lollms-client 1.5.6__py3-none-any.whl → 1.7.13__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- lollms_client/__init__.py +1 -1
- lollms_client/llm_bindings/azure_openai/__init__.py +2 -2
- lollms_client/llm_bindings/claude/__init__.py +125 -35
- lollms_client/llm_bindings/gemini/__init__.py +261 -159
- lollms_client/llm_bindings/grok/__init__.py +52 -15
- lollms_client/llm_bindings/groq/__init__.py +2 -2
- lollms_client/llm_bindings/hugging_face_inference_api/__init__.py +2 -2
- lollms_client/llm_bindings/litellm/__init__.py +1 -1
- lollms_client/llm_bindings/llama_cpp_server/__init__.py +605 -0
- lollms_client/llm_bindings/llamacpp/__init__.py +18 -11
- lollms_client/llm_bindings/lollms/__init__.py +76 -21
- lollms_client/llm_bindings/lollms_webui/__init__.py +1 -1
- lollms_client/llm_bindings/mistral/__init__.py +2 -2
- lollms_client/llm_bindings/novita_ai/__init__.py +142 -6
- lollms_client/llm_bindings/ollama/__init__.py +345 -89
- lollms_client/llm_bindings/open_router/__init__.py +2 -2
- lollms_client/llm_bindings/openai/__init__.py +81 -20
- lollms_client/llm_bindings/openllm/__init__.py +362 -506
- lollms_client/llm_bindings/openwebui/__init__.py +333 -171
- lollms_client/llm_bindings/perplexity/__init__.py +2 -2
- lollms_client/llm_bindings/pythonllamacpp/__init__.py +3 -3
- lollms_client/llm_bindings/tensor_rt/__init__.py +1 -1
- lollms_client/llm_bindings/transformers/__init__.py +428 -632
- lollms_client/llm_bindings/vllm/__init__.py +1 -1
- lollms_client/lollms_agentic.py +4 -2
- lollms_client/lollms_base_binding.py +61 -0
- lollms_client/lollms_core.py +512 -1890
- lollms_client/lollms_discussion.py +65 -39
- lollms_client/lollms_llm_binding.py +126 -261
- lollms_client/lollms_mcp_binding.py +49 -77
- lollms_client/lollms_stt_binding.py +99 -52
- lollms_client/lollms_tti_binding.py +38 -38
- lollms_client/lollms_ttm_binding.py +38 -42
- lollms_client/lollms_tts_binding.py +43 -18
- lollms_client/lollms_ttv_binding.py +38 -42
- lollms_client/lollms_types.py +4 -2
- lollms_client/stt_bindings/whisper/__init__.py +108 -23
- lollms_client/stt_bindings/whispercpp/__init__.py +7 -1
- lollms_client/tti_bindings/diffusers/__init__.py +464 -803
- lollms_client/tti_bindings/diffusers/server/main.py +1062 -0
- lollms_client/tti_bindings/gemini/__init__.py +182 -239
- lollms_client/tti_bindings/leonardo_ai/__init__.py +6 -3
- lollms_client/tti_bindings/lollms/__init__.py +4 -1
- lollms_client/tti_bindings/novita_ai/__init__.py +5 -2
- lollms_client/tti_bindings/openai/__init__.py +10 -11
- lollms_client/tti_bindings/stability_ai/__init__.py +5 -3
- lollms_client/ttm_bindings/audiocraft/__init__.py +7 -12
- lollms_client/ttm_bindings/beatoven_ai/__init__.py +7 -3
- lollms_client/ttm_bindings/lollms/__init__.py +4 -17
- lollms_client/ttm_bindings/replicate/__init__.py +7 -4
- lollms_client/ttm_bindings/stability_ai/__init__.py +7 -4
- lollms_client/ttm_bindings/topmediai/__init__.py +6 -3
- lollms_client/tts_bindings/bark/__init__.py +7 -10
- lollms_client/tts_bindings/lollms/__init__.py +6 -1
- lollms_client/tts_bindings/piper_tts/__init__.py +8 -11
- lollms_client/tts_bindings/xtts/__init__.py +157 -74
- lollms_client/tts_bindings/xtts/server/main.py +241 -280
- {lollms_client-1.5.6.dist-info → lollms_client-1.7.13.dist-info}/METADATA +113 -5
- lollms_client-1.7.13.dist-info/RECORD +90 -0
- lollms_client-1.5.6.dist-info/RECORD +0 -87
- {lollms_client-1.5.6.dist-info → lollms_client-1.7.13.dist-info}/WHEEL +0 -0
- {lollms_client-1.5.6.dist-info → lollms_client-1.7.13.dist-info}/licenses/LICENSE +0 -0
- {lollms_client-1.5.6.dist-info → lollms_client-1.7.13.dist-info}/top_level.txt +0 -0
|
@@ -1,843 +1,504 @@
|
|
|
1
|
-
# lollms_client/tti_bindings/diffusers/__init__.py
|
|
2
1
|
import os
|
|
3
|
-
import
|
|
4
|
-
from io import BytesIO
|
|
5
|
-
from typing import Optional, List, Dict, Any, Union, Tuple
|
|
6
|
-
from pathlib import Path
|
|
2
|
+
import sys
|
|
7
3
|
import base64
|
|
8
|
-
import pipmaster as pm
|
|
9
|
-
import threading
|
|
10
|
-
import queue
|
|
11
|
-
from concurrent.futures import Future
|
|
12
|
-
import time
|
|
13
|
-
import hashlib
|
|
14
4
|
import requests
|
|
15
|
-
|
|
5
|
+
import subprocess
|
|
6
|
+
import time
|
|
16
7
|
import json
|
|
17
|
-
import
|
|
18
|
-
from
|
|
19
|
-
from
|
|
8
|
+
from io import BytesIO
|
|
9
|
+
from pathlib import Path
|
|
10
|
+
from typing import Optional, List, Dict, Any, Union, Callable
|
|
20
11
|
|
|
21
|
-
|
|
22
|
-
|
|
12
|
+
# Ensure pipmaster is available.
|
|
13
|
+
try:
|
|
14
|
+
import pipmaster as pm
|
|
15
|
+
except ImportError:
|
|
16
|
+
print("FATAL: pipmaster is not installed. Please install it using: pip install pipmaster")
|
|
17
|
+
sys.exit(1)
|
|
23
18
|
|
|
19
|
+
# Ensure filelock is available for process-safe server startup.
|
|
24
20
|
try:
|
|
25
|
-
import
|
|
26
|
-
from diffusers import (
|
|
27
|
-
AutoPipelineForText2Image,
|
|
28
|
-
AutoPipelineForImage2Image,
|
|
29
|
-
AutoPipelineForInpainting,
|
|
30
|
-
DiffusionPipeline,
|
|
31
|
-
StableDiffusionPipeline,
|
|
32
|
-
|
|
33
|
-
)
|
|
34
|
-
from diffusers.utils import load_image
|
|
35
|
-
from PIL import Image
|
|
36
|
-
DIFFUSERS_AVAILABLE = True
|
|
21
|
+
from filelock import FileLock, Timeout
|
|
37
22
|
except ImportError:
|
|
38
|
-
|
|
39
|
-
|
|
40
|
-
AutoPipelineForImage2Image = None
|
|
41
|
-
AutoPipelineForInpainting = None
|
|
42
|
-
DiffusionPipeline = None
|
|
43
|
-
StableDiffusionPipeline = None
|
|
44
|
-
Image = None
|
|
45
|
-
load_image = None
|
|
46
|
-
DIFFUSERS_AVAILABLE = False
|
|
47
|
-
|
|
48
|
-
BindingName = "DiffusersTTIBinding_Impl"
|
|
49
|
-
|
|
50
|
-
CIVITAI_MODELS = {
|
|
51
|
-
"realistic-vision-v6": {
|
|
52
|
-
"display_name": "Realistic Vision V6.0",
|
|
53
|
-
"url": "https://civitai.com/api/download/models/501240?type=Model&format=SafeTensor&size=pruned&fp=fp16",
|
|
54
|
-
"filename": "realisticVisionV60_v60B1.safetensors",
|
|
55
|
-
"description": "Photorealistic SD1.5 checkpoint.",
|
|
56
|
-
"owned_by": "civitai"
|
|
57
|
-
},
|
|
58
|
-
"absolute-reality": {
|
|
59
|
-
"display_name": "Absolute Reality",
|
|
60
|
-
"url": "https://civitai.com/api/download/models/132760?type=Model&format=SafeTensor&size=pruned&fp=fp16",
|
|
61
|
-
"filename": "absolutereality_v181.safetensors",
|
|
62
|
-
"description": "General realistic SD1.5.",
|
|
63
|
-
"owned_by": "civitai"
|
|
64
|
-
},
|
|
65
|
-
"dreamshaper-8": {
|
|
66
|
-
"display_name": "DreamShaper 8",
|
|
67
|
-
"url": "https://civitai.com/api/download/models/128713",
|
|
68
|
-
"filename": "dreamshaper_8.safetensors",
|
|
69
|
-
"description": "Versatile SD1.5 style model.",
|
|
70
|
-
"owned_by": "civitai"
|
|
71
|
-
},
|
|
72
|
-
"juggernaut-xl": {
|
|
73
|
-
"display_name": "Juggernaut XL",
|
|
74
|
-
"url": "https://civitai.com/api/download/models/133005",
|
|
75
|
-
"filename": "juggernautXL_version6Rundiffusion.safetensors",
|
|
76
|
-
"description": "Artistic SDXL.",
|
|
77
|
-
"owned_by": "civitai"
|
|
78
|
-
},
|
|
79
|
-
"lyriel-v1.6": {
|
|
80
|
-
"display_name": "Lyriel v1.6",
|
|
81
|
-
"url": "https://civitai.com/api/download/models/72396?type=Model&format=SafeTensor&size=full&fp=fp16",
|
|
82
|
-
"filename": "lyriel_v16.safetensors",
|
|
83
|
-
"description": "Fantasy/stylized SD1.5.",
|
|
84
|
-
"owned_by": "civitai"
|
|
85
|
-
},
|
|
86
|
-
"ui_icons": {
|
|
87
|
-
"display_name": "UI Icons",
|
|
88
|
-
"url": "https://civitai.com/api/download/models/367044?type=Model&format=SafeTensor&size=full&fp=fp16",
|
|
89
|
-
"filename": "uiIcons_v10.safetensors",
|
|
90
|
-
"description": "A model for generating UI icons.",
|
|
91
|
-
"owned_by": "civitai"
|
|
92
|
-
},
|
|
