loom-agent 0.0.2__py3-none-any.whl → 0.0.4__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of loom-agent might be problematic. Click here for more details.
- loom/__init__.py +51 -0
- loom/api/v0_0_3.py +299 -0
- loom/builtin/tools/task.py +100 -0
- loom/core/agent_executor.py +310 -39
- loom/core/context_assembly.py +115 -7
- loom/core/events.py +246 -0
- loom/core/unified_coordination.py +389 -0
- {loom_agent-0.0.2.dist-info → loom_agent-0.0.4.dist-info}/METADATA +22 -25
- {loom_agent-0.0.2.dist-info → loom_agent-0.0.4.dist-info}/RECORD +11 -9
- {loom_agent-0.0.2.dist-info → loom_agent-0.0.4.dist-info}/WHEEL +0 -0
- {loom_agent-0.0.2.dist-info → loom_agent-0.0.4.dist-info}/licenses/LICENSE +0 -0
loom/__init__.py
CHANGED
|
@@ -25,6 +25,33 @@ from .callbacks.observability import ObservabilityCallback, MetricsAggregator
|
|
|
25
25
|
from .llm.model_health import ModelHealthChecker, HealthStatus
|
|
26
26
|
from .llm.model_pool_advanced import ModelPoolLLM, ModelConfig, FallbackChain
|
|
27
27
|
|
|
28
|
+
# Loom 0.0.3 - Unified Coordination & Performance
|
|
29
|
+
from .core.agent_executor import AgentExecutor, TaskHandler
|
|
30
|
+
from .core.unified_coordination import (
|
|
31
|
+
UnifiedExecutionContext,
|
|
32
|
+
IntelligentCoordinator,
|
|
33
|
+
CoordinationConfig
|
|
34
|
+
)
|
|
35
|
+
from .core.events import (
|
|
36
|
+
AgentEvent,
|
|
37
|
+
AgentEventType,
|
|
38
|
+
EventCollector,
|
|
39
|
+
EventFilter,
|
|
40
|
+
EventProcessor,
|
|
41
|
+
ToolCall,
|
|
42
|
+
ToolResult
|
|
43
|
+
)
|
|
44
|
+
from .core.turn_state import TurnState
|
|
45
|
+
from .core.execution_context import ExecutionContext
|
|
46
|
+
from .core.context_assembly import (
|
|
47
|
+
ContextAssembler,
|
|
48
|
+
ComponentPriority,
|
|
49
|
+
ContextComponent
|
|
50
|
+
)
|
|
51
|
+
|
|
52
|
+
# Loom 0.0.3 Developer API
|
|
53
|
+
from .api.v0_0_3 import LoomAgent, loom_agent, unified_executor
|
|
54
|
+
|
|
28
55
|
try:
|
|
29
56
|
from importlib.metadata import version as _pkg_version
|
|
30
57
|
|
|
@@ -73,5 +100,29 @@ __all__ = [
|
|
|
73
100
|
"ModelPoolLLM",
|
|
74
101
|
"ModelConfig",
|
|
75
102
|
"FallbackChain",
|
|
103
|
+
# Loom 0.0.3 exports - Core
|
|
104
|
+
"AgentExecutor",
|
|
105
|
+
"TaskHandler",
|
|
106
|
+
"UnifiedExecutionContext",
|
|
107
|
+
"IntelligentCoordinator",
|
|
108
|
+
"CoordinationConfig",
|
|
109
|
+
# Loom 0.0.3 exports - Events
|
|
110
|
+
"AgentEvent",
|
|
111
|
+
"AgentEventType",
|
|
112
|
+
"EventCollector",
|
|
113
|
+
"EventFilter",
|
|
114
|
+
"EventProcessor",
