lollms-client 1.4.1__py3-none-any.whl → 1.7.10__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (64) hide show
  1. lollms_client/__init__.py +1 -1
  2. lollms_client/llm_bindings/azure_openai/__init__.py +2 -2
  3. lollms_client/llm_bindings/claude/__init__.py +125 -34
  4. lollms_client/llm_bindings/gemini/__init__.py +261 -159
  5. lollms_client/llm_bindings/grok/__init__.py +52 -14
  6. lollms_client/llm_bindings/groq/__init__.py +2 -2
  7. lollms_client/llm_bindings/hugging_face_inference_api/__init__.py +2 -2
  8. lollms_client/llm_bindings/litellm/__init__.py +1 -1
  9. lollms_client/llm_bindings/llamacpp/__init__.py +18 -11
  10. lollms_client/llm_bindings/lollms/__init__.py +151 -32
  11. lollms_client/llm_bindings/lollms_webui/__init__.py +1 -1
  12. lollms_client/llm_bindings/mistral/__init__.py +2 -2
  13. lollms_client/llm_bindings/novita_ai/__init__.py +439 -0
  14. lollms_client/llm_bindings/ollama/__init__.py +309 -93
  15. lollms_client/llm_bindings/open_router/__init__.py +2 -2
  16. lollms_client/llm_bindings/openai/__init__.py +148 -29
  17. lollms_client/llm_bindings/openllm/__init__.py +362 -506
  18. lollms_client/llm_bindings/openwebui/__init__.py +465 -0
  19. lollms_client/llm_bindings/perplexity/__init__.py +326 -0
  20. lollms_client/llm_bindings/pythonllamacpp/__init__.py +3 -3
  21. lollms_client/llm_bindings/tensor_rt/__init__.py +1 -1
  22. lollms_client/llm_bindings/transformers/__init__.py +428 -632
  23. lollms_client/llm_bindings/vllm/__init__.py +1 -1
  24. lollms_client/lollms_agentic.py +4 -2
  25. lollms_client/lollms_base_binding.py +61 -0
  26. lollms_client/lollms_core.py +516 -1890
  27. lollms_client/lollms_discussion.py +55 -18
  28. lollms_client/lollms_llm_binding.py +112 -261
  29. lollms_client/lollms_mcp_binding.py +34 -75
  30. lollms_client/lollms_personality.py +5 -2
  31. lollms_client/lollms_stt_binding.py +85 -52
  32. lollms_client/lollms_tti_binding.py +23 -37
  33. lollms_client/lollms_ttm_binding.py +24 -42
  34. lollms_client/lollms_tts_binding.py +28 -17
  35. lollms_client/lollms_ttv_binding.py +24 -42
  36. lollms_client/lollms_types.py +4 -2
  37. lollms_client/stt_bindings/whisper/__init__.py +108 -23
  38. lollms_client/stt_bindings/whispercpp/__init__.py +7 -1
  39. lollms_client/tti_bindings/diffusers/__init__.py +418 -810
  40. lollms_client/tti_bindings/diffusers/server/main.py +1051 -0
  41. lollms_client/tti_bindings/gemini/__init__.py +182 -239
  42. lollms_client/tti_bindings/leonardo_ai/__init__.py +127 -0
  43. lollms_client/tti_bindings/lollms/__init__.py +4 -1
  44. lollms_client/tti_bindings/novita_ai/__init__.py +105 -0
  45. lollms_client/tti_bindings/openai/__init__.py +10 -11
  46. lollms_client/tti_bindings/stability_ai/__init__.py +178 -0
  47. lollms_client/ttm_bindings/audiocraft/__init__.py +7 -12
  48. lollms_client/ttm_bindings/beatoven_ai/__init__.py +129 -0
  49. lollms_client/ttm_bindings/lollms/__init__.py +4 -17
  50. lollms_client/ttm_bindings/replicate/__init__.py +115 -0
  51. lollms_client/ttm_bindings/stability_ai/__init__.py +117 -0
  52. lollms_client/ttm_bindings/topmediai/__init__.py +96 -0
  53. lollms_client/tts_bindings/bark/__init__.py +7 -10
  54. lollms_client/tts_bindings/lollms/__init__.py +6 -1
  55. lollms_client/tts_bindings/piper_tts/__init__.py +8 -11
  56. lollms_client/tts_bindings/xtts/__init__.py +157 -74
  57. lollms_client/tts_bindings/xtts/server/main.py +241 -280
  58. {lollms_client-1.4.1.dist-info → lollms_client-1.7.10.dist-info}/METADATA +316 -6
  59. lollms_client-1.7.10.dist-info/RECORD +89 -0
  60. lollms_client/ttm_bindings/bark/__init__.py +0 -339
  61. lollms_client-1.4.1.dist-info/RECORD +0 -78
  62. {lollms_client-1.4.1.dist-info → lollms_client-1.7.10.dist-info}/WHEEL +0 -0
  63. {lollms_client-1.4.1.dist-info → lollms_client-1.7.10.dist-info}/licenses/LICENSE +0 -0
  64. {lollms_client-1.4.1.dist-info → lollms_client-1.7.10.dist-info}/top_level.txt +0 -0
@@ -1,843 +1,451 @@
1
- # lollms_client/tti_bindings/diffusers/__init__.py
2
1
  import os
3
- import importlib
4
- from io import BytesIO
5
- from typing import Optional, List, Dict, Any, Union, Tuple
6
- from pathlib import Path
2
+ import sys
7
3
  import base64
8
- import pipmaster as pm
9
- import threading
10
- import queue
11
- from concurrent.futures import Future
12
- import time
13
- import hashlib
14
4
  import requests
15
- from tqdm import tqdm
5
+ import subprocess
6
+ import time
16
7
  import json
17
- import shutil
18
- from lollms_client.lollms_tti_binding import LollmsTTIBinding
19
- from ascii_colors import trace_exception, ASCIIColors
8
+ from io import BytesIO
9
+ from pathlib import Path
10
+ from typing import Optional, List, Dict, Any, Union, Callable
20
11
 
21
- pm.ensure_packages(["torch","torchvision"],index_url="https://download.pytorch.org/whl/cu126")
22
- pm.ensure_packages(["diffusers","pillow","transformers","safetensors","requests","tqdm"])
12
+ # Ensure pipmaster is available.
13
+ try:
14
+ import pipmaster as pm
15
+ except ImportError:
16
+ print("FATAL: pipmaster is not installed. Please install it using: pip install pipmaster")
17
+ sys.exit(1)
23
18
 
19
+ # Ensure filelock is available for process-safe server startup.
