lsst-pipe-base 29.2025.4800__py3-none-any.whl → 30.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (39) hide show
  1. lsst/pipe/base/_instrument.py +6 -5
  2. lsst/pipe/base/caching_limited_butler.py +3 -0
  3. lsst/pipe/base/log_capture.py +39 -79
  4. lsst/pipe/base/log_on_close.py +79 -0
  5. lsst/pipe/base/mp_graph_executor.py +51 -15
  6. lsst/pipe/base/quantum_graph/_common.py +4 -3
  7. lsst/pipe/base/quantum_graph/_multiblock.py +6 -16
  8. lsst/pipe/base/quantum_graph/_predicted.py +106 -12
  9. lsst/pipe/base/quantum_graph/_provenance.py +657 -6
  10. lsst/pipe/base/quantum_graph/aggregator/_communicators.py +18 -50
  11. lsst/pipe/base/quantum_graph/aggregator/_ingester.py +14 -3
  12. lsst/pipe/base/quantum_graph/aggregator/_scanner.py +49 -232
  13. lsst/pipe/base/quantum_graph/aggregator/_structs.py +3 -113
  14. lsst/pipe/base/quantum_graph/aggregator/_supervisor.py +10 -5
  15. lsst/pipe/base/quantum_graph/aggregator/_writer.py +31 -348
  16. lsst/pipe/base/quantum_graph/formatter.py +101 -0
  17. lsst/pipe/base/quantum_graph_builder.py +12 -1
  18. lsst/pipe/base/quantum_graph_executor.py +116 -13
  19. lsst/pipe/base/quantum_graph_skeleton.py +1 -7
  20. lsst/pipe/base/script/register_instrument.py +4 -4
  21. lsst/pipe/base/script/retrieve_artifacts_for_quanta.py +5 -6
  22. lsst/pipe/base/script/transfer_from_graph.py +42 -42
  23. lsst/pipe/base/script/zip_from_graph.py +7 -8
  24. lsst/pipe/base/separable_pipeline_executor.py +18 -2
  25. lsst/pipe/base/simple_pipeline_executor.py +4 -3
  26. lsst/pipe/base/single_quantum_executor.py +70 -34
  27. lsst/pipe/base/tests/mocks/_repo.py +44 -16
  28. lsst/pipe/base/tests/simpleQGraph.py +43 -35
  29. lsst/pipe/base/version.py +1 -1
  30. {lsst_pipe_base-29.2025.4800.dist-info → lsst_pipe_base-30.0.0.dist-info}/METADATA +1 -1
  31. {lsst_pipe_base-29.2025.4800.dist-info → lsst_pipe_base-30.0.0.dist-info}/RECORD +39 -37
  32. {lsst_pipe_base-29.2025.4800.dist-info → lsst_pipe_base-30.0.0.dist-info}/WHEEL +1 -1
  33. {lsst_pipe_base-29.2025.4800.dist-info → lsst_pipe_base-30.0.0.dist-info}/entry_points.txt +0 -0
  34. {lsst_pipe_base-29.2025.4800.dist-info → lsst_pipe_base-30.0.0.dist-info}/licenses/COPYRIGHT +0 -0
  35. {lsst_pipe_base-29.2025.4800.dist-info → lsst_pipe_base-30.0.0.dist-info}/licenses/LICENSE +0 -0
  36. {lsst_pipe_base-29.2025.4800.dist-info → lsst_pipe_base-30.0.0.dist-info}/licenses/bsd_license.txt +0 -0
  37. {lsst_pipe_base-29.2025.4800.dist-info → lsst_pipe_base-30.0.0.dist-info}/licenses/gpl-v3.0.txt +0 -0
  38. {lsst_pipe_base-29.2025.4800.dist-info → lsst_pipe_base-30.0.0.dist-info}/top_level.txt +0 -0
  39. {lsst_pipe_base-29.2025.4800.dist-info → lsst_pipe_base-30.0.0.dist-info}/zip-safe +0 -0
@@ -27,68 +27,16 @@
27
27
 
