lsst-pipe-base 30.0.0rc2__py3-none-any.whl → 30.0.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (69) hide show
  1. lsst/pipe/base/_instrument.py +31 -20
  2. lsst/pipe/base/_quantumContext.py +3 -3
  3. lsst/pipe/base/_status.py +43 -10
  4. lsst/pipe/base/_task_metadata.py +2 -2
  5. lsst/pipe/base/all_dimensions_quantum_graph_builder.py +8 -3
  6. lsst/pipe/base/automatic_connection_constants.py +20 -1
  7. lsst/pipe/base/cli/cmd/__init__.py +18 -2
  8. lsst/pipe/base/cli/cmd/commands.py +149 -4
  9. lsst/pipe/base/connectionTypes.py +72 -160
  10. lsst/pipe/base/connections.py +6 -9
  11. lsst/pipe/base/execution_reports.py +0 -5
  12. lsst/pipe/base/graph/graph.py +11 -10
  13. lsst/pipe/base/graph/quantumNode.py +4 -4
  14. lsst/pipe/base/graph_walker.py +8 -10
  15. lsst/pipe/base/log_capture.py +40 -80
  16. lsst/pipe/base/log_on_close.py +76 -0
  17. lsst/pipe/base/mp_graph_executor.py +51 -15
  18. lsst/pipe/base/pipeline.py +5 -6
  19. lsst/pipe/base/pipelineIR.py +2 -8
  20. lsst/pipe/base/pipelineTask.py +5 -7
  21. lsst/pipe/base/pipeline_graph/_dataset_types.py +2 -2
  22. lsst/pipe/base/pipeline_graph/_edges.py +32 -22
  23. lsst/pipe/base/pipeline_graph/_mapping_views.py +4 -7
  24. lsst/pipe/base/pipeline_graph/_pipeline_graph.py +14 -7
  25. lsst/pipe/base/pipeline_graph/expressions.py +2 -2
  26. lsst/pipe/base/pipeline_graph/io.py +7 -10
  27. lsst/pipe/base/pipeline_graph/visualization/_dot.py +13 -12
  28. lsst/pipe/base/pipeline_graph/visualization/_layout.py +16 -18
  29. lsst/pipe/base/pipeline_graph/visualization/_merge.py +4 -7
  30. lsst/pipe/base/pipeline_graph/visualization/_printer.py +10 -10
  31. lsst/pipe/base/pipeline_graph/visualization/_status_annotator.py +7 -0
  32. lsst/pipe/base/prerequisite_helpers.py +2 -1
  33. lsst/pipe/base/quantum_graph/_common.py +19 -20
  34. lsst/pipe/base/quantum_graph/_multiblock.py +37 -31
  35. lsst/pipe/base/quantum_graph/_predicted.py +113 -15
  36. lsst/pipe/base/quantum_graph/_provenance.py +1136 -45
  37. lsst/pipe/base/quantum_graph/aggregator/__init__.py +0 -1
  38. lsst/pipe/base/quantum_graph/aggregator/_communicators.py +204 -289
  39. lsst/pipe/base/quantum_graph/aggregator/_config.py +87 -9
  40. lsst/pipe/base/quantum_graph/aggregator/_ingester.py +13 -12
  41. lsst/pipe/base/quantum_graph/aggregator/_scanner.py +49 -235
  42. lsst/pipe/base/quantum_graph/aggregator/_structs.py +6 -116
  43. lsst/pipe/base/quantum_graph/aggregator/_supervisor.py +29 -39
  44. lsst/pipe/base/quantum_graph/aggregator/_workers.py +303 -0
  45. lsst/pipe/base/quantum_graph/aggregator/_writer.py +34 -351
  46. lsst/pipe/base/quantum_graph/formatter.py +171 -0
  47. lsst/pipe/base/quantum_graph/ingest_graph.py +413 -0
  48. lsst/pipe/base/quantum_graph/visualization.py +5 -1
  49. lsst/pipe/base/quantum_graph_builder.py +33 -9
  50. lsst/pipe/base/quantum_graph_executor.py +116 -13
  51. lsst/pipe/base/quantum_graph_skeleton.py +31 -35
  52. lsst/pipe/base/quantum_provenance_graph.py +29 -12
  53. lsst/pipe/base/separable_pipeline_executor.py +19 -3
  54. lsst/pipe/base/single_quantum_executor.py +67 -42
  55. lsst/pipe/base/struct.py +4 -0
  56. lsst/pipe/base/testUtils.py +3 -3
  57. lsst/pipe/base/tests/mocks/_storage_class.py +2 -1
  58. lsst/pipe/base/version.py +1 -1
  59. {lsst_pipe_base-30.0.0rc2.dist-info → lsst_pipe_base-30.0.1.dist-info}/METADATA +3 -3