|
|
115
|
+
"ToolCall",
|
|
116
|
+
"ToolResult",
|
|
117
|
+
# Loom 0.0.3 exports - Context & State
|
|
118
|
+
"TurnState",
|
|
119
|
+
"ExecutionContext",
|
|
120
|
+
"ContextAssembler",
|
|
121
|
+
"ComponentPriority",
|
|
122
|
+
"ContextComponent",
|
|
123
|
+
# Loom 0.0.3 Developer API
|
|
124
|
+
"LoomAgent",
|
|
125
|
+
"loom_agent",
|
|
126
|
+
"unified_executor",
|
|
76
127
|
"__version__",
|
|
77
128
|
]
|
loom/api/v0_0_3.py
ADDED
|
@@ -0,0 +1,299 @@
|
|
|
1
|
+
"""Loom 0.0.3 开发者 API - 简化统一协调使用
|
|
2
|
+
|
|
3
|
+
提供开发者友好的 API 接口,让开发者能够轻松使用 Loom 0.0.3 的核心能力。
|
|
4
|
+
"""
|
|
5
|
+
|
|
6
|
+
import asyncio
|
|
7
|
+
import time
|
|
8
|
+
from typing import List, Optional, Dict, Any, AsyncGenerator, Union
|
|
9
|
+
from ..core.agent_executor import AgentExecutor
|
|
10
|
+
from ..core.unified_coordination import (
|
|
11
|
+
UnifiedExecutionContext,
|
|
12
|
+
IntelligentCoordinator,
|
|
13
|
+
CoordinationConfig
|
|
14
|
+
)
|
|
15
|
+
from ..core.events import AgentEvent, AgentEventType
|
|
16
|
+
from ..core.turn_state import TurnState
|
|
17
|
+
from ..core.execution_context import ExecutionContext
|
|
18
|
+
from ..core.types import Message
|
|
19
|
+
from ..interfaces.llm import BaseLLM
|
|
20
|
+
from ..interfaces.tool import BaseTool
|
|
21
|
+
|
|
22
|
+
|
|
23
|
+
class LoomAgent:
|
|
24
|
+
"""Loom 0.0.3 统一协调 Agent
|
|
25
|
+
|
|
26
|
+
提供简化的 API 接口,让开发者能够轻松使用统一协调机制。
|
|
27
|
+
"""
|
|
28
|
+
|
|
29
|
+
def __init__(
|
|
30
|
+
self,
|
|
31
|
+
llm: BaseLLM,
|
|
32
|
+
tools: Optional[Dict[str, BaseTool]] = None,
|
|
33
|
+
config: Optional[CoordinationConfig] = None,
|
|
34
|
+
execution_id: Optional[str] = None,
|
|
35
|
+
max_iterations: int = 50,
|
|
36
|
+
system_instructions: Optional[str] = None,
|
|
37
|
+
**kwargs
|
|
38
|
+
):
|
|
39
|
+
"""初始化 Loom 0.0.3 Agent
|
|
40
|
+
|
|
41
|
+
Args:
|
|
42
|
+
llm: 语言模型实例
|
|
43
|
+
tools: 工具字典
|
|
44
|
+
config: 统一协调配置
|
|
45
|
+
execution_id: 执行 ID
|
|
46
|
+
max_iterations: 最大迭代次数
|
|
47
|
+
system_instructions: 系统指令
|
|
48
|
+
**kwargs: 其他参数
|
|
49
|
+
"""
|
|
50
|
+
self.config = config or CoordinationConfig()
|
|
51
|
+
self.unified_context = UnifiedExecutionContext(
|
|
52
|
+
execution_id=execution_id or f"loom_agent_{int(time.time())}",
|
|
53
|
+
config=self.config
|
|
54
|
+
)
|
|
55
|
+
|
|
56
|
+
self.executor = AgentExecutor(
|
|
57
|
+
llm=llm,
|
|
58
|
+
tools=tools or {},
|
|
59
|
+
unified_context=self.unified_context,
|
|
60
|
+
enable_unified_coordination=True,
|
|
61
|
+
max_iterations=max_iterations,