28
28
  from __future__ import annotations
29
29
 
30
- __all__ = (
31
- "InProgressScan",
32
- "IngestRequest",
33
- "ScanReport",
34
- "ScanStatus",
35
- "WriteRequest",
36
- )
30
+ __all__ = ("IngestRequest", "ScanReport")
37
31
 
38
32
  import dataclasses
39
- import enum
40
33
  import uuid
41
34
 
42
35
  from lsst.daf.butler.datastore.record_data import DatastoreRecordData
43
36
 
44
37
  from .._common import DatastoreName
45
38
  from .._predicted import PredictedDatasetModel
46
- from .._provenance import (
47
- ProvenanceLogRecordsModel,
48
- ProvenanceQuantumAttemptModel,
49
- ProvenanceTaskMetadataModel,
50
- )
51
-
52
-
53
- class ScanStatus(enum.Enum):
54
- """Status enum for quantum scanning.
55
-
56
- Note that this records the status for the *scanning* which is distinct
57
- from the status of the quantum's execution.
58
- """
59
-
60
- INCOMPLETE = enum.auto()
61
- """The quantum is not necessarily done running, and cannot be scanned
62
- conclusively yet.
63
- """
64
-
65
- ABANDONED = enum.auto()
66
- """The quantum's execution appears to have failed but we cannot rule out
67
- the possibility that it could be recovered, but we've also waited long
68
- enough (according to `ScannerTimeConfigDict.retry_timeout`) that it's time
69
- to stop trying for now.
70
-
71
- This state means a later run with `ScannerConfig.assume_complete` is
72
- required.
73
- """
74
-
75
- SUCCESSFUL = enum.auto()
76
- """The quantum was conclusively scanned and was executed successfully,
77
- unblocking scans for downstream quanta.
78
- """
79
-
80
- FAILED = enum.auto()
81
- """The quantum was conclusively scanned and failed execution, blocking
82
- scans for downstream quanta.
83
- """
84
-
85
- BLOCKED = enum.auto()
86
- """A quantum upstream of this one failed."""
87
-
88
- INIT = enum.auto()
89
- """Init quanta need special handling, because they don't have logs and
90
- metadata.
91
- """
39
+ from .._provenance import ProvenanceQuantumScanStatus
92
40
 
93
41
 
94
42
  @dataclasses.dataclass
@@ -98,7 +46,7 @@ class ScanReport:
98
46
  quantum_id: uuid.UUID
99
47
  """Unique ID of the quantum."""
100
48
 
101
- status: ScanStatus
49
+ status: ProvenanceQuantumScanStatus
102
50
  """Combined status of the scan and the execution of the quantum."""
103
51
 