93
|
-
"meinamix": {
|
|
94
|
-
"display_name": "MeinaMix",
|
|
95
|
-
"url": "https://civitai.com/api/download/models/948574?type=Model&format=SafeTensor&size=pruned&fp=fp16",
|
|
96
|
-
"filename": "meinamix_meinaV11.safetensors",
|
|
97
|
-
"description": "Anime/illustration SD1.5.",
|
|
98
|
-
"owned_by": "civitai"
|
|
99
|
-
},
|
|
100
|
-
"rpg-v5": {
|
|
101
|
-
"display_name": "RPG v5",
|
|
102
|
-
"url": "https://civitai.com/api/download/models/124626?type=Model&format=SafeTensor&size=pruned&fp=fp16",
|
|
103
|
-
"filename": "rpg_v5.safetensors",
|
|
104
|
-
"description": "RPG assets SD1.5.",
|
|
105
|
-
"owned_by": "civitai"
|
|
106
|
-
},
|
|
107
|
-
"pixel-art-xl": {
|
|
108
|
-
"display_name": "Pixel Art XL",
|
|
109
|
-
"url": "https://civitai.com/api/download/models/135931?type=Model&format=SafeTensor",
|
|
110
|
-
"filename": "pixelartxl_v11.safetensors",
|
|
111
|
-
"description": "Pixel art SDXL.",
|
|
112
|
-
"owned_by": "civitai"
|
|
113
|
-
},
|
|
114
|
-
"lowpoly-world": {
|
|
115
|
-
"display_name": "Lowpoly World",
|
|
116
|
-
"url": "https://civitai.com/api/download/models/146502?type=Model&format=SafeTensor",
|
|
117
|
-
"filename": "LowpolySDXL.safetensors",
|
|
118
|
-
"description": "Lowpoly style SD1.5.",
|
|
119
|
-
"owned_by": "civitai"
|
|
120
|
-
},
|
|
121
|
-
"toonyou": {
|
|
122
|
-
"display_name": "ToonYou",
|
|
123
|
-
"url": "https://civitai.com/api/download/models/125771?type=Model&format=SafeTensor&size=pruned&fp=fp16",
|
|
124
|
-
"filename": "toonyou_beta6.safetensors",
|
|
125
|
-
"description": "Cartoon/Disney SD1.5.",
|
|
126
|
-
"owned_by": "civitai"
|
|
127
|
-
},
|
|
128
|
-
"papercut": {
|
|
129
|
-
"display_name": "Papercut",
|
|
130
|
-
"url": "https://civitai.com/api/download/models/133503?type=Model&format=SafeTensor",
|
|
131
|
-
"filename": "papercut.safetensors",
|
|
132
|
-
"description": "Paper cutout SD1.5.",
|
|
133
|
-
"owned_by": "civitai"
|
|
134
|
-
},
|
|
135
|
-
"fantassifiedIcons": {
|
|
136
|
-
"display_name": "Fantassified Icons",
|
|
137
|
-
"url": "https://civitai.com/api/download/models/67584?type=Model&format=SafeTensor&size=pruned&fp=fp16",
|
|
138
|
-
"filename": "fantassifiedIcons_fantassifiedIconsV20.safetensors",
|
|
139
|
-
"description": "Flat, modern Icons.",
|
|
140
|
-
"owned_by": "civitai"
|
|
141
|
-
},
|
|
142
|
-
"game_icon_institute": {
|
|
143
|
-
"display_name": "Game icon institute",
|
|
144
|
-
"url": "https://civitai.com/api/download/models/158776?type=Model&format=SafeTensor&size=full&fp=fp16",
|
|
145
|
-
"filename": "gameIconInstituteV10_v10.safetensors",
|
|
146
|
-
"description": "Flat, modern game Icons.",
|
|
147
|
-
"owned_by": "civitai"
|
|
148
|
-
},
|
|
149
|
-
"M4RV3LS_DUNGEONS": {
|
|
150
|
-
"display_name": "M4RV3LS & DUNGEONS",
|
|
151
|
-
"url": "https://civitai.com/api/download/models/139417?type=Model&format=SafeTensor&size=pruned&fp=fp16",
|
|
152
|
-
"filename": "M4RV3LSDUNGEONSNEWV40COMICS_mD40.safetensors",
|
|
153
|
-
"description": "comics.",
|
|
154
|
-
"owned_by": "civitai"
|
|
155
|
-
},
|
|
156
|
-
}
|
|
157
|
-
|
|
158
|
-
TORCH_DTYPE_MAP_STR_TO_OBJ = {
|
|
159
|
-
"float16": getattr(torch, 'float16', 'float16'),
|
|
160
|
-
"bfloat16": getattr(torch, 'bfloat16', 'bfloat16'),
|
|
161
|
-
"float32": getattr(torch, 'float32', 'float32'),
|
|
162
|
-
"auto": "auto"
|
|
163
|
-
}
|
|
164
|
-
TORCH_DTYPE_MAP_OBJ_TO_STR = {v: k for k, v in TORCH_DTYPE_MAP_STR_TO_OBJ.items()}
|
|
165
|
-
if torch:
|
|
166
|
-
TORCH_DTYPE_MAP_OBJ_TO_STR[None] = "None"
|
|
167
|
-
|
|
168
|
-
SCHEDULER_MAPPING = {
|
|
169
|
-
"default": None,
|
|
170
|
-
"ddim": "DDIMScheduler",
|
|
171
|
-
"ddpm": "DDPMScheduler",
|
|
172
|
-
"deis_multistep": "DEISMultistepScheduler",
|
|
173
|
-
"dpm_multistep": "DPMSolverMultistepScheduler",
|
|
174
|
-
"dpm_multistep_karras": "DPMSolverMultistepScheduler",
|
|
175
|
-
"dpm_single": "DPMSolverSinglestepScheduler",
|
|
176
|
-
"dpm_adaptive": "DPMSolverPlusPlusScheduler",
|
|
177
|
-
"dpm++_2m": "DPMSolverMultistepScheduler",
|
|
178
|
-
"dpm++_2m_karras": "DPMSolverMultistepScheduler",
|
|
179
|
-
"dpm++_2s_ancestral": "DPMSolverAncestralDiscreteScheduler",
|
|
180
|
-
"dpm++_2s_ancestral_karras": "DPMSolverAncestralDiscreteScheduler",
|
|
181
|
-
"dpm++_sde": "DPMSolverSDEScheduler",
|
|
182
|
-
"dpm++_sde_karras": "DPMSolverSDEScheduler",
|
|
183
|
-
"euler_ancestral_discrete": "EulerAncestralDiscreteScheduler",
|
|
184
|
-
"euler_discrete": "EulerDiscreteScheduler",
|
|
185
|
-
"heun_discrete": "HeunDiscreteScheduler",
|
|
186
|
-
"heun_karras": "HeunDiscreteScheduler",
|
|
187
|
-
"lms_discrete": "LMSDiscreteScheduler",
|
|
188
|
-
"lms_karras": "LMSDiscreteScheduler",
|
|
189
|
-
"pndm": "PNDMScheduler",
|
|
190
|
-
"unipc_multistep": "UniPCMultistepScheduler",
|
|
191
|
-
"dpm++_2m_sde": "DPMSolverMultistepScheduler",
|
|
192
|
-
"dpm++_2m_sde_karras": "DPMSolverMultistepScheduler",
|
|
193
|
-
"dpm2": "KDPM2DiscreteScheduler",
|
|
194
|
-
"dpm2_karras": "KDPM2DiscreteScheduler",
|
|
195
|
-
"dpm2_a": "KDPM2AncestralDiscreteScheduler",
|
|
196
|
-
"dpm2_a_karras": "KDPM2AncestralDiscreteScheduler",
|
|
197
|
-
"euler": "EulerDiscreteScheduler",
|
|
198
|
-
"euler_a": "EulerAncestralDiscreteScheduler",
|
|
199
|
-
"heun": "HeunDiscreteScheduler",
|
|
200
|
-
"lms": "LMSDiscreteScheduler"
|
|
201
|
-
}
|
|
202
|
-
SCHEDULER_USES_KARRAS_SIGMAS = [
|
|
203
|
-
"dpm_multistep_karras","dpm++_2m_karras","dpm++_2s_ancestral_karras",
|
|
204
|
-
"dpm++_sde_karras","heun_karras","lms_karras",
|
|
205
|
-
"dpm++_2m_sde_karras","dpm2_karras","dpm2_a_karras"
|
|
206
|
-
]
|
|
207
|
-
|
|
208
|
-
class ModelManager:
|
|
209
|
-
def __init__(self, config: Dict[str, Any], models_path: Path):
|
|
210
|
-
self.config = config
|
|
211
|
-
self.models_path = models_path
|
|
212
|
-
self.pipeline: Optional[DiffusionPipeline] = None
|
|
213
|
-
self.current_task: Optional[str] = None
|
|
214
|
-
self.ref_count = 0
|
|
215
|
-
self.lock = threading.Lock()
|
|
216
|
-
self.queue = queue.Queue()
|
|
217
|
-
self.is_loaded = False
|
|
218
|
-
self.last_used_time = time.time()
|
|
219
|
-
self._stop_event = threading.Event()
|
|
220
|
-
self.worker_thread = threading.Thread(target=self._generation_worker, daemon=True)
|
|
221
|
-
self.worker_thread.start()
|
|
222
|
-
self._stop_monitor_event = threading.Event()
|
|
223
|
-
self._unload_monitor_thread = None
|
|
224
|
-
self._start_unload_monitor()
|
|
225
|
-
|
|
226
|
-
def acquire(self):
|
|
227
|
-
with self.lock:
|
|
228
|
-
self.ref_count += 1
|
|
229
|
-
return self
|
|
230
|
-
|
|
231
|
-
def release(self):
|
|
232
|
-
with self.lock:
|
|
233
|
-
self.ref_count -= 1
|
|
234
|
-
return self.ref_count
|
|
235
|
-
|
|
236
|
-
def stop(self):
|
|
237
|
-
self._stop_event.set()
|
|
238
|
-
if self._unload_monitor_thread:
|
|
239
|
-
self._stop_monitor_event.set()
|
|
240
|
-
self._unload_monitor_thread.join(timeout=2)
|
|
241
|
-
self.queue.put(None)
|
|
242
|
-
self.worker_thread.join(timeout=5)
|
|
243
|
-
|
|
244
|
-
def _start_unload_monitor(self):
|
|
245
|
-
unload_after = self.config.get("unload_inactive_model_after", 0)
|
|
246
|
-
if unload_after > 0 and self._unload_monitor_thread is None:
|
|
247
|
-
self._stop_monitor_event.clear()
|
|
248
|
-
self._unload_monitor_thread = threading.Thread(target=self._unload_monitor, daemon=True)
|
|
249
|
-
self._unload_monitor_thread.start()
|
|
250
|
-
|
|
251
|
-
def _unload_monitor(self):
|
|
252
|
-
unload_after = self.config.get("unload_inactive_model_after", 0)
|
|
253
|
-
if unload_after <= 0:
|
|
254
|
-
return
|
|
255
|
-
ASCIIColors.info(f"Starting inactivity monitor for '{self.config['model_name']}' (timeout: {unload_after}s).")