  60. lsst_pipe_base-30.0.1.dist-info/RECORD +129 -0
  61. {lsst_pipe_base-30.0.0rc2.dist-info → lsst_pipe_base-30.0.1.dist-info}/WHEEL +1 -1
  62. lsst_pipe_base-30.0.0rc2.dist-info/RECORD +0 -125
  63. {lsst_pipe_base-30.0.0rc2.dist-info → lsst_pipe_base-30.0.1.dist-info}/entry_points.txt +0 -0
  64. {lsst_pipe_base-30.0.0rc2.dist-info → lsst_pipe_base-30.0.1.dist-info}/licenses/COPYRIGHT +0 -0
  65. {lsst_pipe_base-30.0.0rc2.dist-info → lsst_pipe_base-30.0.1.dist-info}/licenses/LICENSE +0 -0
  66. {lsst_pipe_base-30.0.0rc2.dist-info → lsst_pipe_base-30.0.1.dist-info}/licenses/bsd_license.txt +0 -0
  67. {lsst_pipe_base-30.0.0rc2.dist-info → lsst_pipe_base-30.0.1.dist-info}/licenses/gpl-v3.0.txt +0 -0
  68. {lsst_pipe_base-30.0.0rc2.dist-info → lsst_pipe_base-30.0.1.dist-info}/top_level.txt +0 -0
  69. {lsst_pipe_base-30.0.0rc2.dist-info → lsst_pipe_base-30.0.1.dist-info}/zip-safe +0 -0
@@ -0,0 +1,413 @@
1
+ # This file is part of pipe_base.
2
+ #
3
+ # Developed for the LSST Data Management System.
4
+ # This product includes software developed by the LSST Project
5
+ # (http://www.lsst.org).
6
+ # See the COPYRIGHT file at the top-level directory of this distribution
7
+ # for details of code ownership.
8
+ #
9
+ # This software is dual licensed under the GNU General Public License and also
10
+ # under a 3-clause BSD license. Recipients may choose which of these licenses
11
+ # to use; please see the files gpl-3.0.txt and/or bsd_license.txt,
12
+ # respectively. If you choose the GPL option then the following text applies
13
+ # (but note that there is still no warranty even if you opt for BSD instead):
14
+ #
15
+ # This program is free software: you can redistribute it and/or modify
16
+ # it under the terms of the GNU General Public License as published by
17
+ # the Free Software Foundation, either version 3 of the License, or
18
+ # (at your option) any later version.
19
+ #
20
+ # This program is distributed in the hope that it will be useful,
21
+ # but WITHOUT ANY WARRANTY; without even the implied warranty of
22
+ # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
23
+ # GNU General Public License for more details.
24
+ #
25
+ # You should have received a copy of the GNU General Public License
26
+ # along with this program. If not, see <http://www.gnu.org/licenses/>.
27
+
28
+ """A tool for ingesting provenance quantum graphs (written by the `aggregator`
29
+ module) and [re-]ingesting other datasets (metadata/logs/configs) backed by the
30
+ same file. This "finalizes" the RUN collection, prohibiting (at least
31
+ conceptually) further processing.
32
+
33
+ This always proceeds in three steps, so we can resume efficiently:
34
+
35
+ 1. First we ask the butler to "forget" any metadata/log/config datasets that
36
+ exist in the output RUN collection, removing any record of them from the
37
+ butler database while preserving their files.
38
+
39
+ 2. Next we ingest the ``run_provenance`` graph dataset itself.
40
+
41
+ 3. Finally, in batches of quanta, we use a
42
+ `~lsst.daf.butler.QuantumBackedButler` to delete the original
43
+ metadata/log/config files and ingest new versions of those datasets into the
44
+ butler.
45
+
46
+ Thus, at any point, if the ``run_provenance`` dataset has not been ingested,
47
+ we know any metadata/log/config datasets that have been ingested are backed by
48
+ the original files.