104
52
 
@@ -117,61 +65,3 @@ class IngestRequest:
117
65
 
118
66
  def __bool__(self) -> bool:
119
67
  return bool(self.datasets or self.records)
120
-
121
-
122
- @dataclasses.dataclass
123
- class InProgressScan:
124
- """A struct that represents a quantum that is being scanned."""
125
-
126
- quantum_id: uuid.UUID
127
- """Unique ID for the quantum."""
128
-
129
- status: ScanStatus
130
- """Combined status for the scan and the execution of the quantum."""
131
-
132
- attempts: list[ProvenanceQuantumAttemptModel] = dataclasses.field(default_factory=list)
133
- """Provenance information about each attempt to run the quantum."""
134
-
135
- outputs: dict[uuid.UUID, bool] = dataclasses.field(default_factory=dict)
136
- """Unique IDs of the output datasets mapped to whether they were actually
137
- produced.
138
- """
139
-
140
- metadata: ProvenanceTaskMetadataModel = dataclasses.field(default_factory=ProvenanceTaskMetadataModel)
141
- """Task metadata information for each attempt.
142
- """
143
-
144
- logs: ProvenanceLogRecordsModel = dataclasses.field(default_factory=ProvenanceLogRecordsModel)
145
- """Log records for each attempt.
146
- """
147
-
148
-
149
- @dataclasses.dataclass
150
- class WriteRequest:
151
- """A struct that represents a request to write provenance for a quantum."""
152
-
153
- quantum_id: uuid.UUID
154
- """Unique ID for the quantum."""
155
-
156
- status: ScanStatus
157
- """Combined status for the scan and the execution of the quantum."""
158
-
159
- existing_outputs: set[uuid.UUID] = dataclasses.field(default_factory=set)
160
- """Unique IDs of the output datasets that were actually written."""
161
-
162
- quantum: bytes = b""
163
- """Serialized quantum provenance model.
164
-
165
- This may be empty for quanta that had no attempts.
166
- """
167
-
168
- metadata: bytes = b""
169
- """Serialized task metadata."""
170
-
171
- logs: bytes = b""
172
- """Serialized logs."""
173
-
174
- is_compressed: bool = False
175
- """Whether the `quantum`, `metadata`, and `log` attributes are
176
- compressed.
177
- """
@@ -42,6 +42,7 @@ from lsst.utils.usage import get_peak_mem_usage
42
42
  from ...graph_walker import GraphWalker
43
43
  from ...pipeline_graph import TaskImportMode
44
44
  from .._predicted import PredictedQuantumGraphComponents, PredictedQuantumGraphReader
45
+ from .._provenance import ProvenanceQuantumScanData, ProvenanceQuantumScanStatus
45
46
  from ._communicators import (
46
47
  IngesterCommunicator,
47
48
  ScannerCommunicator,
@@ -54,7 +55,7 @@ from ._communicators import (
54
55
  from ._config import AggregatorConfig
55
56
  from ._ingester import Ingester
56
57
  from ._scanner import Scanner
57
- from ._structs import ScanReport, ScanStatus, WriteRequest
58
+ from ._structs import ScanReport
58
59
  from ._writer import Writer
59
60
 
60
61
 
@@ -126,18 +127,22 @@ class Supervisor:
126
127
  Information about the scan.
127
128
  """
128
129
  match scan_report.status:
129
- case ScanStatus.SUCCESSFUL | ScanStatus.INIT:
130
+ case ProvenanceQuantumScanStatus.SUCCESSFUL | ProvenanceQuantumScanStatus.INIT:
130
131
  self.comms.log.debug("Scan complete for %s: quantum succeeded.", scan_report.quantum_id)
131
132
  self.walker.finish(scan_report.quantum_id)
132
- case ScanStatus.FAILED:
133
+ case ProvenanceQuantumScanStatus.FAILED:
133
134
  self.comms.log.debug("Scan complete for %s: quantum failed.", scan_report.quantum_id)
134
135
  blocked_quanta = self.walker.fail(scan_report.quantum_id)
135
136
  for blocked_quantum_id in blocked_quanta:
136
137
  if self.comms.config.output_path is not None:
137
- self.comms.request_write(WriteRequest(blocked_quantum_id, status=ScanStatus.BLOCKED))
138
+ self.comms.request_write(
139
+ ProvenanceQuantumScanData(
140
+ blocked_quantum_id, status=ProvenanceQuantumScanStatus.BLOCKED
141
+ )
142
+ )
138
143
  self.comms.progress.scans.update(1)
139
144
  self.comms.progress.quantum_ingests.update(len(blocked_quanta))
140
- case ScanStatus.ABANDONED:
145
+ case ProvenanceQuantumScanStatus.ABANDONED:
141
146
  self.comms.log.debug("Abandoning scan for %s: quantum has not succeeded (yet).")
142
147
  self.walker.fail(scan_report.quantum_id)
143
148
  self.n_abandoned += 1
@@ -30,130 +30,14 @@ from __future__ import annotations
30
30
  __all__ = ("Writer",)
31
31
 
32
32
  import dataclasses
33
- import itertools
34
- import logging
35
- import operator
36
- import uuid
37
- from typing import TypeVar
38
33
 
