ if request.is_compressed:
476
+ request.quantum = data_writers.compressor.compress(request.quantum)
477
+ if not request.is_compressed:
478
+ request.quantum = data_writers.compressor.compress(request.quantum)
479
+ if request.metadata:
480
+ request.metadata = data_writers.compressor.compress(request.metadata)
481
+ if request.logs:
482
+ request.logs = data_writers.compressor.compress(request.logs)
483
+ self.comms.log.debug("Writing quantum %s.", request.quantum_id)
484
+ data_writers.quanta.write_bytes(request.quantum_id, request.quantum)
485
+ for dataset_id, dataset_data in outputs.items():
486
+ data_writers.datasets.write_bytes(dataset_id, dataset_data)
487
+ if request.metadata:
488
+ (metadata_output,) = predicted_quantum.outputs[acc.METADATA_OUTPUT_CONNECTION_NAME]
489
+ address = data_writers.metadata.write_bytes(request.quantum_id, request.metadata)
490
+ data_writers.metadata.addresses[metadata_output.dataset_id] = address
491
+ if request.logs:
492
+ (log_output,) = predicted_quantum.outputs[acc.LOG_OUTPUT_CONNECTION_NAME]
493
+ address = data_writers.logs.write_bytes(request.quantum_id, request.logs)
494
+ data_writers.logs.addresses[log_output.dataset_id] = address
495
+ # We shouldn't need this predicted quantum anymore; delete it in the
496
+ # hopes that'll free up some memory.
497
+ del self.predicted.quantum_datasets[request.quantum_id]
498
+ self.comms.report_write()
499
+
500
+
501
+ _T = TypeVar("_T")
@@ -37,16 +37,12 @@ from typing import IO, ClassVar, Generic, TypeVar
37
37
  from ..pipeline_graph import NodeType
38
38
  from ._common import BaseQuantumGraph, BipartiteEdgeInfo, DatasetInfo, QuantumInfo
39
39
 
40
- # We use the old generic syntax in this module because for some reason the new
41
- # one confused Sphinx (or one of its plugins), even though it seems fine with
42
- # it in other places. We can try again when we're ready to remove types from
43
- # the docstrings of annotated functions, in case that matters.
44
40
  _G = TypeVar("_G", bound=BaseQuantumGraph, contravariant=True)
45
41
  _Q = TypeVar("_Q", bound=QuantumInfo, contravariant=True)
46
42
  _D = TypeVar("_D", bound=DatasetInfo, contravariant=True)
47
43
 
48
44
 
49
- class QuantumGraphVisualizer(Generic[_G, _Q, _D]): # noqa: UP046
45
+ class QuantumGraphVisualizer(Generic[_G, _Q, _D]):
50
46
  """A base class for exporting quantum graphs to graph-visualization
51
47
  languages.
52
48
 
@@ -380,6 +380,8 @@ class QuantumGraphBuilder(ABC):
380
380
 
381
381
  Parameters
382
382
  ----------
383
+ metadata : `~collections.abc.Mapping`, optional
384
+ Flexible metadata to add to the quantum graph.
383
385
  attach_datastore_records : `bool`, optional
384
386
  Whether to include datastore records in the graph. Required for
385
387
  `lsst.daf.butler.QuantumBackedButler` execution.
@@ -678,26 +680,6 @@ class QuantumGraphBuilder(ABC):
678
680
  "Dropping task %s because no quanta remain%s.", task_node.label, message_parenthetical
679
681
  )
680
682
  skeleton.remove_task(task_node.label)
681
- if len(no_work_quanta) > len(remaining_quanta):
682
- only_overall_inputs = self._get_task_inputs_if_overall_only(task_node)
683
- self.log.warning(
684
- "More than half of %s quanta had no work to do given available inputs.\n"
685
- "A query constraint on one of %s may yield a much faster build.",
686
- task_node.label,
687
- only_overall_inputs,
688
- )
689
-
690
- def _get_task_inputs_if_overall_only(self, task_node: TaskNode) -> list[str] | None:
691
- """If the given task consumes only overall-inputs, return their names.
692
- Otherwise return `None`.
693
- """
694
- result: list[str] = []
695
- for read_edge in task_node.inputs.values():
696
- if self._pipeline_graph.producer_of(read_edge.parent_dataset_type_name) is None:
697
- result.append(read_edge.parent_dataset_type_name)
698
- else:
699
- return None
700
- return result
701
683
 
702
684
  def _skip_quantum_if_metadata_exists(
703
685
  self, task_node: TaskNode, quantum_key: QuantumKey, skeleton: QuantumGraphSkeleton
@@ -905,6 +887,11 @@ class QuantumGraphBuilder(ABC):
905
887
  Identifier for this quantum in the graph.
906
888
  skeleton : `.quantum_graph_skeleton.QuantumGraphSkeleton`
907
889
  Preliminary quantum graph, to be modified in-place.
890
+ skypix_bounds_builder : `~prerequisite_helpers.SkyPixBoundsBuilder`
891
+ An object that accumulates the appropriate spatial bounds for a
892
+ quantum.
893
+ timespan_builder : `~prerequisite_helpers.TimespanBuilder`
894
+ An object that accumulates the appropriate timespan for a quantum.
908
895
 
909
896
  Returns
910
897
  -------
@@ -1157,7 +1144,7 @@ class QuantumGraphBuilder(ABC):
1157
1144
  "outputs" attributes on all quantum nodes, as added by
1158
1145
  `_resolve_task_quanta`, as well as a "datastore_records" attribute
1159
1146
  as added by `_attach_datastore_records`.
1160
- metadata : `~collections.abc.Mapping`
1147
+ metadata : `Mapping`
1161
1148
  Flexible metadata to add to the graph.
1162
1149
 
1163
1150
  Returns