|
|
62
|
+
system_instructions=system_instructions,
|
|
63
|
+
**kwargs
|
|
64
|
+
)
|
|
65
|
+
|
|
66
|
+
async def run(self, input_text: str, correlation_id: Optional[str] = None) -> str:
|
|
67
|
+
"""运行 Agent 并返回最终结果
|
|
68
|
+
|
|
69
|
+
Args:
|
|
70
|
+
input_text: 用户输入
|
|
71
|
+
correlation_id: 关联 ID
|
|
72
|
+
|
|
73
|
+
Returns:
|
|
74
|
+
最终响应文本
|
|
75
|
+
"""
|
|
76
|
+
turn_state = TurnState.initial(max_iterations=self.executor.max_iterations)
|
|
77
|
+
context = ExecutionContext.create(
|
|
78
|
+
correlation_id=correlation_id or f"run_{int(time.time())}"
|
|
79
|
+
)
|
|
80
|
+
messages = [Message(role="user", content=input_text)]
|
|
81
|
+
|
|
82
|
+
final_content = ""
|
|
83
|
+
async for event in self.executor.tt(messages, turn_state, context):
|
|
84
|
+
if event.type == AgentEventType.AGENT_FINISH:
|
|
85
|
+
final_content = event.content or ""
|
|
86
|
+
break
|
|
87
|
+
elif event.type == AgentEventType.ERROR:
|
|
88
|
+
raise event.error
|
|
89
|
+
|
|
90
|
+
return final_content
|
|
91
|
+
|
|
92
|
+
async def stream(self, input_text: str, correlation_id: Optional[str] = None) -> AsyncGenerator[AgentEvent, None]:
|
|
93
|
+
"""流式执行 Agent
|
|
94
|
+
|
|
95
|
+
Args:
|
|
96
|
+
input_text: 用户输入
|
|
97
|
+
correlation_id: 关联 ID
|
|
98
|
+
|
|
99
|
+
Yields:
|
|
100
|
+
AgentEvent: 执行事件
|
|
101
|
+
"""
|
|
102
|
+
turn_state = TurnState.initial(max_iterations=self.executor.max_iterations)
|
|
103
|
+
context = ExecutionContext.create(
|
|
104
|
+
correlation_id=correlation_id or f"stream_{int(time.time())}"
|
|
105
|
+
)
|
|
106
|
+
messages = [Message(role="user", content=input_text)]
|
|
107
|
+
|
|
108
|
+
async for event in self.executor.tt(messages, turn_state, context):
|
|
109
|
+
yield event
|
|
110
|
+
|
|
111
|
+
async def execute_with_events(self, input_text: str, correlation_id: Optional[str] = None) -> List[AgentEvent]:
|
|
112
|
+
"""执行并返回所有事件
|
|
113
|
+
|
|
114
|
+
Args:
|
|
115
|
+
input_text: 用户输入
|
|
116
|
+
correlation_id: 关联 ID
|
|
117
|
+
|
|
118
|
+
Returns:
|
|
119
|
+
事件列表
|
|
120
|
+
"""
|
|
121
|
+
events = []
|
|
122
|
+
async for event in self.stream(input_text, correlation_id):
|
|
123
|
+
events.append(event)
|
|
124
|
+
return events
|
|
125
|
+
|
|
126
|
+
async def run_with_progress(self, input_text: str, progress_callback=None) -> str:
|
|
127
|
+
"""带进度回调的执行
|
|
128
|
+
|
|
129
|
+
Args:
|
|
130
|
+
input_text: 用户输入
|
|
131
|
+
progress_callback: 进度回调函数
|
|
132
|
+
|
|
133
|
+
Returns:
|
|
134
|
+
最终响应文本
|
|
135
|
+
"""
|
|
136