39
- import networkx
40
34
  import zstandard
41
35
 
42
- from lsst.utils.packages import Packages
43
-
44
- from ... import automatic_connection_constants as acc
36
+ from ...log_on_close import LogOnClose
45
37
  from ...pipeline_graph import TaskImportMode
46
- from .._common import BaseQuantumGraphWriter
47
- from .._multiblock import Compressor, MultiblockWriter
48
- from .._predicted import PredictedDatasetModel, PredictedQuantumGraphComponents, PredictedQuantumGraphReader
49
- from .._provenance import (
50
- DATASET_ADDRESS_INDEX,
51
- DATASET_MB_NAME,
52
- LOG_ADDRESS_INDEX,
53
- LOG_MB_NAME,
54
- METADATA_ADDRESS_INDEX,
55
- METADATA_MB_NAME,
56
- QUANTUM_ADDRESS_INDEX,
57
- QUANTUM_MB_NAME,
58
- ProvenanceDatasetModel,
59
- ProvenanceInitQuantaModel,
60
- ProvenanceInitQuantumModel,
61
- ProvenanceQuantumModel,
62
- )
38
+ from .._predicted import PredictedQuantumGraphComponents, PredictedQuantumGraphReader
39
+ from .._provenance import ProvenanceQuantumGraphWriter, ProvenanceQuantumScanData
63
40
  from ._communicators import WriterCommunicator
64
- from ._structs import WriteRequest
65
-
66
-
67
- @dataclasses.dataclass
68
- class _DataWriters:
69
- """A struct of low-level writer objects for the main components of a
70
- provenance quantum graph.
71
-
72
- Parameters
73
- ----------
74
- comms : `WriterCommunicator`
75
- Communicator helper object for the writer.
76
- predicted : `.PredictedQuantumGraphComponents`
77
- Components of the predicted graph.
78
- indices : `dict` [ `uuid.UUID`, `int` ]
79
- Mapping from UUID to internal integer ID, including both quanta and
80
- datasets.
81
- compressor : `Compressor`
82
- Object that can compress `bytes`.
83
- cdict_data : `bytes` or `None`, optional
84
- Bytes representation of the compression dictionary used by the
85
- compressor.
86
- """
87
-
88
- def __init__(
89
- self,
90
- comms: WriterCommunicator,
91
- predicted: PredictedQuantumGraphComponents,
92
- indices: dict[uuid.UUID, int],
93
- compressor: Compressor,
94
- cdict_data: bytes | None = None,
95
- ) -> None:
96
- assert comms.config.output_path is not None
97
- header = predicted.header.model_copy()
98
- header.graph_type = "provenance"
99
- self.graph = comms.enter(
100
- BaseQuantumGraphWriter.open(
101
- comms.config.output_path,
102
- header,
103
- predicted.pipeline_graph,
104
- indices,
105
- address_filename="nodes",
106
- compressor=compressor,
107
- cdict_data=cdict_data,
108
- ),
109
- on_close="Finishing writing provenance quantum graph.",
110
- is_progress_log=True,
111
- )
112
- self.graph.address_writer.addresses = [{}, {}, {}, {}]
113
- self.logs = comms.enter(
114
- MultiblockWriter.open_in_zip(self.graph.zf, LOG_MB_NAME, header.int_size, use_tempfile=True),
115
- on_close="Copying logs into zip archive.",
116
- is_progress_log=True,
117
- )
118
- self.graph.address_writer.addresses[LOG_ADDRESS_INDEX] = self.logs.addresses
119
- self.metadata = comms.enter(
120
- MultiblockWriter.open_in_zip(self.graph.zf, METADATA_MB_NAME, header.int_size, use_tempfile=True),
121
- on_close="Copying metadata into zip archive.",
122
- is_progress_log=True,
123
- )
124
- self.graph.address_writer.addresses[METADATA_ADDRESS_INDEX] = self.metadata.addresses
125
- self.datasets = comms.enter(
126
- MultiblockWriter.open_in_zip(self.graph.zf, DATASET_MB_NAME, header.int_size, use_tempfile=True),
127
- on_close="Copying dataset provenance into zip archive.",
128
- is_progress_log=True,
129
- )
130
- self.graph.address_writer.addresses[DATASET_ADDRESS_INDEX] = self.datasets.addresses
131
- self.quanta = comms.enter(
132
- MultiblockWriter.open_in_zip(self.graph.zf, QUANTUM_MB_NAME, header.int_size, use_tempfile=True),
133
- on_close="Copying quantum provenance into zip archive.",
134
- is_progress_log=True,
135
- )
136
- self.graph.address_writer.addresses[QUANTUM_ADDRESS_INDEX] = self.quanta.addresses
137
-
138
- graph: BaseQuantumGraphWriter
139
- """The parent graph writer."""
140
-
141
- datasets: MultiblockWriter
142
- """A writer for dataset provenance."""
143
-
144
- quanta: MultiblockWriter
145
- """A writer for quantum provenance."""
146
-
147
- metadata: MultiblockWriter
148
- """A writer for metadata content."""
149
-
150
- logs: MultiblockWriter
151
- """A writer for log content."""
152
-
153
- @property
154
- def compressor(self) -> Compressor:
155
- """Object that should be used to compress all JSON blocks."""
156
- return self.graph.compressor
157
41
 