49
+
50
+ Moreover, if the ``run_provenance`` dataset has been ingested, any existing
51
+ metadata/log/config datasets must be backed by the graph file, and the original
52
+ files for those datasets will have been deleted.
53
+
54
+ We also know that at all times the metadata/log/config *content* is safely
55
+ present in either the original files in the butler storage or in an
56
+ already-ingested ``run_provenance`` dataset.
57
+ """
58
+
59
+ from __future__ import annotations
60
+
61
+ __all__ = ("ingest_graph",)
62
+
63
+ import dataclasses
64
+ import itertools
65
+ import os
66
+ import uuid
67
+ from collections.abc import Iterator
68
+ from contextlib import contextmanager
69
+
70
+ from lsst.daf.butler import (
71
+ Butler,
72
+ Config,
73
+ DataCoordinate,
74
+ DatasetRef,
75
+ DatasetType,
76
+ FileDataset,
77
+ QuantumBackedButler,
78
+ )
79
+ from lsst.daf.butler.registry.sql_registry import SqlRegistry
80
+ from lsst.resources import ResourcePath, ResourcePathExpression
81
+ from lsst.utils.logging import getLogger
82
+
83
+ from ..automatic_connection_constants import PROVENANCE_DATASET_TYPE_NAME, PROVENANCE_STORAGE_CLASS
84
+ from ._provenance import (
85
+ ProvenanceDatasetInfo,
86
+ ProvenanceInitQuantumInfo,
87
+ ProvenanceQuantumGraph,
88
+ ProvenanceQuantumGraphReader,
89
+ ProvenanceQuantumInfo,
90
+ )
91
+ from .formatter import ProvenanceFormatter
92
+
93
+ _LOG = getLogger(__name__)
94
+
95
+
96
+ def ingest_graph(
97
+ butler_config: str | Config,
98
+ uri: ResourcePathExpression | None = None,
99
+ *,
100
+ transfer: str | None = "move",
101
+ batch_size: int = 10000,
102
+ output_run: str | None = None,
103
+ ) -> None:
104
+ """Ingest a provenance graph into a butler repository.
105
+
106
+ Parameters
107
+ ----------
108
+ butler_config : `str`
109
+ Path or alias for the butler repository, or a butler repository config
110
+ object.
111
+ uri : `lsst.resources.ResourcePathExpression` or `None`, optional
112
+ Location of the provenance quantum graph to ingest. `None` indicates
113
+ that the quantum graph has already been ingested, but other ingests
114
+ and/or deletions failed and need to be resumed.
115
+ transfer : `str` or `None`, optional
116
+ Transfer mode to use when ingesting graph. Matches those supported
117
+ by `lsst.resources.ResourcePath.transfer_from`.
118
+ batch_size : `int`, optional
119
+ Number of datasets to process in each transaction.
120
+ output_run : `str`, optional
121
+ Output `~lsst.daf.butler.CollectionType.RUN` collection name. Only
122
+ needs to be provided if ``uri`` is `None`. If it is provided the
123
+ output run in the graph is checked against it.
124
+
125
+ Notes
126
+ -----
127
+ After this operation, any further processing done in the
128
+ `~lsst.daf.butler.CollectionType.RUN` collection will not be included in
129
+ the provenance.
130
+
131
+ If this process is interrupted, it can pick up where it left off if run
132
+ again (at the cost of some duplicate work to figure out how much progress
133
+ it had made).
