loone-data-prep 1.2.0__py3-none-any.whl → 1.2.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- loone_data_prep/LOONE_DATA_PREP.py +22 -4
- {loone_data_prep-1.2.0.dist-info → loone_data_prep-1.2.2.dist-info}/METADATA +3 -2
- {loone_data_prep-1.2.0.dist-info → loone_data_prep-1.2.2.dist-info}/RECORD +6 -6
- {loone_data_prep-1.2.0.dist-info → loone_data_prep-1.2.2.dist-info}/WHEEL +0 -0
- {loone_data_prep-1.2.0.dist-info → loone_data_prep-1.2.2.dist-info}/licenses/LICENSE +0 -0
- {loone_data_prep-1.2.0.dist-info → loone_data_prep-1.2.2.dist-info}/top_level.txt +0 -0
|
@@ -386,8 +386,17 @@ def main(input_dir: str, output_dir: str) -> None:
|
|
|
386
386
|
|
|
387
387
|
# RFVol acft
|
|
388
388
|
# Create File (RF_Volume)
|
|
389
|
-
|
|
390
|
-
|
|
389
|
+
# Merge the DataFrames on date to ensure matching rows
|
|
390
|
+
RF_data_copy = RF_data.copy()
|
|
391
|
+
LO_Stg_Sto_SA_df_copy = LO_Stg_Sto_SA_df.copy()
|
|
392
|
+
RF_data_copy['date'] = pd.to_datetime(RF_data_copy['date'])
|
|
393
|
+
LO_Stg_Sto_SA_df_copy['date'] = pd.to_datetime(LO_Stg_Sto_SA_df_copy['date'])
|
|
394
|
+
merged_rf_sa = pd.merge(RF_data_copy[['date', 'average_rainfall']],
|
|
395
|
+
LO_Stg_Sto_SA_df_copy[['date', 'SA_acres']],
|
|
396
|
+
on='date', how='inner')
|
|
397
|
+
|
|
398
|
+
RFVol = pd.DataFrame(merged_rf_sa['date'], columns=['date'])
|
|
399
|
+
RFVol['RFVol_acft'] = (merged_rf_sa['average_rainfall'].values/12) * merged_rf_sa['SA_acres'].values
|
|
391
400
|
date_reference = RFVol['date'].iloc[0]
|
|
392
401
|
date_inserts = [date_reference - datetime.timedelta(days=2), date_reference - datetime.timedelta(days=1)]
|
|
393
402
|
df_insert = pd.DataFrame(data={'date': date_inserts, 'RFVol_acft': [0.0, 0.0]})
|
|
@@ -396,8 +405,17 @@ def main(input_dir: str, output_dir: str) -> None:
|
|
|
396
405
|
|
|
397
406
|
# ETVol acft
|
|
398
407
|
# Create File (ETVol)
|
|
399
|
-
|
|
400
|
-
|
|
408
|
+
# Merge the DataFrames on date to ensure matching rows
|
|
409
|
+
ET_data_copy = ET_data.copy()
|
|
410
|
+
LO_Stg_Sto_SA_df_copy = LO_Stg_Sto_SA_df.copy()
|
|
411
|
+
ET_data_copy['date'] = pd.to_datetime(ET_data_copy['date'])
|
|
412
|
+
LO_Stg_Sto_SA_df_copy['date'] = pd.to_datetime(LO_Stg_Sto_SA_df_copy['date'])
|
|
413
|
+
merged_et_sa = pd.merge(ET_data_copy[['date', 'average_ETPI']],
|
|
414
|
+
LO_Stg_Sto_SA_df_copy[['date', 'SA_acres']],
|
|
415
|
+
on='date', how='inner')
|
|
416
|
+
|
|
417
|
+
ETVol = pd.DataFrame(merged_et_sa['date'], columns=['date'])
|
|
418
|
+
ETVol['ETVol_acft'] = (merged_et_sa['average_ETPI'].values/12) * merged_et_sa['SA_acres'].values
|
|
401
419
|
date_reference = ETVol['date'].iloc[0]
|
|
402
420
|
date_inserts = [date_reference - datetime.timedelta(days=2), date_reference - datetime.timedelta(days=1)]
|
|
403
421
|
df_insert = pd.DataFrame(data={'date': date_inserts, 'ETVol_acft': [0.0, 0.0]})
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: loone_data_prep
|
|
3
|
-
Version: 1.2.