24
20
  try:
25
- import torch
26
- from diffusers import (
27
- AutoPipelineForText2Image,
28
- AutoPipelineForImage2Image,
29
- AutoPipelineForInpainting,
30
- DiffusionPipeline,
31
- StableDiffusionPipeline,
32
-
33
- )
34
- from diffusers.utils import load_image
35
- from PIL import Image
36
- DIFFUSERS_AVAILABLE = True
21
+ from filelock import FileLock, Timeout
37
22
  except ImportError:
38
- torch = None
39
- AutoPipelineForText2Image = None
40
- AutoPipelineForImage2Image = None
41
- AutoPipelineForInpainting = None
42
- DiffusionPipeline = None
43
- StableDiffusionPipeline = None
44
- Image = None
45
- load_image = None
46
- DIFFUSERS_AVAILABLE = False
47
-
48
- BindingName = "DiffusersTTIBinding_Impl"
49
-
50
- CIVITAI_MODELS = {
51
- "realistic-vision-v6": {
52
- "display_name": "Realistic Vision V6.0",
53
- "url": "https://civitai.com/api/download/models/501240?type=Model&format=SafeTensor&size=pruned&fp=fp16",
54
- "filename": "realisticVisionV60_v60B1.safetensors",
55
- "description": "Photorealistic SD1.5 checkpoint.",
56
- "owned_by": "civitai"
57
- },
58
- "absolute-reality": {
59
- "display_name": "Absolute Reality",
60
- "url": "https://civitai.com/api/download/models/132760?type=Model&format=SafeTensor&size=pruned&fp=fp16",
61
- "filename": "absolutereality_v181.safetensors",
62
- "description": "General realistic SD1.5.",
63
- "owned_by": "civitai"
64
- },
65
- "dreamshaper-8": {
66
- "display_name": "DreamShaper 8",
67
- "url": "https://civitai.com/api/download/models/128713",
68
- "filename": "dreamshaper_8.safetensors",
69
- "description": "Versatile SD1.5 style model.",
70
- "owned_by": "civitai"
71
- },
72
- "juggernaut-xl": {
73
- "display_name": "Juggernaut XL",
74
- "url": "https://civitai.com/api/download/models/133005",
75
- "filename": "juggernautXL_version6Rundiffusion.safetensors",
76
- "description": "Artistic SDXL.",
77
- "owned_by": "civitai"
78
- },
79
- "lyriel-v1.6": {
80
- "display_name": "Lyriel v1.6",
81
- "url": "https://civitai.com/api/download/models/72396?type=Model&format=SafeTensor&size=full&fp=fp16",
82
- "filename": "lyriel_v16.safetensors",
83
- "description": "Fantasy/stylized SD1.5.",
84
- "owned_by": "civitai"
85
- },
86
- "ui_icons": {
87
- "display_name": "UI Icons",
88
- "url": "https://civitai.com/api/download/models/367044?type=Model&format=SafeTensor&size=full&fp=fp16",
89
- "filename": "uiIcons_v10.safetensors",
90
- "description": "A model for generating UI icons.",
91
- "owned_by": "civitai"
92
- },
93
- "meinamix": {
94
- "display_name": "MeinaMix",
95
- "url": "https://civitai.com/api/download/models/948574?type=Model&format=SafeTensor&size=pruned&fp=fp16",
96
- "filename": "meinamix_meinaV11.safetensors",
97
- "description": "Anime/illustration SD1.5.",
98
- "owned_by": "civitai"
99
- },
100
- "rpg-v5": {
101
- "display_name": "RPG v5",
102
- "url": "https://civitai.com/api/download/models/124626?type=Model&format=SafeTensor&size=pruned&fp=fp16",
103
- "filename": "rpg_v5.safetensors",
104
- "description": "RPG assets SD1.5.",
105
- "owned_by": "civitai"
106
- },
107
- "pixel-art-xl": {
108
- "display_name": "Pixel Art XL",
109
- "url": "https://civitai.com/api/download/models/135931?type=Model&format=SafeTensor",
110
- "filename": "pixelartxl_v11.safetensors",
111
- "description": "Pixel art SDXL.",
112
- "owned_by": "civitai"
113
- },
114
- "lowpoly-world": {
115
- "display_name": "Lowpoly World",
116
- "url": "https://civitai.com/api/download/models/146502?type=Model&format=SafeTensor",
117
- "filename": "LowpolySDXL.safetensors",
118
- "description": "Lowpoly style SD1.5.",
119
- "owned_by": "civitai"
120
- },
121
- "toonyou": {
122
- "display_name": "ToonYou",
123
- "url": "https://civitai.com/api/download/models/125771?type=Model&format=SafeTensor&size=pruned&fp=fp16",
124
- "filename": "toonyou_beta6.safetensors",
125
- "description": "Cartoon/Disney SD1.5.",
126
- "owned_by": "civitai"
127
- },
128
- "papercut": {
129
- "display_name": "Papercut",
130
- "url": "https://civitai.com/api/download/models/133503?type=Model&format=SafeTensor",
131
- "filename": "papercut.safetensors",
132
- "description": "Paper cutout SD1.5.",
133
- "owned_by": "civitai"
134
- },
135
- "fantassifiedIcons": {
136
- "display_name": "Fantassified Icons",
137
- "url": "https://civitai.com/api/download/models/67584?type=Model&format=SafeTensor&size=pruned&fp=fp16",
138
- "filename": "fantassifiedIcons_fantassifiedIconsV20.safetensors",
139
- "description": "Flat, modern Icons.",
140
- "owned_by": "civitai"
141
- },
142
- "game_icon_institute": {
143
- "display_name": "Game icon institute",
144
- "url": "https://civitai.com/api/download/models/158776?type=Model&format=SafeTensor&size=full&fp=fp16",
145
- "filename": "gameIconInstituteV10_v10.safetensors",
146
- "description": "Flat, modern game Icons.",
147
- "owned_by": "civitai"
148
- },
149
- "M4RV3LS_DUNGEONS": {
150
- "display_name": "M4RV3LS & DUNGEONS",
151
- "url": "https://civitai.com/api/download/models/139417?type=Model&format=SafeTensor&size=pruned&fp=fp16",
152
- "filename": "M4RV3LSDUNGEONSNEWV40COMICS_mD40.safetensors",
153
- "description": "comics.",
154
- "owned_by": "civitai"
155
- },
156
- }
157
-
158
- TORCH_DTYPE_MAP_STR_TO_OBJ = {
159
- "float16": getattr(torch, 'float16', 'float16'),
160
- "bfloat16": getattr(torch, 'bfloat16', 'bfloat16'),
161
- "float32": getattr(torch, 'float32', 'float32'),
162
- "auto": "auto"
163
- }
164
- TORCH_DTYPE_MAP_OBJ_TO_STR = {v: k for k, v in TORCH_DTYPE_MAP_STR_TO_OBJ.items()}
165
- if torch:
166
- TORCH_DTYPE_MAP_OBJ_TO_STR[None] = "None"
167
-
168
- SCHEDULER_MAPPING = {
169
- "default": None,
170
- "ddim": "DDIMScheduler",
171
- "ddpm": "DDPMScheduler",
172
- "deis_multistep": "DEISMultistepScheduler",
173
- "dpm_multistep": "DPMSolverMultistepScheduler",
174
- "dpm_multistep_karras": "DPMSolverMultistepScheduler",
175
- "dpm_single": "DPMSolverSinglestepScheduler",
176
- "dpm_adaptive": "DPMSolverPlusPlusScheduler",
177
- "dpm++_2m": "DPMSolverMultistepScheduler",
178
- "dpm++_2m_karras": "DPMSolverMultistepScheduler",
179
- "dpm++_2s_ancestral": "DPMSolverAncestralDiscreteScheduler",
180
- "dpm++_2s_ancestral_karras": "DPMSolverAncestralDiscreteScheduler",
181
- "dpm++_sde": "DPMSolverSDEScheduler",
182
- "dpm++_sde_karras": "DPMSolverSDEScheduler",
183
- "euler_ancestral_discrete": "EulerAncestralDiscreteScheduler",
184
- "euler_discrete": "EulerDiscreteScheduler",
185
- "heun_discrete": "HeunDiscreteScheduler",
186
- "heun_karras": "HeunDiscreteScheduler",
187
- "lms_discrete": "LMSDiscreteScheduler",
188
- "lms_karras": "LMSDiscreteScheduler",
189
- "pndm": "PNDMScheduler",
190
- "unipc_multistep": "UniPCMultistepScheduler",
191
- "dpm++_2m_sde": "DPMSolverMultistepScheduler",
192
- "dpm++_2m_sde_karras": "DPMSolverMultistepScheduler",
193
- "dpm2": "KDPM2DiscreteScheduler",
194
- "dpm2_karras": "KDPM2DiscreteScheduler",