134
+ """
135
+ with _GraphIngester.open(butler_config, uri, output_run) as helper:
136
+ helper.fetch_already_ingested_datasets()
137
+ if not helper.graph_already_ingested:
138
+ assert uri is not None
139
+ helper.forget_ingested_datasets(batch_size=batch_size)
140
+ helper.ingest_graph_dataset(uri, transfer=transfer)
141
+ helper.clean_and_reingest_datasets(batch_size=batch_size)
142
+ if helper.directories_to_delete:
143
+ _LOG.info(
144
+ "Deleting %d directories after checking that they are empty.",
145
+ len(helper.directories_to_delete),
146
+ )
147
+ n_deleted: int = 0
148
+ for top in sorted(helper.directories_to_delete):
149
+ nonempty: set[str] = set()
150
+ for root, dirnames, filenames in os.walk(top, topdown=False):
151
+ if filenames:
152
+ nonempty.add(root)
153
+ for dirname in dirnames:
154
+ dirpath = os.path.join(root, dirname)
155
+ if dirpath in nonempty:
156
+ nonempty.add(root)
157
+ else:
158
+ os.rmdir(dirpath)
159
+ if nonempty:
160
+ _LOG.warning(
161
+ "Directory %r was not deleted because it unexpectedly still had files in it.",
162
+ top,
163
+ )
164
+ else:
165
+ os.rmdir(root)
166
+ n_deleted += 1
167
+ _LOG.info("Deleted %d directories.", n_deleted)
168
+
169
+
170
+ @dataclasses.dataclass
171
+ class _GraphIngester:
172
+ butler_config: str | Config
173
+ butler: Butler
174
+ graph: ProvenanceQuantumGraph
175
+ graph_already_ingested: bool
176
+ n_datasets: int
177
+ datasets_already_ingested: set[uuid.UUID] = dataclasses.field(default_factory=set)
178
+ directories_to_delete: set[str] = dataclasses.field(default_factory=set)
179
+
180
+ @property
181
+ def output_run(self) -> str:
182
+ return self.graph.header.output_run
183
+
184
+ @classmethod
185
+ @contextmanager
186
+ def open(
187
+ cls,
188
+ butler_config: str | Config,
189
+ uri: ResourcePathExpression | None,
190
+ output_run: str | None,
191
+ ) -> Iterator[_GraphIngester]:
192
+ with Butler.from_config(butler_config, collections=output_run, writeable=True) as butler:
193
+ butler.registry.registerDatasetType(
194
+ DatasetType(PROVENANCE_DATASET_TYPE_NAME, butler.dimensions.empty, PROVENANCE_STORAGE_CLASS)
195
+ )
196
+ graph, graph_already_ingested = cls.read_graph(butler, uri)
197
+ if output_run is not None and graph.header.output_run != output_run:
198
+ raise ValueError(
199
+ f"Given output run {output_run!r} does not match the graph "
200
+ f"header {graph.header.output_run!r}."
201
+ )
202
+ n_datasets = 2 * len(graph.quantum_only_xgraph) + len(graph.init_quanta)
203
+ yield cls(
204
+ butler_config=butler_config,
205
+ butler=butler,
206
+ graph=graph,
207
+ graph_already_ingested=graph_already_ingested,
208
+ n_datasets=n_datasets,
209
+ )
210
+
211
+ @staticmethod
212
+ def read_graph(
213
+ butler: Butler,
214
+ uri: ResourcePathExpression | None,
215
+ ) -> tuple[ProvenanceQuantumGraph, bool]:
216
+ if uri is not None:
217
+ _LOG.info("Reading the pre-ingest provenance graph.")
218
+ with ProvenanceQuantumGraphReader.open(uri) as reader:
219
+ reader.read_quanta()
220
+ reader.read_init_quanta()
221
+ graph = reader.graph
222
+ already_ingested = (
223
+ butler.find_dataset(PROVENANCE_DATASET_TYPE_NAME, collections=[graph.header.output_run])
224
+ is not None
225
+ )
226
+ return graph, already_ingested
227
+ else:
228
+ _LOG.info("Reading the already-ingested provenance graph.")
229
+ parameters = {"datasets": [], "read_init_quanta": True}
230
+ return butler.get(PROVENANCE_DATASET_TYPE_NAME, parameters=parameters), True
231
+
232
+ def fetch_already_ingested_datasets(self) -> None:
233
+ _LOG.info("Querying for existing datasets in %r.", self.output_run)
234
+ self.datasets_already_ingested.update(self.butler.registry._fetch_run_dataset_ids(self.output_run))
235
+
236
+ def iter_datasets(self) -> Iterator[tuple[uuid.UUID, ProvenanceDatasetInfo]]:
237
+ xgraph = self.graph.bipartite_xgraph
238
+ for task_label, quanta_for_task in self.graph.quanta_by_task.items():
239
+ _LOG.verbose(
240
+ "Batching up metadata and log datasets from %d %s quanta.", len(quanta_for_task), task_label
241
+ )
242
+ for quantum_id in quanta_for_task.values():
243
+ quantum_info: ProvenanceQuantumInfo = xgraph.nodes[quantum_id]
244
+ metadata_id = quantum_info["metadata_id"]
245
+ yield metadata_id, xgraph.nodes[metadata_id]
246
+ log_id = quantum_info["log_id"]
247
+ yield log_id, xgraph.nodes[log_id]
248
+ _LOG.verbose("Batching up config datasets from %d tasks.", len(self.graph.init_quanta))
249
+ for task_label, quantum_id in self.graph.init_quanta.items():
250
+ init_quantum_info: ProvenanceInitQuantumInfo = xgraph.nodes[quantum_id]
251
+ config_id = init_quantum_info["config_id"]
252
+ yield config_id, xgraph.nodes[config_id]
253
+
254
+ def forget_ingested_datasets(self, batch_size: int) -> None:
255
+ _LOG.info(
256
+ "Dropping database records for metadata/log/config datasets backed by their original files."