|
|
3
|
+
Version: 1.2.2
|
|
4
4
|
Summary: Prepare data to run the LOONE model.
|
|
5
5
|
Author-email: Osama Tarabih <osamatarabih@usf.edu>
|
|
6
6
|
Maintainer-email: Michael Souffront <msouffront@aquaveo.com>, James Dolinar <jdolinar@aquaveo.com>
|
|
@@ -24,10 +24,11 @@ Requires-Dist: numpy<2
|
|
|
24
24
|
Requires-Dist: pandas
|
|
25
25
|
Requires-Dist: scipy
|
|
26
26
|
Requires-Dist: geoglows>=2.0.0
|
|
27
|
-
Requires-Dist: herbie-data[extras]
|
|
27
|
+
Requires-Dist: herbie-data[extras]==2025.5.0
|
|
28
28
|
Requires-Dist: openmeteo_requests
|
|
29
29
|
Requires-Dist: requests_cache
|
|
30
30
|
Requires-Dist: retry-requests
|
|
31
|
+
Requires-Dist: eccodes==2.42.0
|
|
31
32
|
Dynamic: license-file
|
|
32
33
|
|
|
33
34
|
LOONE_DATA_PREP
|
|
@@ -1,5 +1,5 @@
|
|
|
1
1
|
loone_data_prep/GEOGLOWS_LOONE_DATA_PREP.py,sha256=gfpnaOTjZ-YhWqOEvOaDvear4_59IbqARpLyg2Y_c8U,35851
|
|
2
|
-
loone_data_prep/LOONE_DATA_PREP.py,sha256=
|
|
2
|
+
loone_data_prep/LOONE_DATA_PREP.py,sha256=vEWcGHKN10ipLk9o5I5aKu_LPfDyFW3HBJ8GgqISYjA,69315
|
|
3
3
|
loone_data_prep/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
4
4
|
loone_data_prep/data_analyses_fns.py,sha256=BZ7famrSKoUfExQvZfbl72CyADHLb-zzgdWZ-kLJxcQ,4603
|
|
5
5
|
loone_data_prep/utils.py,sha256=UlNc84ofh3ZY3lYsgQmDsgGgohXIBwZ0bK9rX6SgGF4,35730
|
|
@@ -30,8 +30,8 @@ loone_data_prep/water_quality_data/wq.py,sha256=sl6G3iDCk6QUzpHTXPHpRZNMBG0-wHuc
|
|
|
30
30
|
loone_data_prep/weather_data/__init__.py,sha256=TX58EPgGRzEK_LmLze79lC4L7kU_j3yZf5_iC4nOIP4,45
|
|
31
31
|
loone_data_prep/weather_data/get_all.py,sha256=aCufuxORU51XhXt7LN9wN_V4qtjNt1qRC1UKlI2b3Ko,6918
|
|
32
32
|
loone_data_prep/weather_data/weather.py,sha256=hvceksrGSnDkCjheBVBuPgY1DrdR0ZAtrFB-K2tYTtk,12043
|
|
33
|
-
loone_data_prep-1.2.
|
|
34
|
-
loone_data_prep-1.2.
|
|
35
|
-
loone_data_prep-1.2.
|
|
36
|
-
loone_data_prep-1.2.
|
|
37
|
-
loone_data_prep-1.2.
|
|
33
|
+
loone_data_prep-1.2.2.dist-info/licenses/LICENSE,sha256=rR1QKggtQUbAoYu2SW1ouI5xPqt9g4jvRRpZ0ZfnuqQ,1497
|
|
34
|
+
loone_data_prep-1.2.2.dist-info/METADATA,sha256=TXDEk9S3JrVE4o70xf0jBywvi-krSKVi3R7X8eweu4M,4311
|
|
35
|
+
loone_data_prep-1.2.2.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
|
36
|
+
loone_data_prep-1.2.2.dist-info/top_level.txt,sha256=wDyJMJiCO5huTAuNmvxpjFxtvGaq_8Tr4hFFcXf8jLE,16
|
|
37
|
+
loone_data_prep-1.2.2.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|