|
|
256
|
-
while not self._stop_monitor_event.wait(timeout=5.0):
|
|
257
|
-
with self.lock:
|
|
258
|
-
if not self.is_loaded:
|
|
259
|
-
continue
|
|
260
|
-
if time.time() - self.last_used_time > unload_after:
|
|
261
|
-
ASCIIColors.info(f"Model '{self.config['model_name']}' has been inactive. Unloading.")
|
|
262
|
-
self._unload_pipeline()
|
|
263
|
-
|
|
264
|
-
def _resolve_model_path(self, model_name: str) -> Union[str, Path]:
|
|
265
|
-
path_obj = Path(model_name)
|
|
266
|
-
if path_obj.is_absolute() and path_obj.exists():
|
|
267
|
-
return model_name
|
|
268
|
-
if model_name in CIVITAI_MODELS:
|
|
269
|
-
filename = CIVITAI_MODELS[model_name]["filename"]
|
|
270
|
-
local_path = self.models_path / filename
|
|
271
|
-
if not local_path.exists():
|
|
272
|
-
self._download_civitai_model(model_name)
|
|
273
|
-
return local_path
|
|
274
|
-
local_path = self.models_path / model_name
|
|
275
|
-
if local_path.exists():
|
|
276
|
-
return local_path
|
|
277
|
-
return model_name
|
|
278
|
-
|
|
279
|
-
def _download_civitai_model(self, model_key: str):
|
|
280
|
-
model_info = CIVITAI_MODELS[model_key]
|
|
281
|
-
url = model_info["url"]
|
|
282
|
-
filename = model_info["filename"]
|
|
283
|
-
dest_path = self.models_path / filename
|
|
284
|
-
temp_path = dest_path.with_suffix(".temp")
|
|
285
|
-
ASCIIColors.cyan(f"Downloading '{filename}' from Civitai...")
|
|
286
|
-
try:
|
|
287
|
-
with requests.get(url, stream=True) as r:
|
|
288
|
-
r.raise_for_status()
|
|
289
|
-
total_size = int(r.headers.get('content-length', 0))
|
|
290
|
-
with open(temp_path, 'wb') as f, tqdm(total=total_size, unit='iB', unit_scale=True, desc=f"Downloading {filename}") as bar:
|
|
291
|
-
for chunk in r.iter_content(chunk_size=8192):
|
|
292
|
-
f.write(chunk)
|
|
293
|
-
bar.update(len(chunk))
|
|
294
|
-
shutil.move(temp_path, dest_path)
|
|
295
|
-
ASCIIColors.green(f"Model '{filename}' downloaded successfully.")
|
|
296
|
-
except Exception as e:
|
|
297
|
-
if temp_path.exists():
|
|
298
|
-
temp_path.unlink()
|
|
299
|
-
raise Exception(f"Failed to download model {filename}: {e}") from e
|
|
23
|
+
print("FATAL: The 'filelock' library is required. Please install it by running: pip install filelock")
|
|
24
|
+
sys.exit(1)
|
|
300
25
|
|
|
301
|
-
|
|
302
|
-
|
|
303
|
-
|
|
304
|
-
|
|
305
|
-
|
|
26
|
+
from lollms_client.lollms_tti_binding import LollmsTTIBinding
|
|
27
|
+
from ascii_colors import ASCIIColors
|
|
28
|
+
|
|
29
|
+
BindingName = "DiffusersTTIBinding"
|
|
30
|
+
|
|
31
|
+
class DiffusersTTIBinding(LollmsTTIBinding):
|
|
32
|
+
def __init__(self, **kwargs):
|
|
33
|
+
# Prioritize 'model_name' but accept 'model' as an alias from config files.
|
|
34
|
+
if 'model' in kwargs and 'model_name' not in kwargs:
|
|
35
|
+
kwargs['model_name'] = kwargs.pop('model')
|
|
36
|
+
super().__init__(binding_name=BindingName, config=kwargs)
|
|
37
|
+
|
|
38
|
+
self.config = kwargs
|
|
39
|
+
self.host = kwargs.get("host", "localhost")
|
|
40
|
+
self.port = kwargs.get("port", 9632)
|
|
41
|
+
self.auto_start_server = kwargs.get("auto_start_server", False)
|
|
42
|
+
self.wait_for_server = kwargs.get("wait_for_server", False)
|
|
43
|
+
self.server_process = None
|
|
44
|
+
self.base_url = f"http://{self.host}:{self.port}"
|
|
45
|
+
self.binding_root = Path(__file__).parent
|
|
46
|
+
self.server_dir = self.binding_root / "server"
|
|
47
|
+
self.venv_dir = Path("./venv/tti_diffusers_venv")
|
|
48
|
+
self.models_path = Path(kwargs.get("models_path", "./data/models/diffusers_models")).resolve()
|
|
49
|
+
self.extra_models_path = kwargs.get("extra_models_path")
|
|
50
|
+
self.hf_token = kwargs.get("hf_token", "") # NEW
|
|
51
|
+
self.models_path.mkdir(exist_ok=True, parents=True)
|
|
52
|
+
if self.auto_start_server:
|
|
53
|
+
self.ensure_server_is_running(self.wait_for_server)
|
|
54
|
+
|
|
55
|
+
|
|
56
|
+
def is_server_running(self) -> bool:
|
|
57
|
+
"""Checks if the server is already running and responsive."""
|
|
58
|
+
try:
|
|
59
|
+
response = requests.get(f"{self.base_url}/status", timeout=4)
|
|
60
|
+
if response.status_code == 200 and response.json().get("status") == "running":
|
|
61
|
+
return True
|
|
62
|
+
except requests.exceptions.RequestException:
|
|
63
|
+
return False
|
|
64
|
+
return False
|
|
65
|
+
|
|
66
|
+
|
|
67
|
+
def ensure_server_is_running(self, wait= False):
|
|
68
|
+
"""
|
|
69
|
+
Ensures the Diffusers server is running. If not, it attempts to start it
|
|
70
|
+
in a process-safe manner using a file lock. This method is designed to
|
|
71
|
+
prevent race conditions in multi-worker environments.
|
|
72
|
+
"""
|
|
73
|
+
self.server_dir.mkdir(exist_ok=True)
|
|
74
|
+
ASCIIColors.info("Attempting to start or connect to the Diffusers server...")
|
|
75
|
+
|
|
76
|
+
# First, perform a quick check without the lock to avoid unnecessary waiting.
|
|
77
|
+
if self.is_server_running():
|
|
78
|
+
ASCIIColors.green("Diffusers Server is already running and responsive.")
|
|
306
79
|
return
|
|
307
|
-
|
|
308
|
-
|
|
80
|
+
else:
|
|
81
|
+
self.start_server(wait)
|
|
82
|
+
|
|
83
|
+
def install_server_dependencies(self):
|
|
84
|
+
"""
|
|
85
|
+
Installs the server's dependencies into a dedicated virtual environment
|
|
86
|
+
using pipmaster, which handles complex packages like PyTorch.
|
|
87
|
+
"""
|
|
88
|
+
ASCIIColors.info(f"Setting up virtual environment in: {self.venv_dir}")
|
|
89
|
+
pm_v = pm.PackageManager(venv_path=str(self.venv_dir))
|
|
90
|
+
|
|
91
|
+
# --- PyTorch Installation ---
|
|
92
|
+
ASCIIColors.info(f"Installing server dependencies")
|
|
93
|
+
pm_v.ensure_packages([
|
|
94
|
+
"requests", "uvicorn", "fastapi", "python-multipart", "filelock"
|
|
95
|
+
])
|
|
96
|
+
ASCIIColors.info(f"Installing parisneo libraries")
|
|
97
|
+
pm_v.ensure_packages([
|
|
98
|
+
"ascii_colors","pipmaster"
|
|
99
|
+
])
|
|
100
|
+
ASCIIColors.info(f"Installing misc libraries (numpy, tqdm...)")
|
|
101
|
+
pm_v.ensure_packages([
|
|
102
|
+
"tqdm", "numpy"
|
|
103
|
+
])
|
|
104
|
+
ASCIIColors.info(f"Installing Pillow")
|
|
105
|
+
pm_v.ensure_packages([
|
|
106
|
+
"pillow"
|
|
107
|
+
])
|
|
108
|
+
|
|
109
|
+
ASCIIColors.info(f"Installing pytorch")
|
|
110
|
+
torch_index_url = None
|
|
111
|
+
if sys.platform == "win32":
|
|
309
112
|
try:
|
|
310
|
-
|
|
311
|
-
|
|
312
|
-
|
|
313
|
-
|
|
314
|
-
|
|
315
|
-
except
|
|
316
|
-
ASCIIColors.
|
|
317
|
-
|
|
318
|
-
|
|
319
|
-
|
|
320
|
-
|
|
321
|
-
|
|
322
|
-
|
|
323
|
-
|
|
324
|
-
|
|
325
|
-
|
|
326
|
-
ASCIIColors.info(f"
|
|
327
|
-
model_path = self._resolve_model_path(model_name)
|
|
328
|
-
torch_dtype = TORCH_DTYPE_MAP_STR_TO_OBJ.get(self.config["torch_dtype_str"].lower())
|
|
113
|
+
# Use nvidia-smi to detect CUDA
|
|
114
|
+
result = subprocess.run(["nvidia-smi"], capture_output=True, text=True, check=True)
|
|
115
|
+
ASCIIColors.green("NVIDIA GPU detected. Installing CUDA-enabled PyTorch.")