257
+ )
258
+ to_forget: list[DatasetRef] = []
259
+ n_forgotten: int = 0
260
+ n_skipped: int = 0
261
+ for dataset_id, dataset_info in self.iter_datasets():
262
+ if dataset_info["produced"] and dataset_id in self.datasets_already_ingested:
263
+ to_forget.append(self._make_ref_from_info(dataset_id, dataset_info))
264
+ self.datasets_already_ingested.remove(dataset_id)
265
+ if len(to_forget) >= batch_size:
266
+ n_forgotten += self._run_forget(to_forget, n_forgotten + n_skipped)
267
+ else:
268
+ n_skipped += 1
269
+ n_forgotten += self._run_forget(to_forget, n_forgotten + n_skipped)
270
+ _LOG.info(
271
+ "Removed database records for %d metadata/log/config datasets, while %d were already absent.",
272
+ n_forgotten,
273
+ n_skipped,
274
+ )
275
+
276
+ def _run_forget(self, to_forget: list[DatasetRef], n_current: int) -> int:
277
+ if to_forget:
278
+ _LOG.verbose(
279
+ "Forgetting a %d-dataset batch; %d/%d forgotten so far or already absent.",
280
+ len(to_forget),
281
+ n_current,
282
+ self.n_datasets,
283
+ )
284
+ with self.butler.registry.transaction():
285
+ self.butler._datastore.forget(to_forget)
286
+ self.butler.registry.removeDatasets(to_forget)
287
+ n = len(to_forget)
288
+ to_forget.clear()
289
+ return n
290
+
291
+ def ingest_graph_dataset(self, uri: ResourcePathExpression, transfer: str | None) -> None:
292
+ _LOG.info("Ingesting the provenance quantum graph.")
293
+ dataset_type = DatasetType(
294
+ PROVENANCE_DATASET_TYPE_NAME, self.butler.dimensions.empty, PROVENANCE_STORAGE_CLASS
295
+ )
296
+ self.butler.registry.registerDatasetType(dataset_type)
297
+ ref = DatasetRef(dataset_type, DataCoordinate.make_empty(self.butler.dimensions), run=self.output_run)
298
+ uri = ResourcePath(uri)
299
+ self.butler.ingest(
300
+ # We use .abspath() since butler assumes paths are relative to the
301
+ # repo root, while users expects them to be relative to the CWD in
302
+ # this context.
303
+ FileDataset(refs=[ref], path=uri.abspath(), formatter=ProvenanceFormatter),
304
+ transfer=transfer,
305
+ )
306
+
307
+ def clean_and_reingest_datasets(self, batch_size: int) -> None:
308
+ _LOG.info(
309
+ "Deleting original metadata/log/config files and re-ingesting them with provenance graph backing."