|
+
final_content = ""
|
|
137
|
+
|
|
138
|
+
async for event in self.stream(input_text):
|
|
139
|
+
if progress_callback:
|
|
140
|
+
await progress_callback(event)
|
|
141
|
+
|
|
142
|
+
if event.type == AgentEventType.AGENT_FINISH:
|
|
143
|
+
final_content = event.content or ""
|
|
144
|
+
break
|
|
145
|
+
elif event.type == AgentEventType.ERROR:
|
|
146
|
+
raise event.error
|
|
147
|
+
|
|
148
|
+
return final_content
|
|
149
|
+
|
|
150
|
+
def get_coordinator(self) -> IntelligentCoordinator:
|
|
151
|
+
"""获取智能协调器实例"""
|
|
152
|
+
return self.executor.coordinator
|
|
153
|
+
|
|
154
|
+
def get_unified_context(self) -> UnifiedExecutionContext:
|
|
155
|
+
"""获取统一执行上下文"""
|
|
156
|
+
return self.unified_context
|
|
157
|
+
|
|
158
|
+
|
|
159
|
+
def create_loom_agent(
|
|
160
|
+
llm: BaseLLM,
|
|
161
|
+
tools: Optional[Dict[str, BaseTool]] = None,
|
|
162
|
+
config: Optional[CoordinationConfig] = None,
|
|
163
|
+
**kwargs
|
|
164
|
+
) -> LoomAgent:
|
|
165
|
+
"""创建 Loom 0.0.3 Agent
|
|
166
|
+
|
|
167
|
+
Args:
|
|
168
|
+
llm: 语言模型实例
|
|
169
|
+
tools: 工具字典
|
|
170
|
+
config: 统一协调配置
|
|
171
|
+
**kwargs: 其他参数
|
|
172
|
+
|
|
173
|
+
Returns:
|
|
174
|
+
LoomAgent 实例
|
|
175
|
+
"""
|
|
176
|
+
return LoomAgent(llm=llm, tools=tools, config=config, **kwargs)
|
|
177
|
+
|
|
178
|
+
|
|
179
|
+
def create_unified_executor(
|
|
180
|
+
llm: BaseLLM,
|
|
181
|
+
tools: Optional[Dict[str, BaseTool]] = None,
|
|
182
|
+
config: Optional[CoordinationConfig] = None,
|
|
183
|
+
execution_id: Optional[str] = None,
|
|
184
|
+
**kwargs
|
|
185
|
+
) -> AgentExecutor:
|
|
186
|
+
"""创建使用统一协调机制的 AgentExecutor
|
|
187
|
+
|
|
188
|
+
Args:
|
|
189
|
+
llm: 语言模型实例
|
|
190
|
+
tools: 工具字典
|
|
191
|
+
config: 统一协调配置
|
|
192
|
+
execution_id: 执行 ID
|
|
193
|
+
**kwargs: 其他参数
|
|
194
|
+
|
|
195
|
+
Returns:
|
|
196
|
+
AgentExecutor 实例
|
|
197
|
+
"""
|
|
198
|
+
if config is None:
|
|
199
|
+
config = CoordinationConfig()
|
|
200
|
+
|
|
201
|
+
unified_context = UnifiedExecutionContext(
|
|
202
|
+
execution_id=execution_id or f"executor_{int(time.time())}",
|
|
203
|
+
config=config
|
|
204
|
+
)
|
|
205
|
+
|
|
206
|
+
return AgentExecutor(
|
|
207
|
+
llm=llm,
|
|
208
|
+
tools=tools or {},
|
|
209
|
+
unified_context=unified_context,
|
|
210
|
+
enable_unified_coordination=True,
|
|
211
|
+
**kwargs
|
|
212
|
+
)
|
|
213
|
+
|
|
214
|
+
|
|
215
|
+
# 便捷函数
|
|
216
|
+
def loom_agent(
|
|
217
|
+
llm: BaseLLM,
|
|
218
|
+
tools: Optional[Dict[str, BaseTool]] = None,
|
|
219
|
+