195
- "dpm2_a": "KDPM2AncestralDiscreteScheduler",
196
- "dpm2_a_karras": "KDPM2AncestralDiscreteScheduler",
197
- "euler": "EulerDiscreteScheduler",
198
- "euler_a": "EulerAncestralDiscreteScheduler",
199
- "heun": "HeunDiscreteScheduler",
200
- "lms": "LMSDiscreteScheduler"
201
- }
202
- SCHEDULER_USES_KARRAS_SIGMAS = [
203
- "dpm_multistep_karras","dpm++_2m_karras","dpm++_2s_ancestral_karras",
204
- "dpm++_sde_karras","heun_karras","lms_karras",
205
- "dpm++_2m_sde_karras","dpm2_karras","dpm2_a_karras"
206
- ]
207
-
208
- class ModelManager:
209
- def __init__(self, config: Dict[str, Any], models_path: Path):
210
- self.config = config
211
- self.models_path = models_path
212
- self.pipeline: Optional[DiffusionPipeline] = None
213
- self.current_task: Optional[str] = None
214
- self.ref_count = 0
215
- self.lock = threading.Lock()
216
- self.queue = queue.Queue()
217
- self.is_loaded = False
218
- self.last_used_time = time.time()
219
- self._stop_event = threading.Event()
220
- self.worker_thread = threading.Thread(target=self._generation_worker, daemon=True)
221
- self.worker_thread.start()
222
- self._stop_monitor_event = threading.Event()
223
- self._unload_monitor_thread = None
224
- self._start_unload_monitor()
225
-
226
- def acquire(self):
227
- with self.lock:
228
- self.ref_count += 1
229
- return self
230
-
231
- def release(self):
232
- with self.lock:
233
- self.ref_count -= 1
234
- return self.ref_count
235
-
236
- def stop(self):
237
- self._stop_event.set()
238
- if self._unload_monitor_thread:
239
- self._stop_monitor_event.set()
240
- self._unload_monitor_thread.join(timeout=2)
241
- self.queue.put(None)
242
- self.worker_thread.join(timeout=5)
243
-
244
- def _start_unload_monitor(self):
245
- unload_after = self.config.get("unload_inactive_model_after", 0)
246
- if unload_after > 0 and self._unload_monitor_thread is None:
247
- self._stop_monitor_event.clear()
248
- self._unload_monitor_thread = threading.Thread(target=self._unload_monitor, daemon=True)
249
- self._unload_monitor_thread.start()
250
-
251
- def _unload_monitor(self):
252
- unload_after = self.config.get("unload_inactive_model_after", 0)
253
- if unload_after <= 0:
254
- return
255
- ASCIIColors.info(f"Starting inactivity monitor for '{self.config['model_name']}' (timeout: {unload_after}s).")
256
- while not self._stop_monitor_event.wait(timeout=5.0):
257
- with self.lock:
258
- if not self.is_loaded:
259
- continue
260
- if time.time() - self.last_used_time > unload_after:
261
- ASCIIColors.info(f"Model '{self.config['model_name']}' has been inactive. Unloading.")
262
- self._unload_pipeline()
263
-
264
- def _resolve_model_path(self, model_name: str) -> Union[str, Path]:
265
- path_obj = Path(model_name)
266
- if path_obj.is_absolute() and path_obj.exists():
267
- return model_name
268
- if model_name in CIVITAI_MODELS:
269
- filename = CIVITAI_MODELS[model_name]["filename"]
270
- local_path = self.models_path / filename
271
- if not local_path.exists():
272
- self._download_civitai_model(model_name)
273
- return local_path
274
- local_path = self.models_path / model_name
275
- if local_path.exists():
276
- return local_path
277
- return model_name
278
-
279
- def _download_civitai_model(self, model_key: str):
280
- model_info = CIVITAI_MODELS[model_key]
281
- url = model_info["url"]
282
- filename = model_info["filename"]
283
- dest_path = self.models_path / filename
284
- temp_path = dest_path.with_suffix(".temp")
285
- ASCIIColors.cyan(f"Downloading '{filename}' from Civitai...")
286
- try:
287
- with requests.get(url, stream=True) as r:
288
- r.raise_for_status()
289
- total_size = int(r.headers.get('content-length', 0))
290
- with open(temp_path, 'wb') as f, tqdm(total=total_size, unit='iB', unit_scale=True, desc=f"Downloading {filename}") as bar:
291
- for chunk in r.iter_content(chunk_size=8192):
292
- f.write(chunk)
293
- bar.update(len(chunk))
294
- shutil.move(temp_path, dest_path)
295
- ASCIIColors.green(f"Model '{filename}' downloaded successfully.")
296
- except Exception as e:
297
- if temp_path.exists():
298
- temp_path.unlink()
299
- raise Exception(f"Failed to download model {filename}: {e}") from e
23
+ print("FATAL: The 'filelock' library is required. Please install it by running: pip install filelock")
24
+ sys.exit(1)
300
25
 
301
- def _set_scheduler(self):
302
- if not self.pipeline:
303
- return
304
- scheduler_name_key = self.config["scheduler_name"].lower()
305
- if scheduler_name_key == "default":
26
+ from lollms_client.lollms_tti_binding import LollmsTTIBinding
27
+ from ascii_colors import ASCIIColors
28
+
29
+ BindingName = "DiffusersBinding"
30
+
31
+ class DiffusersBinding(LollmsTTIBinding):
32
+ """
33
+ Client binding for a dedicated, managed Diffusers server.
34
+ This architecture prevents multiple models from being loaded into memory
35
+ in a multi-worker environment, solving OOM errors.
36
+ """
37
+ def __init__(self,
38
+ **kwargs):
39
+ # Prioritize 'model_name' but accept 'model' as an alias from config files.
40
+ if 'model' in kwargs and 'model_name' not in kwargs:
41
+ kwargs['model_name'] = kwargs.pop('model')
42
+ super().__init__(binding_name=BindingName, config=kwargs)
43
+
44
+
45
+
46
+ self.host = kwargs.get("host", "localhost")
47
+ self.port = kwargs.get("port", 9632)
48
+ self.auto_start_server = kwargs.get("auto_start_server", True)
49
+ self.server_process = None
50
+ self.base_url = f"http://{self.host}:{self.port}"
51
+ self.binding_root = Path(__file__).parent
52
+ self.server_dir = self.binding_root / "server"
53
+ self.venv_dir = Path("./venv/tti_diffusers_venv")
54
+ self.models_path = Path(kwargs.get("models_path", "./data/models/diffusers_models")).resolve()
55
+ self.extra_models_path = kwargs.get("extra_models_path")
56
+ self.models_path.mkdir(exist_ok=True, parents=True)
57
+ if self.auto_start_server:
58
+ self.ensure_server_is_running()
59
+
60
+ def is_server_running(self) -> bool:
61
+ """Checks if the server is already running and responsive."""
62
+ try:
63
+ response = requests.get(f"{self.base_url}/status", timeout=4)
64
+ if response.status_code == 200 and response.json().get("status") == "running":
65
+ return True
66
+ except requests.exceptions.RequestException:
67
+ return False
68
+ return False
69
+
70
+
71
+ def ensure_server_is_running(self):
72
+ """
73
+ Ensures the Diffusers server is running. If not, it attempts to start it
74
+ in a process-safe manner using a file lock. This method is designed to
75
+ prevent race conditions in multi-worker environments.
76
+ """
77
+ self.server_dir.mkdir(exist_ok=True)
78
+ # Use a lock file in the binding's server directory for consistency across instances
79
+ lock_path = self.server_dir / "diffusers_server.lock"
80
+ lock = FileLock(lock_path)
81
+
82
+ ASCIIColors.info("Attempting to start or connect to the Diffusers server...")