|
|
116
|
+
# Using a common and stable CUDA version. Adjust if needed.
|
|
117
|
+
torch_index_url = "https://download.pytorch.org/whl/cu128"
|
|
118
|
+
except (FileNotFoundError, subprocess.CalledProcessError):
|
|
119
|
+
ASCIIColors.yellow("`nvidia-smi` not found or failed. Installing standard PyTorch. If you have an NVIDIA GPU, please ensure drivers are installed and in PATH.")
|
|
120
|
+
|
|
121
|
+
# Base packages including torch. pm.ensure_packages handles verbose output.
|
|
122
|
+
pm_v.ensure_packages(["torch", "torchvision"], index_url=torch_index_url)
|
|
123
|
+
|
|
124
|
+
# Standard dependencies
|
|
125
|
+
ASCIIColors.info(f"Installing transformers dependencies")
|
|
126
|
+
pm_v.ensure_packages([
|
|
127
|
+
"transformers", "safetensors", "accelerate"
|
|
128
|
+
])
|
|
129
|
+
ASCIIColors.info(f"[Optional] Installing xformers")
|
|
329
130
|
try:
|
|
330
|
-
|
|
331
|
-
|
|
332
|
-
|
|
333
|
-
|
|
334
|
-
|
|
335
|
-
|
|
336
|
-
|
|
337
|
-
|
|
338
|
-
|
|
339
|
-
|
|
340
|
-
|
|
341
|
-
|
|
342
|
-
|
|
343
|
-
|
|
344
|
-
|
|
345
|
-
|
|
346
|
-
|
|
347
|
-
|
|
348
|
-
|
|
349
|
-
|
|
350
|
-
|
|
351
|
-
|
|
352
|
-
|
|
353
|
-
|
|
354
|
-
|
|
355
|
-
|
|
356
|
-
|
|
357
|
-
|
|
358
|
-
|
|
359
|
-
|
|
360
|
-
|
|
361
|
-
self.pipeline = AutoPipelineForInpainting.from_pretrained(model_path, **common_args)
|
|
362
|
-
except Exception as e:
|
|
363
|
-
error_str = str(e).lower()
|
|
364
|
-
if "401" in error_str or "gated" in error_str or "authorization" in error_str:
|
|
365
|
-
msg = (
|
|
366
|
-
f"AUTHENTICATION FAILED for model '{model_name}'. "
|
|
367
|
-
"Please ensure you accepted the model license and provided a valid HF token."
|
|
368
|
-
)
|
|
369
|
-
raise RuntimeError(msg) from e
|
|
370
|
-
raise e
|
|
371
|
-
self._set_scheduler()
|
|
372
|
-
self.pipeline.to(self.config["device"])
|
|
373
|
-
if self.config["enable_xformers"]:
|
|
374
|
-
try:
|
|
375
|
-
self.pipeline.enable_xformers_memory_efficient_attention()
|
|
376
|
-
except Exception as e:
|
|
377
|
-
ASCIIColors.warning(f"Could not enable xFormers: {e}.")
|
|
378
|
-
if self.config["enable_cpu_offload"] and self.config["device"] != "cpu":
|
|
379
|
-
self.pipeline.enable_model_cpu_offload()
|
|
380
|
-
elif self.config["enable_sequential_cpu_offload"] and self.config["device"] != "cpu":
|
|
381
|
-
self.pipeline.enable_sequential_cpu_offload()
|
|
382
|
-
self.is_loaded = True
|
|
383
|
-
self.current_task = task
|
|
384
|
-
self.last_used_time = time.time()
|
|
385
|
-
ASCIIColors.green(f"Model '{model_name}' loaded successfully on '{self.config['device']}' for task '{task}'.")
|
|
386
|
-
|
|
387
|
-
def _unload_pipeline(self):
|
|
388
|
-
if self.pipeline:
|
|
389
|
-
model_name = self.config.get('model_name', 'Unknown')
|
|
390
|
-
del self.pipeline
|
|
391
|
-
self.pipeline = None
|
|
392
|
-
if torch and torch.cuda.is_available():
|
|
393
|
-
torch.cuda.empty_cache()
|
|
394
|
-
self.is_loaded = False
|
|
395
|
-
self.current_task = None
|
|
396
|
-
ASCIIColors.info(f"Model '{model_name}' unloaded and VRAM cleared.")
|
|
397
|
-
|
|
398
|
-
def _generation_worker(self):
|
|
399
|
-
while not self._stop_event.is_set():
|
|
400
|
-
try:
|
|
401
|
-
job = self.queue.get(timeout=1)
|
|
402
|
-
if job is None:
|
|
403
|
-
break
|
|
404
|
-
future, task, pipeline_args = job
|
|
131
|
+
pm_v.ensure_packages([
|
|
132
|
+
"xformers"
|
|
133
|
+
])
|
|
134
|
+
except:
|
|
135
|
+
pass
|
|
136
|
+
# Git-based diffusers to get the latest version
|
|
137
|
+
ASCIIColors.info(f"Installing diffusers library from github")
|
|
138
|
+
pm_v.ensure_packages([
|
|
139
|
+
{
|
|
140
|
+
"name": "diffusers",
|
|
141
|
+
"vcs": "git+https://github.com/huggingface/diffusers.git",
|
|
142
|
+
"condition": ">=0.35.1"
|
|
143
|
+
}
|
|
144
|
+
])
|
|
145
|
+
|
|
146
|
+
ASCIIColors.green("Server dependencies are satisfied.")
|
|
147
|
+
|
|
148
|
+
def start_server(self, wait=True, timeout_s=20):
|
|
149
|
+
"""
|
|
150
|
+
Launches the FastAPI server in a background thread and returns immediately.
|
|
151
|
+
This method should only be called from within a file lock.
|
|
152
|
+
"""
|
|
153
|
+
import threading
|
|
154
|
+
|
|
155
|
+
|
|
156
|
+
def _start_server_background():
|
|
157
|
+
"""Helper method to start the server in a background thread."""
|
|
158
|
+
# Use a lock file in the binding's server directory for consistency across instances
|
|
159
|
+
lock_path = self.server_dir / "diffusers_server.lock"
|
|
160
|
+
lock = FileLock(lock_path)
|
|
161
|
+
with lock.acquire(timeout=0):
|
|
405
162
|
try:
|
|
406
|
-
|
|
407
|
-
|
|
408
|
-
|
|
409
|
-
|
|
410
|
-
|
|
411
|
-
|
|
412
|
-
|
|
413
|
-
|
|
414
|
-
|
|
415
|
-
|
|
163
|
+
server_script = self.server_dir / "main.py"
|
|
164
|
+
if not server_script.exists():
|
|
165
|
+
# Fallback for old structure
|
|
166
|
+
server_script = self.binding_root / "server.py"
|
|
167
|
+
if not server_script.exists():
|
|
168
|
+
raise FileNotFoundError(f"Server script not found at {server_script}. Make sure it's in a 'server' subdirectory.")
|
|
169
|
+
if not self.venv_dir.exists():
|
|
170
|
+
self.install_server_dependencies()
|
|
171
|
+
|
|
172
|
+
if sys.platform == "win32":
|
|
173
|
+
python_executable = self.venv_dir / "Scripts" / "python.exe"
|
|
174
|
+
else:
|
|
175
|
+
python_executable = self.venv_dir / "bin" / "python"
|
|
176
|
+
|
|
177
|
+
command = [
|
|
178
|
+
str(python_executable),
|
|
179
|
+
str(server_script),
|
|
180
|
+
"--host", self.host,
|
|
181
|
+
"--port", str(self.port),
|
|
182
|
+
"--models-path", str(self.models_path.resolve())
|
|
183
|
+
]
|
|
184
|
+
|
|
185
|
+
if self.extra_models_path:
|
|
186
|
+
resolved_extra_path = Path(self.extra_models_path).resolve()
|
|
187
|
+
command.extend(["--extra-models-path", str(resolved_extra_path)])
|
|
188
|
+
|
|
189
|
+
if self.hf_token:
|
|
190
|
+
command.extend(["--hf-token", self.hf_token])
|
|
191
|
+
|
|
192
|
+
if self.extra_models_path:
|
|
193
|
+
resolved_extra_path = Path(self.extra_models_path).resolve()
|
|
194
|
+
command.extend(["--extra-models-path", str(resolved_extra_path)])
|
|
195
|
+
|
|
196
|
+
creationflags = subprocess.DETACHED_PROCESS if sys.platform == "win32" else 0
|
|
197
|
+
self.server_process = subprocess.Popen(command, creationflags=creationflags)
|
|
198
|
+
ASCIIColors.info("Diffusers server process launched in the background.")