158
42
 
159
43
  @dataclasses.dataclass
@@ -171,40 +55,7 @@ class Writer:
171
55
  predicted: PredictedQuantumGraphComponents = dataclasses.field(init=False)
172
56
  """Components of the predicted quantum graph."""
173
57
 
174
- existing_init_outputs: dict[uuid.UUID, set[uuid.UUID]] = dataclasses.field(default_factory=dict)
175
- """Mapping that tracks which init-outputs exist.
176
-
177
- This mapping is updated as scanners inform the writer about init-output
178
- existence, since we want to write that provenance information out only at
179
- the end.
180
- """
181
-
182
- indices: dict[uuid.UUID, int] = dataclasses.field(default_factory=dict)
183
- """Mapping from UUID to internal integer ID, including both quanta and
184
- datasets.
185
-
186
- This is fully initialized at construction.
187
- """
188
-
189
- output_dataset_ids: set[uuid.UUID] = dataclasses.field(default_factory=set)
190
- """The IDs of all datasets that are produced by this graph.
191
-
192
- This is fully initialized at construction.
193
- """
194
-
195
- overall_inputs: dict[uuid.UUID, PredictedDatasetModel] = dataclasses.field(default_factory=dict)
196
- """All datasets that are not produced by any quantum in this graph."""
197
-
198
- xgraph: networkx.DiGraph = dataclasses.field(default_factory=networkx.DiGraph)
199
- """A bipartite NetworkX graph linking datasets to quanta and quanta to
200
- datasets.
201
-
202
- This is fully initialized at construction. There are no node or edge
203
- attributes in this graph; we only need it to store adjacency information
204
- with datasets as well as with quanta.
205
- """
206
-
207
- pending_compression_training: list[WriteRequest] = dataclasses.field(default_factory=list)
58
+ pending_compression_training: list[ProvenanceQuantumScanData] = dataclasses.field(default_factory=list)
208
59
  """Unprocessed quantum scans that are being accumulated in order to
209
60
  build a compression dictionary.
210
61
  """
@@ -220,58 +71,6 @@ class Writer:
220
71
  self.comms.check_for_cancel()
221
72
  reader.read_quantum_datasets()
222
73
  self.predicted = reader.components
223
- for predicted_init_quantum in self.predicted.init_quanta.root:
224
- self.existing_init_outputs[predicted_init_quantum.quantum_id] = set()
225
- self.comms.check_for_cancel()
226
- self.comms.log.info("Generating integer indexes and identifying outputs.")
227
- self._populate_indices_and_outputs()
228
- self.comms.check_for_cancel()
229
- self._populate_xgraph_and_inputs()
230
- self.comms.check_for_cancel()
231
- self.comms.log_progress(
232
- # We add one here for 'packages', which we do ingest but don't
233
- # record provenance for.
234
- logging.INFO,
235
- f"Graph has {len(self.output_dataset_ids) + 1} predicted output dataset(s).",
236
- )
237
-
238
- def _populate_indices_and_outputs(self) -> None:
239
- all_uuids = set(self.predicted.quantum_datasets.keys())
240
- for quantum in self.comms.periodically_check_for_cancel(
241
- itertools.chain(
242
- self.predicted.init_quanta.root,
243
- self.predicted.quantum_datasets.values(),
244
- )
245
- ):
246
- if not quantum.task_label:
247
- # Skip the 'packages' producer quantum.
248
- continue
249
- all_uuids.update(quantum.iter_input_dataset_ids())
250
- self.output_dataset_ids.update(quantum.iter_output_dataset_ids())
251
- all_uuids.update(self.output_dataset_ids)
252
- self.indices = {
253
- node_id: node_index
254
- for node_index, node_id in self.comms.periodically_check_for_cancel(
255
- enumerate(sorted(all_uuids, key=operator.attrgetter("int")))
256
- )
257
- }
258
-
259
- def _populate_xgraph_and_inputs(self) -> None:
260
- for predicted_quantum in self.comms.periodically_check_for_cancel(
261
- itertools.chain(
262
- self.predicted.init_quanta.root,
263
- self.predicted.quantum_datasets.values(),
264
- )
265
- ):
266
- if not predicted_quantum.task_label:
267
- # Skip the 'packages' producer quantum.
268
- continue
269
- for predicted_input in itertools.chain.from_iterable(predicted_quantum.inputs.values()):
270
- self.xgraph.add_edge(predicted_input.dataset_id, predicted_quantum.quantum_id)
271
- if predicted_input.dataset_id not in self.output_dataset_ids:
272
- self.overall_inputs.setdefault(predicted_input.dataset_id, predicted_input)
273
- for predicted_output in itertools.chain.from_iterable(predicted_quantum.outputs.values()):
274
- self.xgraph.add_edge(predicted_quantum.quantum_id, predicted_output.dataset_id)
275
74
 