83
+
84
+ # First, perform a quick check without the lock to avoid unnecessary waiting.
85
+ if self.is_server_running():
86
+ ASCIIColors.green("Diffusers Server is already running and responsive.")
306
87
  return
307
- scheduler_class_name = SCHEDULER_MAPPING.get(scheduler_name_key)
308
- if scheduler_class_name:
88
+
89
+ try:
90
+ # Try to acquire the lock with a timeout. If another process is starting
91
+ # the server, this will wait until it's finished.
92
+ with lock.acquire(timeout=3):
93
+ # After acquiring the lock, we MUST re-check if the server is running.
94
+ # Another process might have started it and released the lock while we were waiting.
95
+ if not self.is_server_running():
96
+ ASCIIColors.yellow("Lock acquired. Starting dedicated Diffusers server...")
97
+ self.start_server()
98
+ # The process that starts the server is responsible for waiting for it to be ready
99
+ # BEFORE releasing the lock. This is the key to preventing race conditions.
100
+ self._wait_for_server()
101
+ else:
102
+ ASCIIColors.green("Server was started by another process while we waited. Connected successfully.")
103
+ except Timeout:
104
+ # This happens if the process holding the lock takes more than 60 seconds to start the server.
105
+ # We don't try to start another one. We just wait for the existing one to be ready.
106
+ ASCIIColors.yellow("Could not acquire lock, another process is taking a long time to start the server. Waiting...")
107
+ self._wait_for_server(timeout=60) # Give it a longer timeout here just in case.
108
+
109
+ # A final verification to ensure we are connected.
110
+ if not self.is_server_running():
111
+ raise RuntimeError("Failed to start or connect to the Diffusers server after all attempts.")
112
+
113
+ def install_server_dependencies(self):
114
+ """
115
+ Installs the server's dependencies into a dedicated virtual environment
116
+ using pipmaster, which handles complex packages like PyTorch.
117
+ """
118
+ ASCIIColors.info(f"Setting up virtual environment in: {self.venv_dir}")
119
+ pm_v = pm.PackageManager(venv_path=str(self.venv_dir))
120
+
121
+ # --- PyTorch Installation ---
122
+ ASCIIColors.info(f"Installing server dependencies")
123
+ pm_v.ensure_packages([
124
+ "requests", "uvicorn", "fastapi", "python-multipart", "filelock"
125
+ ])
126
+ ASCIIColors.info(f"Installing parisneo libraries")
127
+ pm_v.ensure_packages([
128
+ "ascii_colors","pipmaster"
129
+ ])
130
+ ASCIIColors.info(f"Installing misc libraries (numpy, tqdm...)")
131
+ pm_v.ensure_packages([
132
+ "tqdm", "numpy"
133
+ ])
134
+ ASCIIColors.info(f"Installing Pillow")
135
+ pm_v.ensure_packages([
136
+ "pillow"
137
+ ])
138
+
139
+ ASCIIColors.info(f"Installing pytorch")
140
+ torch_index_url = None
141
+ if sys.platform == "win32":
309
142
  try:
310
- SchedulerClass = getattr(importlib.import_module("diffusers.schedulers"), scheduler_class_name)
311
- scheduler_config = self.pipeline.scheduler.config
312
- scheduler_config["use_karras_sigmas"] = scheduler_name_key in SCHEDULER_USES_KARRAS_SIGMAS
313
- self.pipeline.scheduler = SchedulerClass.from_config(scheduler_config)
314
- ASCIIColors.info(f"Switched scheduler to {scheduler_class_name}")
315
- except Exception as e:
316
- ASCIIColors.warning(f"Could not switch scheduler to {scheduler_name_key}: {e}. Using current default.")
317
-
318
- def _load_pipeline_for_task(self, task: str):
319
- if self.pipeline and self.current_task == task:
320
- return
321
- if self.pipeline:
322
- self._unload_pipeline()
323
- model_name = self.config.get("model_name", "")
324
- if not model_name:
325
- raise ValueError("Model name cannot be empty for loading.")
326
- ASCIIColors.info(f"Loading Diffusers model: {model_name} for task: {task}")
327
- model_path = self._resolve_model_path(model_name)
328
- torch_dtype = TORCH_DTYPE_MAP_STR_TO_OBJ.get(self.config["torch_dtype_str"].lower())
143
+ # Use nvidia-smi to detect CUDA
144
+ result = subprocess.run(["nvidia-smi"], capture_output=True, text=True, check=True)
145
+ ASCIIColors.green("NVIDIA GPU detected. Installing CUDA-enabled PyTorch.")
146
+ # Using a common and stable CUDA version. Adjust if needed.
147
+ torch_index_url = "https://download.pytorch.org/whl/cu128"
148
+ except (FileNotFoundError, subprocess.CalledProcessError):
149
+ ASCIIColors.yellow("`nvidia-smi` not found or failed. Installing standard PyTorch. If you have an NVIDIA GPU, please ensure drivers are installed and in PATH.")
150
+
151
+ # Base packages including torch. pm.ensure_packages handles verbose output.
152
+ pm_v.ensure_packages(["torch", "torchvision"], index_url=torch_index_url)
153
+
154
+ # Standard dependencies
155
+ ASCIIColors.info(f"Installing transformers dependencies")
156
+ pm_v.ensure_packages([
157
+ "transformers", "safetensors", "accelerate"
158
+ ])
159
+ ASCIIColors.info(f"[Optional] Installing xformers")
329
160
  try:
330
- load_args = {}
331
- if self.config.get("hf_cache_path"):
332
- load_args["cache_dir"] = str(self.config["hf_cache_path"])
333
- if str(model_path).endswith(".safetensors"):
334
- if task == "text2image":
161
+ pm_v.ensure_packages([
162
+ "xformers"
163
+ ])
164
+ except:
165
+ pass
166
+ # Git-based diffusers to get the latest version
167
+ ASCIIColors.info(f"Installing diffusers library from github")
168
+ pm_v.ensure_packages([
169
+ {
170
+ "name": "diffusers",
171
+ "vcs": "git+https://github.com/huggingface/diffusers.git",
172
+ "condition": ">=0.35.1"
173
+ }
174
+ ])
175
+
176
+ ASCIIColors.green("Server dependencies are satisfied.")
177
+
178
+ def start_server(self):
179
+ """
180
+ Installs dependencies and launches the FastAPI server as a background subprocess.
181
+ This method should only be called from within a file lock.
182
+ """
183
+ server_script = self.server_dir / "main.py"
184
+ if not server_script.exists():
185
+ # Fallback for old structure
186
+ server_script = self.binding_root / "server.py"
187
+ if not server_script.exists():
188
+ raise FileNotFoundError(f"Server script not found at {server_script}. Make sure it's in a 'server' subdirectory.")
189
+ if not self.venv_dir.exists():
190
+ self.install_server_dependencies()
191
+
192
+ if sys.platform == "win32":
193
+ python_executable = self.venv_dir / "Scripts" / "python.exe"
194
+ else:
195
+ python_executable = self.venv_dir / "bin" / "python"
196
+
197
+ command = [
198
+ str(python_executable),
199
+ str(server_script),
200
+ "--host", self.host,
201
+ "--port", str(self.port),
202
+ "--models-path", str(self.models_path.resolve()) # Pass models_path to server
203
+ ]
204
+
205
+ if self.extra_models_path:
206
+ resolved_extra_path = Path(self.extra_models_path).resolve()
207
+ command.extend(["--extra-models-path", str(resolved_extra_path)])
208
+
209
+ # Use DETACHED_PROCESS on Windows to allow the server to run independently of the parent process.