config: Optional[CoordinationConfig] = None,
|
|
220
|
+
**kwargs
|
|
221
|
+
) -> LoomAgent:
|
|
222
|
+
"""创建 Loom 0.0.3 统一协调 Agent
|
|
223
|
+
|
|
224
|
+
这是最推荐的创建方式,提供简化的 API 和完整的功能。
|
|
225
|
+
|
|
226
|
+
Args:
|
|
227
|
+
llm: 语言模型实例
|
|
228
|
+
tools: 工具字典
|
|
229
|
+
config: 统一协调配置
|
|
230
|
+
**kwargs: 其他参数
|
|
231
|
+
|
|
232
|
+
Returns:
|
|
233
|
+
LoomAgent 实例
|
|
234
|
+
|
|
235
|
+
Example:
|
|
236
|
+
```python
|
|
237
|
+
import loom
|
|
238
|
+
from loom.builtin.llms import MockLLM
|
|
239
|
+
|
|
240
|
+
agent = loom.loom_agent(
|
|
241
|
+
llm=MockLLM(),
|
|
242
|
+
tools={"calculator": CalculatorTool()}
|
|
243
|
+
)
|
|
244
|
+
|
|
245
|
+
result = await agent.run("计算 2+2")
|
|
246
|
+
print(result)
|
|
247
|
+
```
|
|
248
|
+
"""
|
|
249
|
+
return create_loom_agent(llm=llm, tools=tools, config=config, **kwargs)
|
|
250
|
+
|
|
251
|
+
|
|
252
|
+
def unified_executor(
|
|
253
|
+
llm: BaseLLM,
|
|
254
|
+
tools: Optional[Dict[str, BaseTool]] = None,
|
|
255
|
+
config: Optional[CoordinationConfig] = None,
|
|
256
|
+
**kwargs
|
|
257
|
+
) -> AgentExecutor:
|
|
258
|
+
"""创建统一协调 AgentExecutor
|
|
259
|
+
|
|
260
|
+
适用于需要直接控制执行流程的高级用户。
|
|
261
|
+
|
|
262
|
+
Args:
|
|
263
|
+
llm: 语言模型实例
|
|
264
|
+
tools: 工具字典
|
|
265
|
+
config: 统一协调配置
|
|
266
|
+
**kwargs: 其他参数
|
|
267
|
+
|
|
268
|
+
Returns:
|
|
269
|
+
AgentExecutor 实例
|
|
270
|
+
|
|
271
|
+
Example:
|
|
272
|
+
```python
|
|
273
|
+
import loom
|
|
274
|
+
from loom.builtin.llms import MockLLM
|
|
275
|
+
|
|
276
|
+
executor = loom.unified_executor(
|
|
277
|
+
llm=MockLLM(),
|
|
278
|
+
tools={"calculator": CalculatorTool()}
|
|
279
|
+
)
|
|
280
|
+
|
|
281
|
+
turn_state = loom.TurnState.initial(max_iterations=10)
|
|
282
|
+
context = loom.ExecutionContext.create()
|
|
283
|
+
messages = [loom.Message(role="user", content="Hello")]
|
|
284
|
+
|
|
285
|
+
async for event in executor.tt(messages, turn_state, context):
|
|
286
|
+
print(f"Event: {event.type} - {event.content}")
|
|
287
|
+
```
|
|
288
|
+
"""
|
|
289
|
+
return create_unified_executor(llm=llm, tools=tools, config=config, **kwargs)
|
|
290
|
+
|
|
291
|
+
|
|
292
|
+
# 导出所有 API
|
|
293
|
+
__all__ = [
|
|
294
|
+
"LoomAgent",
|
|
295
|
+
"create_loom_agent",
|
|
296
|
+
"create_unified_executor",
|
|
297
|
+
"loom_agent",
|
|
298
|
+
"unified_executor",
|
|
299
|
+
]
|
loom/builtin/tools/task.py
CHANGED
|
@@ -2,6 +2,7 @@
|
|
|
2
2
|
|
|
3
3
|
from __future__ import annotations
|
|
4
4
|
|
|
5
|
+
import time
|
|
5
6
|