276
75
  @staticmethod
277
76
  def run(predicted_path: str, comms: WriterCommunicator) -> None:
@@ -295,52 +94,59 @@ class Writer:
295
94
 
296
95
  def loop(self) -> None:
297
96
  """Run the main loop for the writer."""
298
- data_writers: _DataWriters | None = None
97
+ qg_writer: ProvenanceQuantumGraphWriter | None = None
299
98
  if not self.comms.config.zstd_dict_size:
300
- data_writers = self.make_data_writers()
99
+ qg_writer = self.make_qg_writer()
301
100
  self.comms.log.info("Polling for write requests from scanners.")
302
101
  for request in self.comms.poll():
303
- if data_writers is None:
102
+ if qg_writer is None:
304
103
  self.pending_compression_training.append(request)
305
104
  if len(self.pending_compression_training) >= self.comms.config.zstd_dict_n_inputs:
306
- data_writers = self.make_data_writers()
105
+ qg_writer = self.make_qg_writer()
307
106
  else:
308
- self.process_request(request, data_writers)
309
- if data_writers is None:
310
- data_writers = self.make_data_writers()
311
- self.write_init_outputs(data_writers)
107
+ qg_writer.write_scan_data(request)
108
+ self.comms.report_write()
109
+ if qg_writer is None:
110
+ qg_writer = self.make_qg_writer()
111
+ self.comms.log.info("Writing init outputs.")
112
+ qg_writer.write_init_outputs(assume_existence=False)
312
113
 
313
- def make_data_writers(self) -> _DataWriters:
114
+ def make_qg_writer(self) -> ProvenanceQuantumGraphWriter:
314
115
  """Make a compression dictionary, open the low-level writers, and
315
116
  write any accumulated scans that were needed to make the compression
316
117
  dictionary.
317
118
 