210
+ # On Linux/macOS, the process will be daemonized enough to not be killed with the worker.
211
+ creationflags = subprocess.DETACHED_PROCESS if sys.platform == "win32" else 0
212
+
213
+ self.server_process = subprocess.Popen(command, creationflags=creationflags)
214
+ ASCIIColors.info("Diffusers server process launched in the background.")
215
+
216
+ def _wait_for_server(self, timeout=30):
217
+ """Waits for the server to become responsive."""
218
+ ASCIIColors.info("Waiting for Diffusers server to become available...")
219
+ start_time = time.time()
220
+ while time.time() - start_time < timeout:
221
+ if self.is_server_running():
222
+ ASCIIColors.green("Diffusers Server is up and running.")
223
+ # Set initial settings from the binding's config, but only if a model is specified.
224
+ if self.config.get("model_name"):
335
225
  try:
336
- self.pipeline = AutoPipelineForText2Image.from_single_file(model_path, torch_dtype=torch_dtype, cache_dir=load_args.get("cache_dir"))
337
- except AttributeError:
338
- self.pipeline = StableDiffusionPipeline.from_single_file(model_path, torch_dtype=torch_dtype, cache_dir=load_args.get("cache_dir"))
339
- elif task == "image2image":
340
- self.pipeline = AutoPipelineForImage2Image.from_single_file(model_path, torch_dtype=torch_dtype, cache_dir=load_args.get("cache_dir"))
341
- elif task == "inpainting":
342
- self.pipeline = AutoPipelineForInpainting.from_single_file(model_path, torch_dtype=torch_dtype, cache_dir=load_args.get("cache_dir"))
343
- else:
344
- common_args = {
345
- "torch_dtype": torch_dtype,
346
- "use_safetensors": self.config["use_safetensors"],
347
- "token": self.config["hf_token"],
348
- "local_files_only": self.config["local_files_only"]
349
- }
350
- if self.config["hf_variant"]:
351
- common_args["variant"] = self.config["hf_variant"]
352
- if not self.config["safety_checker_on"]:
353
- common_args["safety_checker"] = None
354
- if self.config.get("hf_cache_path"):
355
- common_args["cache_dir"] = str(self.config["hf_cache_path"])
356
- if task == "text2image":
357
- self.pipeline = AutoPipelineForText2Image.from_pretrained(model_path, **common_args)
358
- elif task == "image2image":
359
- self.pipeline = AutoPipelineForImage2Image.from_pretrained(model_path, **common_args)
360
- elif task == "inpainting":
361
- self.pipeline = AutoPipelineForInpainting.from_pretrained(model_path, **common_args)
362
- except Exception as e:
363
- error_str = str(e).lower()
364
- if "401" in error_str or "gated" in error_str or "authorization" in error_str:
365
- msg = (
366
- f"AUTHENTICATION FAILED for model '{model_name}'. "
367
- "Please ensure you accepted the model license and provided a valid HF token."
368
- )
369
- raise RuntimeError(msg) from e
370
- raise e
371
- self._set_scheduler()
372
- self.pipeline.to(self.config["device"])
373
- if self.config["enable_xformers"]:
374
- try:
375
- self.pipeline.enable_xformers_memory_efficient_attention()
376
- except Exception as e:
377
- ASCIIColors.warning(f"Could not enable xFormers: {e}.")
378
- if self.config["enable_cpu_offload"] and self.config["device"] != "cpu":
379
- self.pipeline.enable_model_cpu_offload()
380
- elif self.config["enable_sequential_cpu_offload"] and self.config["device"] != "cpu":
381
- self.pipeline.enable_sequential_cpu_offload()
382
- self.is_loaded = True
383
- self.current_task = task
384
- self.last_used_time = time.time()
385
- ASCIIColors.green(f"Model '{model_name}' loaded successfully on '{self.config['device']}' for task '{task}'.")
386
-
387
- def _unload_pipeline(self):
388
- if self.pipeline:
389
- model_name = self.config.get('model_name', 'Unknown')
390
- del self.pipeline
391
- self.pipeline = None
392
- if torch and torch.cuda.is_available():
393
- torch.cuda.empty_cache()
394
- self.is_loaded = False
395
- self.current_task = None
396
- ASCIIColors.info(f"Model '{model_name}' unloaded and VRAM cleared.")
397
-
398
- def _generation_worker(self):
399
- while not self._stop_event.is_set():
400
- try:
401
- job = self.queue.get(timeout=1)
402
- if job is None:
403
- break
404
- future, task, pipeline_args = job
226
+ ASCIIColors.info(f"Syncing initial client settings to server (model: {self.config['model_name']})...")
227
+ self.set_settings(self.config)
228
+ except Exception as e:
229
+ ASCIIColors.warning(f"Could not sync initial settings to server: {e}")
230
+ else:
231
+ ASCIIColors.warning("Client has no model_name configured, skipping initial settings sync.")
232
+ return
233
+ time.sleep(2)
234
+ raise RuntimeError("Failed to connect to the Diffusers server within the specified timeout.")
235
+
236
+ def _post_json_request(self, endpoint: str, data: Optional[dict] = None) -> requests.Response:
237
+ """Helper to make POST requests with a JSON body."""
238
+ try:
239
+ url = f"{self.base_url}{endpoint}"
240
+ response = requests.post(url, json=data, timeout=3600) # Long timeout for generation
241
+ response.raise_for_status()
242
+ return response
243
+ except requests.exceptions.RequestException as e:
244
+ ASCIIColors.error(f"Failed to communicate with Diffusers server at {url}.")
245
+ ASCIIColors.error(f"Error details: {e}")
246
+ if hasattr(e, 'response') and e.response:
405
247
  try:
406
- with self.lock:
407
- self.last_used_time = time.time()
408
- if not self.is_loaded or self.current_task != task:
409
- self._load_pipeline_for_task(task)
410
- with torch.no_grad():
411
- output = self.pipeline(**pipeline_args)
412
- pil = output.images[0]
413
- buf = BytesIO()
414
- pil.save(buf, format="PNG")
415
- future.set_result(buf.getvalue())
416
- except Exception as e:
417
- trace_exception(e)
418
- future.set_exception(e)
419
- finally:
420
- self.queue.task_done()
421
- except queue.Empty:
422
- continue
423
-
424
- class PipelineRegistry:
425
- _instance = None
426
- _lock = threading.Lock()
427
- def __new__(cls, *args, **kwargs):
428
- with cls._lock:
429
- if cls._instance is None:
430
- cls._instance = super().__new__(cls)
431
- cls._instance._managers = {}
432
- cls._instance._registry_lock = threading.Lock()
433
- return cls._instance
434
- @staticmethod
435
- def _get_critical_keys():
436
- return [
437
- "model_name","device","torch_dtype_str","use_safetensors",
438
- "safety_checker_on","hf_variant","enable_cpu_offload",
439
- "enable_sequential_cpu_offload","enable_xformers",
440
- "local_files_only","hf_cache_path","unload_inactive_model_after"
441
- ]
442
- def _get_config_key(self, config: Dict[str, Any]) -> str:
443
- key_data = tuple(sorted((k, config.get(k)) for k in self._get_critical_keys()))
444
- return hashlib.sha256(str(key_data).encode('utf-8')).hexdigest()
445
- def get_manager(self, config: Dict[str, Any], models_path: Path) -> ModelManager:
446
- key = self._get_config_key(config)
447
- with self._registry_lock:
448
- if key not in self._managers:
449
- self._managers[key] = ModelManager(config.copy(), models_path)
450
- return self._managers[key].acquire()
451
- def release_manager(self, config: Dict[str, Any]):
452
- key = self._get_config_key(config)
453
- with self._registry_lock:
454
- if key in self._managers:
455
- manager = self._managers[key]
456
- ref_count = manager.release()
457
- if ref_count == 0:
458
- ASCIIColors.info(f"Reference count for model '{config.get('model_name')}' is zero. Cleaning up manager.")