310
+ )
311
+ direct_uri = self.butler.getURI(PROVENANCE_DATASET_TYPE_NAME, collections=[self.output_run])
312
+ qbb = self.make_qbb()
313
+ to_process: list[DatasetRef] = []
314
+ n_processed: int = 0
315
+ n_skipped: int = 0
316
+ n_not_produced: int = 0
317
+ for dataset_id, dataset_info in self.iter_datasets():
318
+ if not dataset_info["produced"]:
319
+ n_not_produced += 1
320
+ elif dataset_id not in self.datasets_already_ingested:
321
+ to_process.append(self._make_ref_from_info(dataset_id, dataset_info))
322
+ if len(to_process) >= batch_size:
323
+ n_processed += self._run_clean_and_ingest(
324
+ qbb, direct_uri, to_process, n_processed + n_skipped
325
+ )
326
+ else:
327
+ n_skipped += 1
328
+ n_processed += self._run_clean_and_ingest(qbb, direct_uri, to_process, n_processed + n_skipped)
329
+ _LOG.info(
330
+ "Deleted and re-ingested %d metadata/log/config datasets "
331
+ "(%d had already been processed, %d were not produced).",
332
+ n_processed,
333
+ n_skipped,
334
+ n_not_produced,
335
+ )
336
+
337
+ def _run_clean_and_ingest(
338
+ self, qbb: QuantumBackedButler, direct_uri: ResourcePath, to_process: list[DatasetRef], n_current: int
339
+ ) -> int:
340
+ if not to_process:
341
+ return 0
342
+ _LOG.verbose(
343
+ "Deleting and re-ingesting a %d-dataset batch; %d/%d complete.",
344
+ len(to_process),
345
+ n_current,
346
+ self.n_datasets,
347
+ )
348
+ sql_registry: SqlRegistry = self.butler._registry # type: ignore[attr-defined]
349
+ expanded_refs = sql_registry.expand_refs(to_process)
350
+ # We need to pass predict=True to keep QBB/FileDatastore from wasting
351
+ # time doing existence checks, since ResourcePath.mremove will ignore
352
+ # nonexistent files anyway.
353
+ original_uris = list(
354
+ itertools.chain.from_iterable(
355
+ ref_uris.iter_all() for ref_uris in qbb.get_many_uris(expanded_refs, predict=True).values()
356
+ )
357
+ )
358
+ removal_status = ResourcePath.mremove(original_uris, do_raise=False)
359
+ for path, status in removal_status.items():
360
+ if not status.success and not isinstance(status.exception, FileNotFoundError):
361
+ assert status.exception is not None, "Exception should be set if success=False."
362
+ status.exception.add_note(f"Attempting to delete original file at {path}.")
363
+ raise status.exception
364
+ file_dataset = FileDataset(refs=expanded_refs, path=direct_uri, formatter=ProvenanceFormatter)
365
+ self.butler.ingest(file_dataset, transfer=None)
366
+ if len(original_uris) == len(expanded_refs):
367
+ for uri, ref in zip(original_uris, expanded_refs):
368
+ if uri.isLocal:
369
+ if (
370
+ parent_dir := self.find_dataset_type_directory(uri.ospath, ref.datasetType.name)
371
+ ) is not None:
372
+ self.directories_to_delete.add(parent_dir)
373
+ elif any(uri.isLocal for uri in original_uris):
374
+ _LOG.warning(
375
+ "Not attempting to delete empty metadata/log/config directories because the number "
376
+ "of paths (%s) did not match the number of datasets (%s).",
377
+ len(original_uris),
378
+ len(expanded_refs),
379
+ )
380
+ n = len(to_process)
381
+ to_process.clear()
382
+ return n
383
+
384
+ @staticmethod
385
+ def _make_ref_from_info(dataset_id: uuid.UUID, dataset_info: ProvenanceDatasetInfo) -> DatasetRef:
386
+ return DatasetRef(
387
+ dataset_info["pipeline_node"].dataset_type,
388
+ dataset_info["data_id"],
389
+ run=dataset_info["run"],
390
+ id=dataset_id,
391
+ )
392
+
393
+ def make_qbb(self) -> QuantumBackedButler:
394
+ dataset_types = {d.name: d.dataset_type for d in self.graph.pipeline_graph.dataset_types.values()}
395
+ return QuantumBackedButler.from_predicted(
396
+ config=self.butler_config,
397
+ predicted_inputs=(),
398
+ predicted_outputs=(),
399
+ dimensions=self.butler.dimensions,
400
+ datastore_records={},
401
+ dataset_types=dataset_types,
402
+ )
403
+
404
+ def find_dataset_type_directory(self, ospath: str, dataset_type: str) -> str | None:
405
+ dir_components: list[str] = []
406
+ for component in os.path.dirname(ospath).split(os.path.sep):
407
+ dir_components.append(component)
408
+ # If the full dataset type name is in a single directory path
409
+ # component, we guess that directory can only have datasets of
410
+ # that type.