|
|
199
|
+
while(not self.is_server_running()):
|
|
200
|
+
time.sleep(1)
|
|
201
|
+
|
|
416
202
|
except Exception as e:
|
|
417
|
-
|
|
418
|
-
|
|
419
|
-
|
|
420
|
-
|
|
421
|
-
|
|
422
|
-
|
|
423
|
-
|
|
424
|
-
|
|
425
|
-
|
|
426
|
-
|
|
427
|
-
def
|
|
428
|
-
|
|
429
|
-
|
|
430
|
-
|
|
431
|
-
|
|
432
|
-
|
|
433
|
-
|
|
434
|
-
|
|
435
|
-
|
|
436
|
-
|
|
437
|
-
|
|
438
|
-
|
|
439
|
-
|
|
440
|
-
|
|
441
|
-
|
|
442
|
-
|
|
443
|
-
|
|
444
|
-
|
|
445
|
-
|
|
446
|
-
|
|
447
|
-
|
|
448
|
-
|
|
449
|
-
|
|
450
|
-
|
|
451
|
-
|
|
452
|
-
|
|
453
|
-
|
|
454
|
-
|
|
455
|
-
|
|
456
|
-
|
|
457
|
-
|
|
458
|
-
|
|
459
|
-
|
|
460
|
-
|
|
461
|
-
|
|
462
|
-
|
|
463
|
-
def get_active_managers(self) -> List[ModelManager]:
|
|
464
|
-
with self._registry_lock:
|
|
465
|
-
return [m for m in self._managers.values() if m.is_loaded]
|
|
466
|
-
|
|
467
|
-
class DiffusersTTIBinding_Impl(LollmsTTIBinding):
|
|
468
|
-
DEFAULT_CONFIG = {
|
|
469
|
-
"model_name": "",
|
|
470
|
-
"device": "auto",
|
|
471
|
-
"torch_dtype_str": "auto",
|
|
472
|
-
"use_safetensors": True,
|
|
473
|
-
"scheduler_name": "default",
|
|
474
|
-
"safety_checker_on": True,
|
|
475
|
-
"num_inference_steps": 25,
|
|
476
|
-
"guidance_scale": 7.0,
|
|
477
|
-
"width": 512,
|
|
478
|
-
"height": 512,
|
|
479
|
-
"seed": -1,
|
|
480
|
-
"enable_cpu_offload": False,
|
|
481
|
-
"enable_sequential_cpu_offload": False,
|
|
482
|
-
"enable_xformers": False,
|
|
483
|
-
"hf_variant": None,
|
|
484
|
-
"hf_token": None,
|
|
485
|
-
"hf_cache_path": None,
|
|
486
|
-
"local_files_only": False,
|
|
487
|
-
"unload_inactive_model_after": 0
|
|
488
|
-
}
|
|
489
|
-
HF_DEFAULT_MODELS = [
|
|
490
|
-
{"family": "SDXL", "model_name": "stabilityai/stable-diffusion-xl-base-1.0", "display_name": "SDXL Base 1.0", "desc": "Text2Image 1024 native."},
|
|
491
|
-
{"family": "SDXL", "model_name": "stabilityai/stable-diffusion-xl-refiner-1.0", "display_name": "SDXL Refiner 1.0", "desc": "Refiner for SDXL."},
|
|
492
|
-
{"family": "SD 1.x", "model_name": "runwayml/stable-diffusion-v1-5", "display_name": "Stable Diffusion 1.5", "desc": "Classic SD1.5."},
|
|
493
|
-
{"family": "SD 2.x", "model_name": "stabilityai/stable-diffusion-2-1", "display_name": "Stable Diffusion 2.1", "desc": "SD2.1 base."},
|
|
494
|
-
{"family": "SD3", "model_name": "stabilityai/stable-diffusion-3-medium-diffusers", "display_name": "Stable Diffusion 3 Medium", "desc": "SD3 medium."},
|
|
495
|
-
{"family": "Qwen", "model_name": "Qwen/Qwen-Image", "display_name": "Qwen Image Edit", "desc": "Dedicated image generation."},
|
|
496
|
-
{"family": "Specialized", "model_name": "playgroundai/playground-v2.5-1024px-aesthetic", "display_name": "Playground v2.5", "desc": "High aesthetic 1024."},
|
|
497
|
-
{"family": "Editors", "model_name": "Qwen/Qwen-Image-Edit", "display_name": "Qwen Image Edit", "desc": "Dedicated image editing."}
|
|
498
|
-
]
|
|
203
|
+
ASCIIColors.error(f"Failed to start Diffusers server: {e}")
|
|
204
|
+
raise
|
|
205
|
+
|
|
206
|
+
# Start the server in a background thread
|
|
207
|
+
thread = threading.Thread(target=_start_server_background, daemon=True)
|
|
208
|
+
thread.start()
|
|
209
|
+
if wait:
|
|
210
|
+
thread.join()
|
|
211
|
+
|
|
212
|
+
|
|
213
|
+
def _wait_for_server(self, timeout=30):
|
|
214
|
+
"""Waits for the server to become responsive."""
|
|
215
|
+
ASCIIColors.info("Waiting for Diffusers server to become available...")
|
|
216
|
+
start_time = time.time()
|
|
217
|
+
while time.time() - start_time < timeout:
|
|
218
|
+
if self.is_server_running():
|
|
219
|
+
ASCIIColors.green("Diffusers Server is up and running.")
|
|
220
|
+
# Set initial settings from the binding's config, but only if a model is specified.
|
|
221
|
+
if self.config.get("model_name"):
|
|
222
|
+
try:
|
|
223
|
+
ASCIIColors.info(f"Syncing initial client settings to server (model: {self.config['model_name']})...")
|
|
224
|
+
self.set_settings(self.config)
|
|
225
|
+
except Exception as e:
|
|
226
|
+
ASCIIColors.warning(f"Could not sync initial settings to server: {e}")
|
|
227
|
+
else:
|
|
228
|
+
ASCIIColors.warning("Client has no model_name configured, skipping initial settings sync.")
|
|
229
|
+
return
|
|
230
|
+
time.sleep(2)
|
|
231
|
+
raise RuntimeError("Failed to connect to the Diffusers server within the specified timeout.")
|
|
232
|
+
|
|
233
|
+
def _post_json_request(self, endpoint: str, data: Optional[dict] = None) -> requests.Response:
|
|
234
|
+
"""Helper to make POST requests with a JSON body."""
|
|
235
|
+
try:
|
|
236
|
+
url = f"{self.base_url}{endpoint}"
|
|
237
|
+
response = requests.post(url, json=data, timeout=3600) # Long timeout for generation
|
|
238
|
+
response.raise_for_status()
|
|
239
|
+
return response
|
|
240
|
+
except requests.exceptions.RequestException as e:
|
|
241
|
+
ASCIIColors.error(f"Failed to communicate with Diffusers server at {url}.")
|
|
242
|
+
ASCIIColors.error(f"Error details: {e}")
|
|
243
|
+
if hasattr(e, 'response') and e.response:
|
|
244
|
+
try:
|
|
245
|
+
ASCIIColors.error(f"Server response: {e.response.json().get('detail', e.response.text)}")
|
|
246
|
+
except json.JSONDecodeError:
|
|
247
|
+
ASCIIColors.error(f"Server raw response: {e.response.text}")
|
|
248
|
+
raise RuntimeError("Communication with the Diffusers server failed.") from e
|
|
499
249
|
|
|
500
|
-
def
|
|
501
|
-
|
|
502
|
-
|
|
503
|
-
|
|
504
|
-
|
|
505
|
-
|
|
506
|
-
|
|
507
|
-
|
|
250
|
+
def _post_multipart_request(self, endpoint: str, data: Optional[dict] = None, files: Optional[list] = None) -> requests.Response:
|
|
251
|
+
"""Helper to make multipart/form-data POST requests for file uploads."""
|
|
252
|
+
try:
|
|
253
|
+
url = f"{self.base_url}{endpoint}"
|
|
254
|
+
response = requests.post(url, data=data, files=files, timeout=3600)
|
|
255
|
+
response.raise_for_status()
|
|
256
|
+
return response
|
|
257
|
+
except requests.exceptions.RequestException as e:
|
|
258
|
+
# (Error handling is the same as above)
|
|
259
|
+
ASCIIColors.error(f"Failed to communicate with Diffusers server at {url}.")
|
|
260
|
+
ASCIIColors.error(f"Error details: {e}")
|
|
261
|
+
if hasattr(e, 'response') and e.response:
|
|
262
|
+
try:
|
|
263
|
+
ASCIIColors.error(f"Server response: {e.response.json().get('detail', e.response.text)}")
|
|
264
|
+
except json.JSONDecodeError:
|
|
265
|
+
ASCIIColors.error(f"Server raw response: {e.response.text}")
|
|
266
|
+
raise RuntimeError("Communication with the Diffusers server failed.") from e
|
|
508
267
|
|
|
509
|
-
|
|
510
|
-
|
|
511
|
-
|
|
512
|
-
|
|
513
|
-
|
|
514
|
-
|
|
515
|
-
|
|
268
|
+
def _get_request(self, endpoint: str, params: Optional[dict] = None) -> requests.Response:
|
|
269
|
+
"""Helper to make GET requests to the server."""
|
|
270
|
+
try:
|
|
271
|
+
url = f"{self.base_url}{endpoint}"
|
|
272
|
+
response = requests.get(url, params=params, timeout=60)
|
|
273
|
+
response.raise_for_status()
|
|
274
|
+
return response
|
|
275
|
+
except requests.exceptions.RequestException as e:
|
|
276
|
+
ASCIIColors.error(f"Failed to communicate with Diffusers server at {url}.")
|
|
277
|
+
raise RuntimeError("Communication with the Diffusers server failed.") from e
|
|
516
278
|
|
|
517
|
-
def
|
|
518
|
-
|
|
519
|
-
return []
|
|
279
|
+
def unload_model(self):
|
|
280
|
+
ASCIIColors.info("Requesting server to unload the current model...")
|
|
520
281
|
try:
|
|
521
|
-
|
|
522
|
-
out = []
|
|
523
|
-
for m in active:
|
|
524
|
-
with m.lock:
|
|
525
|
-
cfg = m.config
|
|
526
|
-
pipe = m.pipeline
|
|
527
|
-
vram_usage_bytes = 0
|
|
528
|
-
if torch.cuda.is_available() and cfg.get("device") == "cuda" and pipe:
|
|
529
|
-
for comp in pipe.components.values():
|
|
530
|
-
if hasattr(comp, 'parameters'):
|
|
531
|
-
mem_params = sum(p.nelement() * p.element_size() for p in comp.parameters())
|
|
532
|
-
mem_bufs = sum(b.nelement() * b.element_size() for b in comp.buffers())
|
|
533
|
-
vram_usage_bytes += (mem_params + mem_bufs)
|
|
534
|
-
out.append({
|
|
535
|
-
"model_name": cfg.get("model_name"),
|
|
536
|
-
"vram_size": vram_usage_bytes,
|
|
537
|
-
"device": cfg.get("device"),
|
|
538
|
-
"torch_dtype": str(pipe.dtype) if pipe else cfg.get("torch_dtype_str"),
|
|
539
|
-
"pipeline_type": pipe.__class__.__name__ if pipe else "N/A",
|
|
540
|
-
"scheduler_class": pipe.scheduler.__class__.__name__ if pipe and hasattr(pipe, 'scheduler') else "N/A",
|
|
541
|
-
"status": "Active" if m.is_loaded else "Idle",
|
|
542
|
-
"queue_size": m.queue.qsize(),
|
|
543
|
-
"task": m.current_task or "N/A"
|
|
544
|
-
})
|
|
545
|
-
return out
|
|
282
|
+
self._post_json_request("/unload_model")
|
|
546
283
|
except Exception as e:
|
|
547
|
-
ASCIIColors.