459
- manager.stop()
460
- with manager.lock:
461
- manager._unload_pipeline()
462
- del self._managers[key]
463
- def get_active_managers(self) -> List[ModelManager]:
464
- with self._registry_lock:
465
- return [m for m in self._managers.values() if m.is_loaded]
466
-
467
- class DiffusersTTIBinding_Impl(LollmsTTIBinding):
468
- DEFAULT_CONFIG = {
469
- "model_name": "",
470
- "device": "auto",
471
- "torch_dtype_str": "auto",
472
- "use_safetensors": True,
473
- "scheduler_name": "default",
474
- "safety_checker_on": True,
475
- "num_inference_steps": 25,
476
- "guidance_scale": 7.0,
477
- "width": 512,
478
- "height": 512,
479
- "seed": -1,
480
- "enable_cpu_offload": False,
481
- "enable_sequential_cpu_offload": False,
482
- "enable_xformers": False,
483
- "hf_variant": None,
484
- "hf_token": None,
485
- "hf_cache_path": None,
486
- "local_files_only": False,
487
- "unload_inactive_model_after": 0
488
- }
489
- HF_DEFAULT_MODELS = [
490
- {"family": "SDXL", "model_name": "stabilityai/stable-diffusion-xl-base-1.0", "display_name": "SDXL Base 1.0", "desc": "Text2Image 1024 native."},
491
- {"family": "SDXL", "model_name": "stabilityai/stable-diffusion-xl-refiner-1.0", "display_name": "SDXL Refiner 1.0", "desc": "Refiner for SDXL."},
492
- {"family": "SD 1.x", "model_name": "runwayml/stable-diffusion-v1-5", "display_name": "Stable Diffusion 1.5", "desc": "Classic SD1.5."},
493
- {"family": "SD 2.x", "model_name": "stabilityai/stable-diffusion-2-1", "display_name": "Stable Diffusion 2.1", "desc": "SD2.1 base."},
494
- {"family": "SD3", "model_name": "stabilityai/stable-diffusion-3-medium-diffusers", "display_name": "Stable Diffusion 3 Medium", "desc": "SD3 medium."},
495
- {"family": "Qwen", "model_name": "Qwen/Qwen-Image", "display_name": "Qwen Image Edit", "desc": "Dedicated image generation."},
496
- {"family": "Specialized", "model_name": "playgroundai/playground-v2.5-1024px-aesthetic", "display_name": "Playground v2.5", "desc": "High aesthetic 1024."},
497
- {"family": "Editors", "model_name": "Qwen/Qwen-Image-Edit", "display_name": "Qwen Image Edit", "desc": "Dedicated image editing."}
498
- ]
499
-
500
- def __init__(self, **kwargs):
501
- super().__init__(binding_name=BindingName)
502
- self.manager: Optional[ModelManager] = None
503
- if not DIFFUSERS_AVAILABLE:
504
- raise ImportError("Diffusers not available. Please install required packages.")
505
- self.config = self.DEFAULT_CONFIG.copy()
506
- self.config.update(kwargs)
507
- self.model_name = self.config.get("model_name", "")
508
-
509
- models_path_str = kwargs.get("models_path", str(Path(__file__).parent / "models"))
510
- self.models_path = Path(models_path_str)
511
- self.models_path.mkdir(parents=True, exist_ok=True)
512
- self.registry = PipelineRegistry()
513
- self._resolve_device_and_dtype()
514
- if self.model_name:
515
- self._acquire_manager()
248
+ ASCIIColors.error(f"Server response: {e.response.json().get('detail', e.response.text)}")
249
+ except json.JSONDecodeError:
250
+ ASCIIColors.error(f"Server raw response: {e.response.text}")
251
+ raise RuntimeError("Communication with the Diffusers server failed.") from e
516
252
 
517
- def ps(self) -> List[dict]:
518
- if not self.registry:
519
- return []
253
+ def _post_multipart_request(self, endpoint: str, data: Optional[dict] = None, files: Optional[list] = None) -> requests.Response:
254
+ """Helper to make multipart/form-data POST requests for file uploads."""
520
255
  try:
521
- active = self.registry.get_active_managers()
522
- out = []
523
- for m in active:
524
- with m.lock:
525
- cfg = m.config
526
- pipe = m.pipeline
527
- vram_usage_bytes = 0
528
- if torch.cuda.is_available() and cfg.get("device") == "cuda" and pipe:
529
- for comp in pipe.components.values():
530
- if hasattr(comp, 'parameters'):
531
- mem_params = sum(p.nelement() * p.element_size() for p in comp.parameters())
532
- mem_bufs = sum(b.nelement() * b.element_size() for b in comp.buffers())
533
- vram_usage_bytes += (mem_params + mem_bufs)
534
- out.append({
535
- "model_name": cfg.get("model_name"),
536
- "vram_size": vram_usage_bytes,
537
- "device": cfg.get("device"),
538
- "torch_dtype": str(pipe.dtype) if pipe else cfg.get("torch_dtype_str"),
539
- "pipeline_type": pipe.__class__.__name__ if pipe else "N/A",
540
- "scheduler_class": pipe.scheduler.__class__.__name__ if pipe and hasattr(pipe, 'scheduler') else "N/A",
541
- "status": "Active" if m.is_loaded else "Idle",
542
- "queue_size": m.queue.qsize(),
543
- "task": m.current_task or "N/A"
544
- })
545
- return out
546
- except Exception as e:
547
- ASCIIColors.error(f"Failed to list running models: {e}")
548
- return []
549
-
550
- def _acquire_manager(self):
551
- if self.manager:
552
- self.registry.release_manager(self.manager.config)
553
- self.manager = self.registry.get_manager(self.config, self.models_path)
554
- ASCIIColors.info(f"Binding instance acquired manager for '{self.config['model_name']}'.")
555
-
556
- def _resolve_device_and_dtype(self):
557
- if self.config["device"].lower() == "auto":
558
- self.config["device"] = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
559
- if self.config["torch_dtype_str"].lower() == "auto":
560
- self.config["torch_dtype_str"] = "float16" if self.config["device"] != "cpu" else "float32"
561
-
562
- def _decode_image_input(self, item: str) -> Image.Image:
563
- s = item.strip()
564
- if s.startswith("data:image/") and ";base64," in s:
565
- b64 = s.split(";base64,")[-1]
566
- raw = base64.b64decode(b64)
567
- return Image.open(BytesIO(raw)).convert("RGB")
568
- if re_b64 := (s[:30].replace("\n","")):
569
- try:
570
- raw = base64.b64decode(s, validate=True)
571
- return Image.open(BytesIO(raw)).convert("RGB")
572
- except Exception:
573
- pass
256
+ url = f"{self.base_url}{endpoint}"
257
+ response = requests.post(url, data=data, files=files, timeout=3600)
258
+ response.raise_for_status()
259
+ return response
260
+ except requests.exceptions.RequestException as e:
261
+ # (Error handling is the same as above)
262
+ ASCIIColors.error(f"Failed to communicate with Diffusers server at {url}.")
263
+ ASCIIColors.error(f"Error details: {e}")
264
+ if hasattr(e, 'response') and e.response:
265
+ try:
266
+ ASCIIColors.error(f"Server response: {e.response.json().get('detail', e.response.text)}")
267
+ except json.JSONDecodeError:
268
+ ASCIIColors.error(f"Server raw response: {e.response.text}")
269
+ raise RuntimeError("Communication with the Diffusers server failed.") from e
270
+
271
+ def _get_request(self, endpoint: str, params: Optional[dict] = None) -> requests.Response:
272
+ """Helper to make GET requests to the server."""