411
+ if dataset_type in component:
412
+ return os.path.sep.join(dir_components)
413
+ return None
@@ -37,12 +37,16 @@ from typing import IO, ClassVar, Generic, TypeVar
37
37
  from ..pipeline_graph import NodeType
38
38
  from ._common import BaseQuantumGraph, BipartiteEdgeInfo, DatasetInfo, QuantumInfo
39
39
 
40
+ # We use the old generic syntax in this module because for some reason the new
41
+ # one confused Sphinx (or one of its plugins), even though it seems fine with
42
+ # it in other places. We can try again when we're ready to remove types from
43
+ # the docstrings of annotated functions, in case that matters.
40
44
  _G = TypeVar("_G", bound=BaseQuantumGraph, contravariant=True)
41
45
  _Q = TypeVar("_Q", bound=QuantumInfo, contravariant=True)
42
46
  _D = TypeVar("_D", bound=DatasetInfo, contravariant=True)
43
47
 
44
48
 
45
- class QuantumGraphVisualizer(Generic[_G, _Q, _D]):
49
+ class QuantumGraphVisualizer(Generic[_G, _Q, _D]): # noqa: UP046
46
50
  """A base class for exporting quantum graphs to graph-visualization
47
51
  languages.
48
52
 
@@ -380,8 +380,6 @@ class QuantumGraphBuilder(ABC):
380
380
 
381
381
  Parameters
382
382
  ----------
383
- metadata : `~collections.abc.Mapping`, optional
384
- Flexible metadata to add to the quantum graph.
385
383
  attach_datastore_records : `bool`, optional
386
384
  Whether to include datastore records in the graph. Required for
387
385
  `lsst.daf.butler.QuantumBackedButler` execution.
@@ -680,6 +678,26 @@ class QuantumGraphBuilder(ABC):
680
678
  "Dropping task %s because no quanta remain%s.", task_node.label, message_parenthetical
681
679
  )
682
680
  skeleton.remove_task(task_node.label)
681
+ if len(no_work_quanta) > len(remaining_quanta):
682
+ only_overall_inputs = self._get_task_inputs_if_overall_only(task_node)
683
+ self.log.warning(
684
+ "More than half of %s quanta had no work to do given available inputs.\n"
685
+ "A query constraint on one of %s may yield a much faster build.",
686
+ task_node.label,
687
+ only_overall_inputs,
688
+ )
689
+
690
+ def _get_task_inputs_if_overall_only(self, task_node: TaskNode) -> list[str] | None:
691
+ """If the given task consumes only overall-inputs, return their names.
692
+ Otherwise return `None`.
693
+ """
694
+ result: list[str] = []
695
+ for read_edge in task_node.inputs.values():
696
+ if self._pipeline_graph.producer_of(read_edge.parent_dataset_type_name) is None:
697
+ result.append(read_edge.parent_dataset_type_name)
698
+ else:
699
+ return None
700
+ return result
683
701
 
684
702
  def _skip_quantum_if_metadata_exists(
685
703
  self, task_node: TaskNode, quantum_key: QuantumKey, skeleton: QuantumGraphSkeleton
@@ -887,11 +905,6 @@ class QuantumGraphBuilder(ABC):
887
905
  Identifier for this quantum in the graph.
888
906
  skeleton : `.quantum_graph_skeleton.QuantumGraphSkeleton`
889
907
  Preliminary quantum graph, to be modified in-place.
890
- skypix_bounds_builder : `~prerequisite_helpers.SkyPixBoundsBuilder`
891
- An object that accumulates the appropriate spatial bounds for a
892
- quantum.
893
- timespan_builder : `~prerequisite_helpers.TimespanBuilder`
894
- An object that accumulates the appropriate timespan for a quantum.
895
908
 
896
909
  Returns
897
910
  -------
@@ -1095,11 +1108,13 @@ class QuantumGraphBuilder(ABC):
1095
1108
  to `lsst.daf.butler.DatastoreRecordData`, as used by
1096
1109
  `lsst.daf.butler.Quantum`.
1097
1110
  """
1111
+ self.log.info("Fetching and attaching datastore records for all overall inputs.")