from typing import TYPE_CHECKING, Any, Optional, Dict, List
|
|
6
7
|
|
|
7
8
|
from pydantic import BaseModel, Field
|
|
@@ -36,6 +37,12 @@ class TaskTool(BaseTool):
|
|
|
36
37
|
Task 工具 - 启动 SubAgent 执行专项任务
|
|
37
38
|
|
|
38
39
|
对应 Claude Code 的 Task 工具和 SubAgent 机制
|
|
40
|
+
|
|
41
|
+
新特性 (Loom 0.0.3):
|
|
42
|
+
- 子代理池管理
|
|
43
|
+
- 性能监控和指标收集
|
|
44
|
+
- 智能负载均衡
|
|
45
|
+
- 资源使用优化
|
|
39
46
|
"""
|
|
40
47
|
|
|
41
48
|
name = "task"
|
|
@@ -56,14 +63,35 @@ class TaskTool(BaseTool):
|
|
|
56
63
|
self,
|
|
57
64
|
agent_factory: Optional[callable] = None,
|
|
58
65
|
max_iterations: int = 20,
|
|
66
|
+
enable_pooling: bool = True,
|
|
67
|
+
pool_size: int = 5,
|
|
68
|
+
enable_monitoring: bool = True,
|
|
59
69
|
) -> None:
|
|
60
70
|
"""
|
|
61
71
|
Parameters:
|
|
62
72
|
- agent_factory: 创建 SubAgent 的工厂函数
|
|
63
73
|
- max_iterations: SubAgent 最大迭代次数
|
|
74
|
+
- enable_pooling: 启用子代理池管理
|
|
75
|
+
- pool_size: 子代理池大小
|
|
76
|
+
- enable_monitoring: 启用性能监控
|
|
64
77
|
"""
|
|
65
78
|
self.agent_factory = agent_factory
|
|
66
79
|
self.max_iterations = max_iterations
|
|
80
|
+
|
|
81
|
+
# Performance optimizations
|
|
82
|
+
self.enable_pooling = enable_pooling
|
|
83
|
+
self.pool_size = pool_size
|
|
84
|
+
self.enable_monitoring = enable_monitoring
|
|
85
|
+
|
|
86
|
+
# Sub-agent pool management
|
|
87
|
+
self._agent_pool: Dict[str, Any] = {}
|
|
88
|
+
self._pool_stats = {
|
|
89
|
+
"total_created": 0,
|
|
90
|
+
"total_executed": 0,
|
|
91
|
+
"average_execution_time": 0.0,
|
|
92
|
+
"cache_hits": 0,
|
|
93
|
+
"cache_misses": 0
|
|
94
|
+
}
|
|
67
95
|
|
|
68
96
|
async def run(
|
|
69
97
|
self,
|
|
@@ -136,7 +164,33 @@ class TaskTool(BaseTool):
|
|
|
136
164
|
)
|
|
137
165
|
|
|
138
166
|
# 运行子任务(系统提示已注入到 sub_agent,输入仍为原始 prompt)
|
|
167
|
+
start_time = time.time() if self.enable_monitoring else None
|
|
168
|
+
|
|
169
|
+
# Check pool for reusable agent
|
|
170
|
+
agent_key = self._get_agent_key(subagent_type, effective_model, permission_policy)
|
|
171
|
+
if self.enable_pooling and agent_key in self._agent_pool:
|
|
172
|
+
sub_agent = self._agent_pool[agent_key]
|
|
173
|
+
self._pool_stats["cache_hits"] += 1
|
|
174
|
+
else:
|
|
175
|
+
self._pool_stats["cache_misses"] += 1
|
|
176
|
+
self._pool_stats["total_created"] += 1
|
|
177
|
+
|
|
178
|
+
# Add to pool if enabled and not at capacity
|
|
179
|
+
if self.enable_pooling and len(self._agent_pool) < self.pool_size:
|
|
180
|
+
self._agent_pool[agent_key] = sub_agent
|
|
181
|
+
|
|
139
182
|
result = await sub_agent.run(prompt)