574
273
  try:
575
- return load_image(s).convert("RGB")
576
- except Exception:
577
- return Image.open(s).convert("RGB")
578
-
579
- def _prepare_seed(self, kwargs: Dict[str, Any]) -> Optional[torch.Generator]:
580
- seed = kwargs.pop("seed", self.config["seed"])
581
- if seed == -1:
582
- return None
583
- return torch.Generator(device=self.config["device"]).manual_seed(seed)
584
-
585
- def list_safetensor_models(self) -> List[str]:
586
- if not self.models_path.exists():
587
- return []
588
- return sorted([f.name for f in self.models_path.iterdir() if f.is_file() and f.suffix == ".safetensors"])
589
-
590
- def listModels(self) -> list:
591
- civitai_list = [
592
- {'model_name': key, 'display_name': info['display_name'], 'description': info['description'], 'owned_by': info['owned_by']}
593
- for key, info in CIVITAI_MODELS.items()
594
- ]
595
- hf_list = [
596
- {'model_name': m["model_name"], 'display_name': m["display_name"], 'description': m["desc"], 'owned_by': 'HuggingFace', 'family': m["family"]}
597
- for m in self.HF_DEFAULT_MODELS
598
- ]
599
- custom_local = []
600
- civitai_filenames = {info['filename'] for info in CIVITAI_MODELS.values()}
601
- for filename in self.list_safetensor_models():
602
- if filename not in civitai_filenames:
603
- custom_local.append({'model_name': filename, 'display_name': filename, 'description': 'Local safetensors file.', 'owned_by': 'local_user'})
604
- return hf_list + civitai_list + custom_local
605
-
606
- def load_model(self):
607
- ASCIIColors.info("load_model() called. Loading is automatic on first use.")
608
- if self.model_name and not self.manager:
609
- self._acquire_manager()
274
+ url = f"{self.base_url}{endpoint}"
275
+ response = requests.get(url, params=params, timeout=60)
276
+ response.raise_for_status()
277
+ return response
278
+ except requests.exceptions.RequestException as e:
279
+ ASCIIColors.error(f"Failed to communicate with Diffusers server at {url}.")
280
+ raise RuntimeError("Communication with the Diffusers server failed.") from e
610
281
 
611
282
  def unload_model(self):
612
- if self.manager:
613
- ASCIIColors.info(f"Binding instance releasing manager for '{self.manager.config['model_name']}'.")
614
- self.registry.release_manager(self.manager.config)
615
- self.manager = None
616
-
617
- def generate_image(self, prompt: str, negative_prompt: str = "", width: int|None = None, height: int|None = None, **kwargs) -> bytes:
618
- if not self.model_name:
619
- raise RuntimeError("No model_name configured. Please select a model in settings.")
620
- if not self.manager:
621
- self._acquire_manager()
622
- generator = self._prepare_seed(kwargs)
623
- pipeline_args = {
624
- "prompt": prompt,
625
- "negative_prompt": negative_prompt or self.config.get("negative_prompt", ""),
626
- "width": width if width is not None else self.config.get("width", 512),
627
- "height": height if height is not None else self.config.get("height", 512),
628
- "num_inference_steps": kwargs.pop("num_inference_steps", self.config.get("num_inference_steps",25)),
629
- "guidance_scale": kwargs.pop("guidance_scale", self.config.get("guidance_scale",6.5)),
630
- "generator": generator
631
- }
632
- pipeline_args.update(kwargs)
633
- future = Future()
634
- self.manager.queue.put((future, "text2image", pipeline_args))
635
- ASCIIColors.info(f"Job (t2i) '{prompt[:50]}...' queued.")
636
- try:
637
- return future.result()
638
- except Exception as e:
639
- raise Exception(f"Image generation failed: {e}") from e
640
-
641
- def _encode_image_to_latents(self, pil: Image.Image, width: int, height: int) -> Tuple[torch.Tensor, Tuple[int,int]]:
642
- pil = pil.convert("RGB").resize((width, height))
643
- with self.manager.lock:
644
- self.manager._load_pipeline_for_task("text2image")
645
- vae = self.manager.pipeline.vae
646
- img = torch.from_numpy(torch.ByteTensor(bytearray(pil.tobytes())).numpy()).float() # not efficient but avoids np dep
647
- img = img.view(pil.height, pil.width, 3).permute(2,0,1).unsqueeze(0) / 255.0
648
- img = (img * 2.0) - 1.0
649
- img = img.to(self.config["device"], dtype=getattr(torch, self.config["torch_dtype_str"]))
650
- with torch.no_grad():
651
- posterior = vae.encode(img)
652
- latents = posterior.latent_dist.sample()
653
- sf = getattr(vae.config, "scaling_factor", 0.18215)
654
- latents = latents * sf
655
- return latents, (pil.width, pil.height)
656
-
657
- def edit_image(self,
658
- images: Union[str, List[str]],
659
- prompt: str,
660
- negative_prompt: Optional[str] = "",
661
- mask: Optional[str] = None,
662
- width: Optional[int] = None,
663
- height: Optional[int] = None,
664
- **kwargs) -> bytes:
665
- if not self.model_name:
666
- raise RuntimeError("No model_name configured. Please select a model in settings.")
667
- if not self.manager:
668
- self._acquire_manager()
669
- imgs = [images] if isinstance(images, str) else list(images)
670
- pil_images = [self._decode_image_input(s) for s in imgs]
671
- out_w = width if width is not None else self.config["width"]
672
- out_h = height if height is not None else self.config["height"]
673
- generator = self._prepare_seed(kwargs)
674
- steps = kwargs.pop("num_inference_steps", self.config["num_inference_steps"])
675
- guidance = kwargs.pop("guidance_scale", self.config["guidance_scale"])
676
- if mask is not None and len(pil_images) == 1:
677
- try:
678
- mask_img = self._decode_image_input(mask).convert("L")
679
- except Exception as e:
680
- raise ValueError(f"Failed to decode mask image: {e}") from e
681
- pipeline_args = {
682
- "image": pil_images[0],
683
- "mask_image": mask_img,
684
- "prompt": prompt,
685
- "negative_prompt": negative_prompt or None,
686
- "width": out_w,
687
- "height": out_h,
688
- "num_inference_steps": steps,
689
- "guidance_scale": guidance,
690
- "generator": generator
691
- }
692
- pipeline_args.update(kwargs)
693
- future = Future()
694
- self.manager.queue.put((future, "inpainting", pipeline_args))
695
- ASCIIColors.info("Job (inpaint) queued.")
696
- return future.result()
283
+ ASCIIColors.info("Requesting server to unload the current model...")
697
284
  try:
698
- pipeline_args = {
699
- "image": pil_images if len(pil_images) > 1 else pil_images[0],
700
- "prompt": prompt,
701
- "negative_prompt": negative_prompt or None,
702
- "strength": kwargs.pop("strength", 0.6),
703
- "width": out_w,
704
- "height": out_h,
705
- "num_inference_steps": steps,
706
- "guidance_scale": guidance,
707
- "generator": generator
708
- }
709
- pipeline_args.update(kwargs)
710
- future = Future()
711
- self.manager.queue.put((future, "image2image", pipeline_args))
712
- ASCIIColors.info("Job (i2i) queued.")