|
|
548
|
-
|
|
284
|
+
ASCIIColors.warning(f"Could not send unload request to server: {e}")
|
|
285
|
+
pass
|
|
286
|
+
|
|
287
|
+
def generate_image(self, prompt: str, negative_prompt: str = "", **kwargs) -> bytes:
|
|
288
|
+
self.ensure_server_is_running(True)
|
|
289
|
+
params = kwargs.copy()
|
|
290
|
+
if "model_name" not in params and self.config.get("model_name"):
|
|
291
|
+
params["model_name"] = self.config["model_name"]
|
|
292
|
+
|
|
293
|
+
response = self._post_json_request("/generate_image", data={
|
|
294
|
+
"prompt": prompt,
|
|
295
|
+
"negative_prompt": negative_prompt,
|
|
296
|
+
"params": params
|
|
297
|
+
})
|
|
298
|
+
return response.content
|
|
299
|
+
|
|
300
|
+
def edit_image(self, images: Union[str, List[str], "Image.Image", List["Image.Image"]], prompt: str, **kwargs) -> bytes:
|
|
301
|
+
self.ensure_server_is_running(True)
|
|
302
|
+
images_b64 = []
|
|
303
|
+
if not isinstance(images, list):
|
|
304
|
+
images = [images]
|
|
305
|
+
|
|
306
|
+
|
|
307
|
+
for img in images:
|
|
308
|
+
# Case 1: Input is a PIL Image object
|
|
309
|
+
if hasattr(img, 'save'):
|
|
310
|
+
buffer = BytesIO()
|
|
311
|
+
img.save(buffer, format="PNG")
|
|
312
|
+
b64_string = base64.b64encode(buffer.getvalue()).decode('utf-8')
|
|
313
|
+
images_b64.append(b64_string)
|
|
314
|
+
|
|
315
|
+
# Case 2: Input is a string (could be path or already base64)
|
|
316
|
+
elif isinstance(img, str):
|
|
317
|
+
try:
|
|
318
|
+
b64_string = img.split(";base64,")[1] if ";base64," in img else img
|
|
319
|
+
base64.b64decode(b64_string) # Validate
|
|
320
|
+
images_b64.append(b64_string)
|
|
321
|
+
except Exception:
|
|
322
|
+
ASCIIColors.warning(f"Warning: A string input was not a valid file path or base64. Skipping.")
|
|
323
|
+
else:
|
|
324
|
+
raise ValueError(f"Unsupported image type in edit_image: {type(img)}")
|
|
325
|
+
if not images_b64:
|
|
326
|
+
raise ValueError("No valid images were provided to the edit_image function.")
|
|
327
|
+
|
|
328
|
+
params = kwargs.copy()
|
|
329
|
+
if "model_name" not in params and self.config.get("model_name"):
|
|
330
|
+
params["model_name"] = self.config["model_name"]
|
|
549
331
|
|
|
550
|
-
|
|
551
|
-
if
|
|
552
|
-
|
|
553
|
-
self.manager = self.registry.get_manager(self.config, self.models_path)
|
|
554
|
-
ASCIIColors.info(f"Binding instance acquired manager for '{self.config['model_name']}'.")
|
|
555
|
-
|
|
556
|
-
def _resolve_device_and_dtype(self):
|
|
557
|
-
if self.config["device"].lower() == "auto":
|
|
558
|
-
self.config["device"] = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
|
|
559
|
-
if self.config["torch_dtype_str"].lower() == "auto":
|
|
560
|
-
self.config["torch_dtype_str"] = "float16" if self.config["device"] != "cpu" else "float32"
|
|
561
|
-
|
|
562
|
-
def _decode_image_input(self, item: str) -> Image.Image:
|
|
563
|
-
s = item.strip()
|
|
564
|
-
if s.startswith("data:image/") and ";base64," in s:
|
|
565
|
-
b64 = s.split(";base64,")[-1]
|
|
566
|
-
raw = base64.b64decode(b64)
|
|
567
|
-
return Image.open(BytesIO(raw)).convert("RGB")
|
|
568
|
-
if re_b64 := (s[:30].replace("\n","")):
|
|
569
|
-
try:
|
|
570
|
-
raw = base64.b64decode(s, validate=True)
|
|
571
|
-
return Image.open(BytesIO(raw)).convert("RGB")
|
|
572
|
-
except Exception:
|
|
573
|
-
pass
|
|
574
|
-
try:
|
|
575
|
-
return load_image(s).convert("RGB")
|
|
576
|
-
except Exception:
|
|
577
|
-
return Image.open(s).convert("RGB")
|
|
332
|
+
# Translate "mask" to "mask_image" for server compatibility
|
|
333
|
+
if "mask" in params and params["mask"]:
|
|
334
|
+
params["mask_image"] = params.pop("mask")
|
|
578
335
|
|
|
579
|
-
|
|
580
|
-
|
|
581
|
-
|
|
582
|
-
|
|
583
|
-
|
|
336
|
+
json_payload = {
|
|
337
|
+
"prompt": prompt,
|
|
338
|
+
"images_b64": images_b64,
|
|
339
|
+
"params": params
|
|
340
|
+
}
|
|
341
|
+
response = self._post_json_request("/edit_image", data=json_payload)
|
|
342
|
+
return response.content
|
|
584
343
|
|
|
585
|
-
def
|
|
586
|
-
|
|
587
|
-
|
|
588
|
-
return sorted([f.name for f in self.models_path.iterdir() if f.is_file() and f.suffix == ".safetensors"])
|
|
344
|
+
def list_models(self) -> list:
|
|
345
|
+
"""
|
|
346
|
+
Lists only models that are available locally on disk.
|
|
589
347
|
|
|
590
|
-
|
|
591
|
-
|
|
592
|
-
|
|
593
|
-
for key, info in CIVITAI_MODELS.items()
|
|
594
|
-
]
|
|
595
|
-
hf_list = [
|
|
596
|
-
{'model_name': m["model_name"], 'display_name': m["display_name"], 'description': m["desc"], 'owned_by': 'HuggingFace', 'family': m["family"]}
|
|
597
|
-
for m in self.HF_DEFAULT_MODELS
|
|
598
|
-
]
|
|
599
|
-
custom_local = []
|
|
600
|
-
civitai_filenames = {info['filename'] for info in CIVITAI_MODELS.values()}
|
|
601
|
-
for filename in self.list_safetensor_models():
|
|
602
|
-
if filename not in civitai_filenames:
|
|
603
|
-
custom_local.append({'model_name': filename, 'display_name': filename, 'description': 'Local safetensors file.', 'owned_by': 'local_user'})
|
|
604
|
-
return hf_list + civitai_list + custom_local
|
|
605
|
-
|
|
606
|
-
def load_model(self):
|
|
607
|
-
ASCIIColors.info("load_model() called. Loading is automatic on first use.")
|
|
608
|
-
if self.model_name and not self.manager:
|
|
609
|
-
self._acquire_manager()
|
|
348
|
+
The Diffusers server scans `models_path` and `extra_models_path` for:
|
|
349
|
+
- Diffusers pipeline folders (with model_index.json, etc.)
|
|
350
|
+
- .safetensors checkpoints and associated configs.
|
|
610
351
|
|
|
611
|
-
|
|
612
|
-
|
|
613
|
-
|
|
614
|
-
self.registry.release_manager(self.manager.config)
|
|
615
|
-
self.manager = None
|
|
616
|
-
|
|
617
|
-
def generate_image(self, prompt: str, negative_prompt: str = "", width: int|None = None, height: int|None = None, **kwargs) -> bytes:
|
|
618
|
-
if not self.model_name:
|
|
619
|
-
raise RuntimeError("No model_name configured. Please select a model in settings.")
|
|
620
|
-
if not self.manager:
|
|
621
|
-
self._acquire_manager()
|
|
622
|
-
generator = self._prepare_seed(kwargs)
|
|
623
|
-
pipeline_args = {
|
|
624
|
-
"prompt": prompt,
|
|
625
|
-
"negative_prompt": negative_prompt or self.config.get("negative_prompt", ""),
|
|
626
|
-
"width": width if width is not None else self.config.get("width", 512),
|
|
627
|
-
"height": height if height is not None else self.config.get("height", 512),
|
|
628
|
-
"num_inference_steps": kwargs.pop("num_inference_steps", self.config.get("num_inference_steps",25)),
|
|
629
|
-
"guidance_scale": kwargs.pop("guidance_scale", self.config.get("guidance_scale",6.5)),
|
|
630
|
-
"generator": generator
|
|
631
|
-
}
|
|
632
|
-
pipeline_args.update(kwargs)
|
|
633
|
-
future = Future()
|
|
634
|
-
self.manager.queue.put((future, "text2image", pipeline_args))
|
|
635
|
-
ASCIIColors.info(f"Job (t2i) '{prompt[:50]}...' queued.")
|
|
636
|
-
try:
|
|
637
|
-
return future.result()
|
|
638
|
-
except Exception as e:
|
|
639
|
-
raise Exception(f"Image generation failed: {e}") from e
|
|
640
|
-
|
|
641
|
-
def _encode_image_to_latents(self, pil: Image.Image, width: int, height: int) -> Tuple[torch.Tensor, Tuple[int,int]]:
|
|
642
|
-
pil = pil.convert("RGB").resize((width, height))
|
|
643
|
-
with self.manager.lock:
|
|
644
|
-
self.manager._load_pipeline_for_task("text2image")
|
|
645
|
-
vae = self.manager.pipeline.vae
|
|
646
|
-
img = torch.from_numpy(torch.ByteTensor(bytearray(pil.tobytes())).numpy()).float() # not efficient but avoids np dep
|
|
647
|
-
img = img.view(pil.height, pil.width, 3).permute(2,0,1).unsqueeze(0) / 255.0
|
|
648
|
-
img = (img * 2.0) - 1.0
|
|
649
|
-
img = img.to(self.config["device"], dtype=getattr(torch, self.config["torch_dtype_str"]))
|
|
650
|
-
with torch.no_grad():
|
|
651
|
-
posterior = vae.encode(img)
|
|
652
|
-
latents = posterior.latent_dist.sample()
|
|
653
|
-
sf = getattr(vae.config, "scaling_factor", 0.18215)
|
|
654
|
-
latents = latents * sf
|
|
655
|
-
return latents, (pil.width, pil.height)
|
|
656
|
-
|
|
657
|
-
def edit_image(self,
|
|
658
|
-
images: Union[str, List[str]],
|
|
659
|
-
prompt: str,
|
|
660
|
-
negative_prompt: Optional[str] = "",
|
|
661
|
-
mask: Optional[str] = None,
|
|
662
|
-
width: Optional[int] = None,
|
|
663
|
-
height: Optional[int] = None,
|
|
664
|
-
**kwargs) -> bytes:
|
|
665
|
-
if not self.model_name:
|
|
666
|
-
raise RuntimeError("No model_name configured. Please select a model in settings.")