318
119
  Returns
319
120
  -------
320
- data_writers : `_DataWriters`
121
+ qg_writer : `ProvenanceQuantumGraphWriter`
321
122
  Low-level writers struct.
322
123
  """
323
124
  cdict = self.make_compression_dictionary()
324
125
  self.comms.send_compression_dict(cdict.as_bytes())
325
126
  assert self.comms.config.output_path is not None
326
- self.comms.log.info("Opening output files.")
327
- data_writers = _DataWriters(
328
- self.comms,
329
- self.predicted,
330
- self.indices,
331
- compressor=zstandard.ZstdCompressor(self.comms.config.zstd_level, cdict),
127
+ self.comms.log.info("Opening output files and processing predicted graph.")
128
+ qg_writer = ProvenanceQuantumGraphWriter(
129
+ self.comms.config.output_path,
130
+ exit_stack=self.comms.exit_stack,
131
+ log_on_close=LogOnClose(self.comms.log_progress),
132
+ predicted=self.predicted,
133
+ zstd_level=self.comms.config.zstd_level,
332
134
  cdict_data=cdict.as_bytes(),
135
+ loop_wrapper=self.comms.periodically_check_for_cancel,
136
+ log=self.comms.log,
333
137
  )
334
138
  self.comms.check_for_cancel()
335
139
  self.comms.log.info("Compressing and writing queued scan requests.")
336
140
  for request in self.pending_compression_training:
337
- self.process_request(request, data_writers)
141
+ qg_writer.write_scan_data(request)
142
+ self.comms.report_write()
338
143
  del self.pending_compression_training
339
144
  self.comms.check_for_cancel()
340
- self.write_overall_inputs(data_writers)
341
- self.write_packages(data_writers)
145
+ self.comms.log.info("Writing overall inputs.")
146
+ qg_writer.write_overall_inputs(self.comms.periodically_check_for_cancel)
147
+ qg_writer.write_packages()
342
148
  self.comms.log.info("Returning to write request loop.")
343
- return data_writers
149
+ return qg_writer
344
150
 