1098
1112
  overall_inputs = skeleton.extract_overall_inputs()
1099
1113
  exported_records = self.butler._datastore.export_records(overall_inputs.values())
1100
1114
  for task_label in self._pipeline_graph.tasks:
1101
1115
  if not skeleton.has_task(task_label):
1102
1116
  continue
1117
+ self.log.verbose("Fetching and attaching datastore records for task %s.", task_label)
1103
1118
  task_init_key = skeleton.get_task_init_node(task_label)
1104
1119
  init_input_ids = {
1105
1120
  ref.id
@@ -1142,7 +1157,7 @@ class QuantumGraphBuilder(ABC):
1142
1157
  "outputs" attributes on all quantum nodes, as added by
1143
1158
  `_resolve_task_quanta`, as well as a "datastore_records" attribute
1144
1159
  as added by `_attach_datastore_records`.
1145
- metadata : `Mapping`
1160
+ metadata : `~collections.abc.Mapping`
1146
1161
  Flexible metadata to add to the graph.
1147
1162
 
1148
1163
  Returns
@@ -1152,12 +1167,14 @@ class QuantumGraphBuilder(ABC):
1152
1167
  """
1153
1168
  from .graph import QuantumGraph
1154
1169
 
1170
+ self.log.info("Transforming graph skeleton into a QuantumGraph instance.")
1155
1171
  quanta: dict[TaskDef, set[Quantum]] = {}
1156
1172
  init_inputs: dict[TaskDef, Iterable[DatasetRef]] = {}
1157
1173
  init_outputs: dict[TaskDef, Iterable[DatasetRef]] = {}
1158
1174
  for task_def in self._pipeline_graph._iter_task_defs():
1159
1175
  if not skeleton.has_task(task_def.label):
1160
1176
  continue
1177
+ self.log.verbose("Transforming graph skeleton nodes for task %s.", task_def.label)
1161
1178
  task_node = self._pipeline_graph.tasks[task_def.label]
1162
1179
  task_init_key = skeleton.get_task_init_node(task_def.label)
1163
1180
  task_init_state = skeleton[task_init_key]
@@ -1198,7 +1215,8 @@ class QuantumGraphBuilder(ABC):
1198
1215
  ref = skeleton.get_dataset_ref(dataset_key)
1199
1216
  assert ref is not None, "Global init input refs should be resolved already."
1200
1217
  global_init_outputs.append(ref)
1201
- return QuantumGraph(
1218
+ self.log.verbose("Invoking QuantumGraph class constructor.")
1219
+ result = QuantumGraph(
1202
1220
  quanta,
1203
1221
  metadata=all_metadata,
1204
1222
  universe=self.universe,
@@ -1207,6 +1225,8 @@ class QuantumGraphBuilder(ABC):
1207
1225
  globalInitOutputs=global_init_outputs,
1208
1226
  registryDatasetTypes=registry_dataset_types,
1209
1227
  )
1228
+ self.log.info("Graph build complete.")
1229
+ return result
1210
1230
 
1211
1231
  @final
1212
1232
  @timeMethod
@@ -1243,6 +1263,7 @@ class QuantumGraphBuilder(ABC):
1243
1263
  PredictedQuantumGraphComponents,
1244
1264
  )
1245
1265
 
1266
+ self.log.info("Transforming graph skeleton into PredictedQuantumGraph components.")
1246
1267
  components = PredictedQuantumGraphComponents(pipeline_graph=self._pipeline_graph)
1247
1268
  components.header.inputs = list(self.input_collections)
1248
1269
  components.header.output_run = self.output_run
@@ -1270,6 +1291,7 @@ class QuantumGraphBuilder(ABC):
1270
1291
  for task_node in self._pipeline_graph.tasks.values():
1271
1292
  if not skeleton.has_task(task_node.label):
1272
1293
  continue
1294
+ self.log.verbose("Transforming graph skeleton nodes for task %s.", task_node.label)
1273
1295
  task_init_key = TaskInitKey(task_node.label)
1274
1296
  init_quantum_datasets = PredictedQuantumDatasetsModel.model_construct(
1275
1297
  quantum_id=generate_uuidv7(),
@@ -1315,8 +1337,10 @@ class QuantumGraphBuilder(ABC):
1315
1337
  },
1316
1338
  )
1317
1339
  components.quantum_datasets[quantum_datasets.quantum_id] = quantum_datasets
1340
+ self.log.verbose("Building the thin summary graph.")
1318
1341
  components.set_thin_graph()
1319
1342
  components.set_header_counts()
1343
+ self.log.info("Graph build complete.")
1320
1344
  return components
1321
1345
 
1322
1346
  @staticmethod