|
|
667
|
-
if not self.manager:
|
|
668
|
-
self._acquire_manager()
|
|
669
|
-
imgs = [images] if isinstance(images, str) else list(images)
|
|
670
|
-
pil_images = [self._decode_image_input(s) for s in imgs]
|
|
671
|
-
out_w = width if width is not None else self.config["width"]
|
|
672
|
-
out_h = height if height is not None else self.config["height"]
|
|
673
|
-
generator = self._prepare_seed(kwargs)
|
|
674
|
-
steps = kwargs.pop("num_inference_steps", self.config["num_inference_steps"])
|
|
675
|
-
guidance = kwargs.pop("guidance_scale", self.config["guidance_scale"])
|
|
676
|
-
if mask is not None and len(pil_images) == 1:
|
|
677
|
-
try:
|
|
678
|
-
mask_img = self._decode_image_input(mask).convert("L")
|
|
679
|
-
except Exception as e:
|
|
680
|
-
raise ValueError(f"Failed to decode mask image: {e}") from e
|
|
681
|
-
pipeline_args = {
|
|
682
|
-
"image": pil_images[0],
|
|
683
|
-
"mask_image": mask_img,
|
|
684
|
-
"prompt": prompt,
|
|
685
|
-
"negative_prompt": negative_prompt or None,
|
|
686
|
-
"width": out_w,
|
|
687
|
-
"height": out_h,
|
|
688
|
-
"num_inference_steps": steps,
|
|
689
|
-
"guidance_scale": guidance,
|
|
690
|
-
"generator": generator
|
|
691
|
-
}
|
|
692
|
-
pipeline_args.update(kwargs)
|
|
693
|
-
future = Future()
|
|
694
|
-
self.manager.queue.put((future, "inpainting", pipeline_args))
|
|
695
|
-
ASCIIColors.info("Job (inpaint) queued.")
|
|
696
|
-
return future.result()
|
|
352
|
+
Returns list of dicts: {"model_name": str, "display_name": str, "description": str}
|
|
353
|
+
"""
|
|
354
|
+
self.ensure_server_is_running(True)
|
|
697
355
|
try:
|
|
698
|
-
|
|
699
|
-
|
|
700
|
-
|
|
701
|
-
|
|
702
|
-
|
|
703
|
-
"width": out_w,
|
|
704
|
-
"height": out_h,
|
|
705
|
-
"num_inference_steps": steps,
|
|
706
|
-
"guidance_scale": guidance,
|
|
707
|
-
"generator": generator
|
|
708
|
-
}
|
|
709
|
-
pipeline_args.update(kwargs)
|
|
710
|
-
future = Future()
|
|
711
|
-
self.manager.queue.put((future, "image2image", pipeline_args))
|
|
712
|
-
ASCIIColors.info("Job (i2i) queued.")
|
|
713
|
-
return future.result()
|
|
714
|
-
except Exception:
|
|
715
|
-
pass
|
|
716
|
-
try:
|
|
717
|
-
base = pil_images[0]
|
|
718
|
-
latents, _ = self._encode_image_to_latents(base, out_w, out_h)
|
|
719
|
-
pipeline_args = {
|
|
720
|
-
"prompt": prompt,
|
|
721
|
-
"negative_prompt": negative_prompt or None,
|
|
722
|
-
"latents": latents,
|
|
723
|
-
"num_inference_steps": steps,
|
|
724
|
-
"guidance_scale": guidance,
|
|
725
|
-
"generator": generator,
|
|
726
|
-
"width": out_w,
|
|
727
|
-
"height": out_h
|
|
728
|
-
}
|
|
729
|
-
pipeline_args.update(kwargs)
|
|
730
|
-
future = Future()
|
|
731
|
-
self.manager.queue.put((future, "text2image", pipeline_args))
|
|
732
|
-
ASCIIColors.info("Job (t2i with init latents) queued.")
|
|
733
|
-
return future.result()
|
|
356
|
+
response = self._get_request("/list_models")
|
|
357
|
+
data = response.json()
|
|
358
|
+
if not isinstance(data, list):
|
|
359
|
+
return []
|
|
360
|
+
return data
|
|
734
361
|
except Exception as e:
|
|
735
|
-
|
|
362
|
+
ASCIIColors.warning(f"Failed to list local Diffusers models: {e}")
|
|
363
|
+
return []
|
|
364
|
+
|
|
736
365
|
|
|
737
366
|
def list_local_models(self) -> List[str]:
|
|
738
|
-
|
|
739
|
-
|
|
740
|
-
folders = [
|
|
741
|
-
d.name for d in self.models_path.iterdir()
|
|
742
|
-
if d.is_dir() and ((d / "model_index.json").exists() or (d / "unet" / "config.json").exists())
|
|
743
|
-
]
|
|
744
|
-
safetensors = self.list_safetensor_models()
|
|
745
|
-
return sorted(folders + safetensors)
|
|
367
|
+
self.ensure_server_is_running(True)
|
|
368
|
+
return self._get_request("/list_local_models").json()
|
|
746
369
|
|
|
747
370
|
def list_available_models(self) -> List[str]:
|
|
748
|
-
|
|
749
|
-
|
|
750
|
-
return sorted(list(set(local_models + discoverable)))
|
|
371
|
+
self.ensure_server_is_running(True)
|
|
372
|
+
return self._get_request("/list_available_models").json()
|
|
751
373
|
|
|
752
374
|
def list_services(self, **kwargs) -> List[Dict[str, str]]:
|
|
753
|
-
|
|
754
|
-
|
|
755
|
-
if not models:
|
|
756
|
-
return [{"name": "diffusers_no_models", "caption": "No models found", "help": f"Place models in '{self.models_path.resolve()}'."}]
|
|
757
|
-
services = []
|
|
758
|
-
for m in models:
|
|
759
|
-
help_text = "Hugging Face model ID"
|
|
760
|
-
if m in local_models:
|
|
761
|
-
help_text = f"Local model from: {self.models_path.resolve()}"
|
|
762
|
-
elif m in CIVITAI_MODELS:
|
|
763
|
-
help_text = f"Civitai model (downloads as {CIVITAI_MODELS[m]['filename']})"
|
|
764
|
-
services.append({"name": m, "caption": f"Diffusers: {m}", "help": help_text})
|
|
765
|
-
return services
|
|
375
|
+
self.ensure_server_is_running(True)
|
|
376
|
+
return self._get_request("/list_models").json()
|
|
766
377
|
|
|
767
378
|
def get_settings(self, **kwargs) -> List[Dict[str, Any]]:
|
|
768
|
-
|
|
379
|
+
self.ensure_server_is_running(True)
|
|
380
|
+
# The server holds the state, so we fetch it.
|
|
381
|
+
return self._get_request("/get_settings").json()
|
|
382
|
+
|
|
383
|
+
def get_zoo(self):
|
|
769
384
|
return [
|
|
770
|
-
{"name": "
|
|
771
|
-
{"name": "
|
|
772
|
-
{"name": "
|
|
773
|
-
{"name": "
|
|
774
|
-
{"name": "
|
|
775
|
-
{"name": "
|
|
776
|
-
{"name": "
|
|
777
|
-
{"name": "
|
|
778
|
-
{"name": "
|
|
779
|
-
{"name": "
|
|
780
|
-
{"name": "
|
|
781
|
-
{"name": "
|
|
782
|
-
{"name": "
|
|
783
|
-
{"name": "
|
|
784
|
-
{"name": "
|
|
785
|
-
{"name": "
|
|
786
|
-
{"name": "
|
|
787
|
-
{"name": "hf_cache_path", "type": "str", "value": self.config["hf_cache_path"], "description": "Path to HF cache."},
|
|
788
|
-
{"name": "local_files_only", "type": "bool", "value": self.config["local_files_only"], "description": "Do not download from Hugging Face."}
|
|
385
|
+
{"name": "Stable Diffusion 1.5", "description": "The classic and versatile SD1.5 base model.", "size": "4GB", "type": "checkpoint", "link": "runwayml/stable-diffusion-v1-5"},
|
|
386
|
+
{"name": "Stable Diffusion 2.1", "description": "The 768x768 base model from the SD2.x series.", "size": "5GB", "type": "checkpoint", "link": "stabilityai/stable-diffusion-2-1"},
|
|
387
|
+
{"name": "Stable Diffusion XL 1.0", "description": "Official 1024x1024 text-to-image model from Stability AI.", "size": "7GB", "type": "checkpoint", "link": "stabilityai/stable-diffusion-xl-base-1.0"},
|
|
388
|
+
{"name": "SDXL Turbo", "description": "A fast, real-time text-to-image model based on SDXL.", "size": "7GB", "type": "checkpoint", "link": "stabilityai/sdxl-turbo"},
|
|
389
|
+
{"name": "Kandinsky 3", "description": "A powerful multilingual model with strong prompt understanding.", "size": "Unknown", "type": "checkpoint", "link": "kandinsky-community/kandinsky-3"},
|
|
390
|
+
{"name": "Playground v2.5", "description": "A high-quality model focused on aesthetic outputs.", "size": "Unknown", "type": "checkpoint", "link": "playgroundai/playground-v2.5-1024px-aesthetic"},
|
|
391
|
+
{"name": "epiCRealism", "description": "A popular community model for generating photorealistic images.", "size": "2GB", "type": "checkpoint", "link": "emilianJR/epiCRealism"},
|
|
392
|
+
{"name": "Realistic Vision 5.1", "description": "One of the most popular realistic models, great for portraits.", "size": "2GB", "type": "checkpoint", "link": "SG161222/Realistic_Vision_V5.1_noVAE"},
|
|
393
|
+
{"name": "Photon", "description": "A model known for high-quality, realistic images with good lighting.", "size": "2GB", "type": "checkpoint", "link": "Photon-v1"},
|
|
394
|
+
{"name": "Waifu Diffusion 1.4", "description": "A widely-used model for generating high-quality anime-style images.", "size": "2GB", "type": "checkpoint", "link": "hakurei/waifu-diffusion"},
|
|
395
|
+
{"name": "Counterfeit V3.0", "description": "A strong model for illustrative and 2.5D anime styles.", "size": "2GB", "type": "checkpoint", "link": "gsdf/Counterfeit-V3.0"},