345
151
  def make_compression_dictionary(self) -> zstandard.ZstdCompressionDict:
346
152
  """Make the compression dictionary.
@@ -376,126 +182,3 @@ class Writer:
376
182
  training_inputs.append(write_request.metadata)
377
183
  training_inputs.append(write_request.logs)
378
184
  return zstandard.train_dictionary(self.comms.config.zstd_dict_size, training_inputs)
379
-
380
- def write_init_outputs(self, data_writers: _DataWriters) -> None:
381
- """Write provenance for init-output datasets and init-quanta.
382
-
383
- Parameters
384
- ----------
385
- data_writers : `_DataWriters`
386
- Low-level writers struct.
387
- """
388
- self.comms.log.info("Writing init outputs.")
389
- init_quanta = ProvenanceInitQuantaModel()
390
- for predicted_init_quantum in self.predicted.init_quanta.root:
391
- if not predicted_init_quantum.task_label:
392
- # Skip the 'packages' producer quantum.
393
- continue
394
- existing_outputs = self.existing_init_outputs[predicted_init_quantum.quantum_id]
395
- for predicted_output in itertools.chain.from_iterable(predicted_init_quantum.outputs.values()):
396
- provenance_output = ProvenanceDatasetModel.from_predicted(
397
- predicted_output,
398
- producer=predicted_init_quantum.quantum_id,
399
- consumers=self.xgraph.successors(predicted_output.dataset_id),
400
- )
401
- provenance_output.produced = predicted_output.dataset_id in existing_outputs
402
- data_writers.datasets.write_model(
403
- provenance_output.dataset_id, provenance_output, data_writers.compressor
404
- )
405
- init_quanta.root.append(ProvenanceInitQuantumModel.from_predicted(predicted_init_quantum))
406
- data_writers.graph.write_single_model("init_quanta", init_quanta)
407
-
408
- def write_overall_inputs(self, data_writers: _DataWriters) -> None:
409
- """Write provenance for overall-input datasets.
410
-
411
- Parameters
412
- ----------
413
- data_writers : `_DataWriters`
414
- Low-level writers struct.
415
- """
416
- self.comms.log.info("Writing overall inputs.")
417
- for predicted_input in self.comms.periodically_check_for_cancel(self.overall_inputs.values()):
418
- if predicted_input.dataset_id not in data_writers.datasets.addresses:
419
- data_writers.datasets.write_model(
420
- predicted_input.dataset_id,
421
- ProvenanceDatasetModel.from_predicted(
422
- predicted_input,
423
- producer=None,
424
- consumers=self.xgraph.successors(predicted_input.dataset_id),
425
- ),
426
- data_writers.compressor,
427
- )
428
- del self.overall_inputs
429
-
430
- @staticmethod
431
- def write_packages(data_writers: _DataWriters) -> None:
432
- """Write package version information to the provenance graph.
433
-
434
- Parameters
435
- ----------
436
- data_writers : `_DataWriters`
437
- Low-level writers struct.
438
- """
439
- packages = Packages.fromSystem(include_all=True)
440
- data = packages.toBytes("json")
441
- data_writers.graph.write_single_block("packages", data)
442
-
443
- def process_request(self, request: WriteRequest, data_writers: _DataWriters) -> None:
444
- """Process a `WriteRequest` into `_ScanData`.
445
-
446
- Parameters
447
- ----------
448
- request : `WriteRequest`
449
- Result of a quantum scan.
450
- data_writers : `_DataWriters`
451
- Low-level writers struct.
452
- """
453
- if (existing_init_outputs := self.existing_init_outputs.get(request.quantum_id)) is not None:
454
- self.comms.log.debug("Handling init-output scan for %s.", request.quantum_id)
455
- existing_init_outputs.update(request.existing_outputs)
456
- self.comms.report_write()
457
- return
458
- self.comms.log.debug("Handling quantum scan for %s.", request.quantum_id)
459
- predicted_quantum = self.predicted.quantum_datasets[request.quantum_id]
460
- outputs: dict[uuid.UUID, bytes] = {}
461
- for predicted_output in itertools.chain.from_iterable(predicted_quantum.outputs.values()):
462
- provenance_output = ProvenanceDatasetModel.from_predicted(
463
- predicted_output,
464
- producer=predicted_quantum.quantum_id,
465
- consumers=self.xgraph.successors(predicted_output.dataset_id),
466
- )
467
- provenance_output.produced = provenance_output.dataset_id in request.existing_outputs
468
- outputs[provenance_output.dataset_id] = data_writers.compressor.compress(
469
- provenance_output.model_dump_json().encode()
470
- )
471
- if not request.quantum:
472
- request.quantum = (
473
- ProvenanceQuantumModel.from_predicted(predicted_quantum).model_dump_json().encode()
474
- )
475
- if request.is_compressed:
476
- request.quantum = data_writers.compressor.compress(request.quantum)
477
- if not request.is_compressed:
478
- request.quantum = data_writers.compressor.compress(request.quantum)
479
- if request.metadata:
480
- request.metadata = data_writers.compressor.compress(request.metadata)
481
- if request.logs:
482
- request.logs = data_writers.compressor.compress(request.logs)
483
- self.comms.log.debug("Writing quantum %s.", request.quantum_id)
484
- data_writers.quanta.write_bytes(request.quantum_id, request.quantum)
485
- for dataset_id, dataset_data in outputs.items():
486
- data_writers.datasets.write_bytes(dataset_id, dataset_data)
487
- if request.metadata:
488
- (metadata_output,) = predicted_quantum.outputs[acc.METADATA_OUTPUT_CONNECTION_NAME]
489
- address = data_writers.metadata.write_bytes(request.quantum_id, request.metadata)
490
- data_writers.metadata.addresses[metadata_output.dataset_id] = address
491
- if request.logs:
492
- (log_output,) = predicted_quantum.outputs[acc.LOG_OUTPUT_CONNECTION_NAME]
493
- address = data_writers.logs.write_bytes(request.quantum_id, request.logs)
494
- data_writers.logs.addresses[log_output.dataset_id] = address
495
- # We shouldn't need this predicted quantum anymore; delete it in the
496
- # hopes that'll free up some memory.
497
- del self.predicted.quantum_datasets[request.quantum_id]
498
- self.comms.report_write()
499
-
500
-
501
- _T = TypeVar("_T")