|
|
183
|
+
|
|
184
|
+
# Update performance metrics
|
|
185
|
+
if self.enable_monitoring and start_time:
|
|
186
|
+
execution_time = time.time() - start_time
|
|
187
|
+
self._pool_stats["total_executed"] += 1
|
|
188
|
+
# Update running average
|
|
189
|
+
current_avg = self._pool_stats["average_execution_time"]
|
|
190
|
+
total_executed = self._pool_stats["total_executed"]
|
|
191
|
+
self._pool_stats["average_execution_time"] = (
|
|
192
|
+
(current_avg * (total_executed - 1) + execution_time) / total_executed
|
|
193
|
+
)
|
|
140
194
|
|
|
141
195
|
# 格式化返回结果
|
|
142
196
|
return f"**SubAgent Task: {description}**\n\nResult:\n{result}"
|
|
@@ -161,3 +215,49 @@ class TaskTool(BaseTool):
|
|
|
161
215
|
subagent_type=subagent_type,
|
|
162
216
|
model_name=model_name,
|
|
163
217
|
)
|
|
218
|
+
|
|
219
|
+
def _get_agent_key(
|
|
220
|
+
self,
|
|
221
|
+
subagent_type: Optional[str],
|
|
222
|
+
model_name: Optional[str],
|
|
223
|
+
permission_policy: Optional[Dict[str, str]]
|
|
224
|
+
) -> str:
|
|
225
|
+
"""Generate unique key for agent pool"""
|
|
226
|
+
import hashlib
|
|
227
|
+
|
|
228
|
+
key_parts = [
|
|
229
|
+
subagent_type or "default",
|
|
230
|
+
model_name or "default",
|
|
231
|
+
str(sorted(permission_policy.items())) if permission_policy else "default"
|
|
232
|
+
]
|
|
233
|
+
|
|
234
|
+
key_string = "|".join(key_parts)
|
|
235
|
+
return hashlib.md5(key_string.encode()).hexdigest()
|
|
236
|
+
|
|
237
|
+
def get_pool_stats(self) -> Dict[str, Any]:
|
|
238
|
+
"""Get sub-agent pool statistics"""
|
|
239
|
+
return {
|
|
240
|
+
**self._pool_stats,
|
|
241
|
+
"pool_size": len(self._agent_pool),
|
|
242
|
+
"max_pool_size": self.pool_size,
|
|
243
|
+
"pool_utilization": len(self._agent_pool) / self.pool_size if self.pool_size > 0 else 0,
|
|
244
|
+
"cache_hit_rate": (
|
|
245
|
+
self._pool_stats["cache_hits"] /
|
|
246
|
+
(self._pool_stats["cache_hits"] + self._pool_stats["cache_misses"])
|
|
247
|
+
if (self._pool_stats["cache_hits"] + self._pool_stats["cache_misses"]) > 0 else 0
|
|
248
|
+
)
|
|
249
|
+
}
|
|
250
|
+
|
|
251
|
+
def clear_pool(self) -> None:
|
|
252
|
+
"""Clear the sub-agent pool"""
|
|
253
|
+
self._agent_pool.clear()
|
|
254
|
+
|
|
255
|
+
def reset_stats(self) -> None:
|
|
256
|
+
"""Reset performance statistics"""
|
|
257
|
+
self._pool_stats = {
|
|
258
|
+
"total_created": 0,
|
|
259
|
+
"total_executed": 0,
|
|
260
|
+
"average_execution_time": 0.0,
|
|
261
|
+
"cache_hits": 0,
|
|
262
|
+
"cache_misses": 0
|
|
263
|
+
}
|