|
|
396
|
+
{"name": "Animagine XL 3.0", "description": "A state-of-the-art anime model on the SDXL architecture.", "size": "7GB", "type": "checkpoint", "link": "cagliostrolab/animagine-xl-3.0"},
|
|
397
|
+
{"name": "DreamShaper 8", "description": "Versatile SD1.5 style model (CivitAI).", "size": "2GB", "type": "checkpoint", "link": "https://civitai.com/api/download/models/128713"},
|
|
398
|
+
{"name": "Juggernaut XL", "description": "Artistic SDXL (CivitAI).", "size": "7GB", "type": "checkpoint", "link": "https://civitai.com/api/download/models/133005"},
|
|
399
|
+
{"name": "Stable Diffusion 3 Medium", "description": "SOTA model with advanced prompt understanding (Gated).", "size": "Unknown", "type": "checkpoint", "link": "stabilityai/stable-diffusion-3-medium-diffusers"},
|
|
400
|
+
{"name": "FLUX.1 Schnell", "description": "Powerful and fast next-gen model (Gated).", "size": "Unknown", "type": "checkpoint", "link": "black-forest-labs/FLUX.1-schnell"},
|
|
401
|
+
{"name": "FLUX.1 Dev", "description": "Larger developer version of FLUX.1 (Gated).", "size": "Unknown", "type": "checkpoint", "link": "black-forest-labs/FLUX.1-dev"},
|
|
789
402
|
]
|
|
790
403
|
|
|
404
|
+
def download_from_zoo(self, index: int, progress_callback: Callable[[dict], None] = None) -> dict:
|
|
405
|
+
zoo = self.get_zoo()
|
|
406
|
+
if index < 0 or index >= len(zoo):
|
|
407
|
+
msg = "Index out of bounds"
|
|
408
|
+
ASCIIColors.error(msg)
|
|
409
|
+
return {"status": False, "message": msg}
|
|
410
|
+
item = zoo[index]
|
|
411
|
+
return self.pull_model(item["link"], progress_callback=progress_callback)
|
|
412
|
+
|
|
791
413
|
def set_settings(self, settings: Union[Dict[str, Any], List[Dict[str, Any]]], **kwargs) -> bool:
|
|
792
|
-
|
|
793
|
-
|
|
794
|
-
|
|
795
|
-
|
|
796
|
-
|
|
797
|
-
|
|
798
|
-
|
|
799
|
-
|
|
800
|
-
|
|
801
|
-
|
|
802
|
-
|
|
803
|
-
|
|
804
|
-
|
|
805
|
-
|
|
806
|
-
|
|
807
|
-
|
|
808
|
-
|
|
809
|
-
|
|
810
|
-
|
|
811
|
-
|
|
812
|
-
|
|
414
|
+
self.ensure_server_is_running(True)
|
|
415
|
+
# Normalize settings from list of dicts to a single dict if needed
|
|
416
|
+
parsed_settings = settings if isinstance(settings, dict) else {s["name"]: s["value"] for s in settings if "name" in s and "value" in s}
|
|
417
|
+
response = self._post_json_request("/set_settings", data=parsed_settings)
|
|
418
|
+
return response.json().get("success", False)
|
|
419
|
+
|
|
420
|
+
def ps(self) -> List[dict]:
|
|
421
|
+
try:
|
|
422
|
+
return self._get_request("/ps").json()
|
|
423
|
+
except Exception:
|
|
424
|
+
return [{"error": "Could not connect to server to get process status."}]
|
|
425
|
+
|
|
426
|
+
def pull_model(self, model_name: str, local_name: Optional[str] = None, progress_callback: Callable[[dict], None] = None) -> dict:
|
|
427
|
+
"""
|
|
428
|
+
Pulls a model from Hugging Face or URL via the server.
|
|
429
|
+
"""
|
|
430
|
+
payload = {}
|
|
431
|
+
if model_name.startswith("http") and "huggingface.co" not in model_name:
|
|
432
|
+
# Assume direct file URL if not huggingface repo url (roughly)
|
|
433
|
+
if model_name.endswith(".safetensors"):
|
|
434
|
+
payload["safetensors_url"] = model_name
|
|
435
|
+
else:
|
|
436
|
+
payload["hf_id"] = model_name
|
|
437
|
+
else:
|
|
438
|
+
# Clean up URL if provided as https://huggingface.co/publisher/model
|
|
439
|
+
if "huggingface.co/" in model_name:
|
|
440
|
+
model_name = model_name.split("huggingface.co/")[-1]
|
|
441
|
+
payload["hf_id"] = model_name
|
|
442
|
+
|
|
443
|
+
if local_name:
|
|
444
|
+
payload["local_name"] = local_name
|
|
445
|
+
|
|
446
|
+
try:
|
|
447
|
+
if progress_callback:
|
|
448
|
+
progress_callback({"status": "starting", "message": f"Sending pull request for {model_name}..."})
|
|
449
|
+
|
|
450
|
+
ASCIIColors.info(f"Sending pull request for {model_name}...")
|
|
451
|
+
# Use a very long timeout as downloads can be huge (GBs)
|
|
452
|
+
response = requests.post(f"{self.base_url}/pull_model", json=payload, timeout=7200)
|
|
453
|
+
response.raise_for_status()
|
|
454
|
+
|
|
455
|
+
msg = "Model pulled successfully."
|
|
456
|
+
ASCIIColors.success(msg)
|
|
457
|
+
if progress_callback:
|
|
458
|
+
progress_callback({"status": "success", "message": msg, "completed": 100, "total": 100})
|
|
459
|
+
return {"status": True, "message": msg}
|
|
460
|
+
except Exception as e:
|
|
461
|
+
error_msg = f"Failed to pull model: {e}"
|
|
462
|
+
if hasattr(e, 'response') and e.response:
|
|
463
|
+
error_msg += f" Server response: {e.response.text}"
|
|
464
|
+
ASCIIColors.error(error_msg)
|
|
465
|
+
if progress_callback:
|
|
466
|
+
progress_callback({"status": "error", "message": error_msg})
|
|
467
|
+
return {"status": False, "message": error_msg}
|
|
468
|
+
|
|
469
|
+
def upgrade_diffusers(self, progress_callback: Callable[[dict], None] = None) -> dict:
|
|
470
|
+
"""
|
|
471
|
+
Upgrades the diffusers library in the virtual environment.
|
|
472
|
+
"""
|
|
473
|
+
try:
|
|
474
|
+
if progress_callback:
|
|
475
|
+
progress_callback({"status": "starting", "message": "Upgrading diffusers..."})
|
|
476
|
+
|
|
477
|
+
ASCIIColors.info("Upgrading diffusers from GitHub...")
|
|
478
|
+
if sys.platform == "win32":
|
|
479
|
+
python_executable = self.venv_dir / "Scripts" / "python.exe"
|
|
480
|
+
else:
|
|
481
|
+
python_executable = self.venv_dir / "bin" / "python"
|
|
482
|
+
|
|
483
|
+
subprocess.check_call([
|
|
484
|
+
str(python_executable), "-m", "pip", "install", "--upgrade",
|
|
485
|
+
"git+https://github.com/huggingface/diffusers.git"
|
|
486
|
+
])
|
|
487
|
+
msg = "Diffusers upgraded successfully."
|
|
488
|
+
ASCIIColors.success(msg)
|
|
489
|
+
ASCIIColors.info("Please restart the application/server to apply changes.")
|
|
490
|
+
|
|
491
|
+
if progress_callback:
|
|
492
|
+
progress_callback({"status": "success", "message": msg})
|
|
493
|
+
return {"status": True, "message": msg}
|
|
494
|
+
except Exception as e:
|
|
495
|
+
error_msg = f"Failed to upgrade diffusers: {e}"
|
|
496
|
+
ASCIIColors.error(error_msg)
|
|
497
|
+
if progress_callback:
|
|
498
|
+
progress_callback({"status": "error", "message": error_msg})
|
|
499
|
+
return {"status": False, "message": error_msg}
|
|
813
500
|
|
|
814
501
|
def __del__(self):
|
|
815
|
-
|
|
816
|
-
|
|
817
|
-
|
|
818
|
-
ASCIIColors.magenta("--- Diffusers TTI Binding Test ---")
|
|
819
|
-
if not DIFFUSERS_AVAILABLE:
|
|
820
|
-
ASCIIColors.error("Diffusers not available. Cannot run test.")
|
|
821
|
-
exit(1)
|
|
822
|
-
temp_paths_dir = Path(__file__).parent / "tmp"
|
|
823
|
-
temp_models_path = temp_paths_dir / "models"
|
|
824
|
-
if temp_paths_dir.exists():
|
|
825
|
-
shutil.rmtree(temp_paths_dir)
|
|
826
|
-
temp_models_path.mkdir(parents=True, exist_ok=True)
|
|
827
|
-
try:
|
|
828
|
-
ASCIIColors.cyan("\n--- Test: Loading a small HF model ---")
|
|
829
|
-
cfg = {"models_path": str(temp_models_path), "model_name": "hf-internal-testing/tiny-stable-diffusion-torch"}
|
|
830
|
-
binding = DiffusersTTIBinding_Impl(**cfg)
|
|
831
|
-
img_bytes = binding.generate_image("a tiny robot", width=64, height=64, num_inference_steps=2)
|
|
832
|
-
assert len(img_bytes) > 1000
|
|
833
|
-
ASCIIColors.green("HF t2i generation OK.")
|
|
834
|
-
del binding
|
|
835
|
-
time.sleep(0.1)
|
|
836
|
-
except Exception as e:
|
|
837
|
-
trace_exception(e)
|
|
838
|
-
ASCIIColors.error(f"Diffusers binding test failed: {e}")
|
|
839
|
-
finally:
|
|
840
|
-
ASCIIColors.cyan("\nCleaning up temporary directories...")
|
|
841
|
-
if temp_paths_dir.exists():
|
|
842
|
-
shutil.rmtree(temp_paths_dir)
|
|
843
|
-
ASCIIColors.magenta("--- Diffusers TTI Binding Test Finished ---")
|
|
502
|
+
# The client destructor does not stop the server,
|
|
503
|
+
# as it is a shared resource for all worker processes.
|
|
504
|
+
pass
|