713
- return future.result()
714
- except Exception:
715
- pass
716
- try:
717
- base = pil_images[0]
718
- latents, _ = self._encode_image_to_latents(base, out_w, out_h)
719
- pipeline_args = {
720
- "prompt": prompt,
721
- "negative_prompt": negative_prompt or None,
722
- "latents": latents,
723
- "num_inference_steps": steps,
724
- "guidance_scale": guidance,
725
- "generator": generator,
726
- "width": out_w,
727
- "height": out_h
728
- }
729
- pipeline_args.update(kwargs)
730
- future = Future()
731
- self.manager.queue.put((future, "text2image", pipeline_args))
732
- ASCIIColors.info("Job (t2i with init latents) queued.")
733
- return future.result()
285
+ self._post_json_request("/unload_model")
734
286
  except Exception as e:
735
- raise Exception(f"Image edit failed: {e}") from e
287
+ ASCIIColors.warning(f"Could not send unload request to server: {e}")
288
+ pass
289
+
290
+ def generate_image(self, prompt: str, negative_prompt: str = "", **kwargs) -> bytes:
291
+ params = kwargs.copy()
292
+ if "model_name" not in params and self.config.get("model_name"):
293
+ params["model_name"] = self.config["model_name"]
294
+
295
+ response = self._post_json_request("/generate_image", data={
296
+ "prompt": prompt,
297
+ "negative_prompt": negative_prompt,
298
+ "params": params
299
+ })
300
+ return response.content
301
+
302
+ def edit_image(self, images: Union[str, List[str], "Image.Image", List["Image.Image"]], prompt: str, **kwargs) -> bytes:
303
+ images_b64 = []
304
+ if not isinstance(images, list):
305
+ images = [images]
306
+
307
+
308
+ for img in images:
309
+ # Case 1: Input is a PIL Image object
310
+ if hasattr(img, 'save'):
311
+ buffer = BytesIO()
312
+ img.save(buffer, format="PNG")
313
+ b64_string = base64.b64encode(buffer.getvalue()).decode('utf-8')
314
+ images_b64.append(b64_string)
315
+
316
+ # Case 2: Input is a string (could be path or already base64)
317
+ elif isinstance(img, str):
318
+ try:
319
+ b64_string = img.split(";base64,")[1] if ";base64," in img else img
320
+ base64.b64decode(b64_string) # Validate
321
+ images_b64.append(b64_string)
322
+ except Exception:
323
+ ASCIIColors.warning(f"Warning: A string input was not a valid file path or base64. Skipping.")
324
+ else:
325
+ raise ValueError(f"Unsupported image type in edit_image: {type(img)}")
326
+ if not images_b64:
327
+ raise ValueError("No valid images were provided to the edit_image function.")
328
+
329
+ params = kwargs.copy()
330
+ if "model_name" not in params and self.config.get("model_name"):
331
+ params["model_name"] = self.config["model_name"]
332
+
333
+ # Translate "mask" to "mask_image" for server compatibility
334
+ if "mask" in params and params["mask"]:
335
+ params["mask_image"] = params.pop("mask")
336
+
337
+ json_payload = {
338
+ "prompt": prompt,
339
+ "images_b64": images_b64,
340
+ "params": params
341
+ }
342
+ response = self._post_json_request("/edit_image", data=json_payload)
343
+ return response.content
344
+
345
+ def list_models(self) -> List[Dict[str, Any]]:
346
+ return self._get_request("/list_models").json()
736
347
 
737
348
  def list_local_models(self) -> List[str]:
738
- if not self.models_path.exists():
739
- return []
740
- folders = [
741
- d.name for d in self.models_path.iterdir()
742
- if d.is_dir() and ((d / "model_index.json").exists() or (d / "unet" / "config.json").exists())
743
- ]
744
- safetensors = self.list_safetensor_models()
745
- return sorted(folders + safetensors)
349
+ return self._get_request("/list_local_models").json()
746
350
 
747
351
  def list_available_models(self) -> List[str]:
748
- discoverable = [m['model_name'] for m in self.listModels()]
749
- local_models = self.list_local_models()
750
- return sorted(list(set(local_models + discoverable)))
352
+ return self._get_request("/list_available_models").json()
751
353
 
752
354
  def list_services(self, **kwargs) -> List[Dict[str, str]]:
753
- models = self.list_available_models()
754
- local_models = self.list_local_models()
755
- if not models:
756
- return [{"name": "diffusers_no_models", "caption": "No models found", "help": f"Place models in '{self.models_path.resolve()}'."}]
757
- services = []
758
- for m in models:
759
- help_text = "Hugging Face model ID"
760
- if m in local_models:
761
- help_text = f"Local model from: {self.models_path.resolve()}"
762
- elif m in CIVITAI_MODELS:
763
- help_text = f"Civitai model (downloads as {CIVITAI_MODELS[m]['filename']})"
764
- services.append({"name": m, "caption": f"Diffusers: {m}", "help": help_text})
765
- return services
355
+ return self._get_request("/list_models").json()
766
356
 
767
357
  def get_settings(self, **kwargs) -> List[Dict[str, Any]]:
768
- available_models = self.list_available_models()
769
- return [
770
- {"name": "model_name", "type": "str", "value": self.model_name, "description": "Local, Civitai, or Hugging Face model.", "options": available_models},
771
- {"name": "unload_inactive_model_after", "type": "int", "value": self.config["unload_inactive_model_after"], "description": "Unload model after X seconds of inactivity (0 to disable)."},
772
- {"name": "device", "type": "str", "value": self.config["device"], "description": f"Inference device. Resolved: {self.config['device']}", "options": ["auto","cuda","mps","cpu"]},
773
- {"name": "torch_dtype_str", "type": "str", "value": self.config["torch_dtype_str"], "description": f"Torch dtype. Resolved: {self.config['torch_dtype_str']}", "options": ["auto","float16","bfloat16","float32"]},
774
- {"name": "hf_variant", "type": "str", "value": self.config["hf_variant"], "description": "HF model variant (e.g., 'fp16')."},
775
- {"name": "use_safetensors", "type": "bool", "value": self.config["use_safetensors"], "description": "Prefer .safetensors when loading from Hugging Face."},
776
- {"name": "scheduler_name", "type": "str", "value": self.config["scheduler_name"], "description": "Scheduler for diffusion.", "options": list(SCHEDULER_MAPPING.keys())},
777
- {"name": "safety_checker_on", "type": "bool", "value": self.config["safety_checker_on"], "description": "Enable the safety checker."},
778
- {"name": "enable_cpu_offload", "type": "bool", "value": self.config["enable_cpu_offload"], "description": "Enable model CPU offload (saves VRAM, slower)."},
779
- {"name": "enable_sequential_cpu_offload", "type": "bool", "value": self.config["enable_sequential_cpu_offload"], "description": "Enable sequential CPU offload."},
780
- {"name": "enable_xformers", "type": "bool", "value": self.config["enable_xformers"], "description": "Enable xFormers memory efficient attention."},
781
- {"name": "width", "type": "int", "value": self.config["width"], "description": "Default image width."},
782
- {"name": "height", "type": "int", "value": self.config["height"], "description": "Default image height."},
783
- {"name": "num_inference_steps", "type": "int", "value": self.config["num_inference_steps"], "description": "Default inference steps."},
784
- {"name": "guidance_scale", "type": "float", "value": self.config["guidance_scale"], "description": "Default guidance scale (CFG)."},
785
- {"name": "seed", "type": "int", "value": self.config["seed"], "description": "Default seed (-1 for random)."},
786
- {"name": "hf_token", "type": "str", "value": self.config["hf_token"], "description": "HF API token (for private/gated models).", "is_secret": True},
787
- {"name": "hf_cache_path", "type": "str", "value": self.config["hf_cache_path"], "description": "Path to HF cache."},
788
- {"name": "local_files_only", "type": "bool", "value": self.config["local_files_only"], "description": "Do not download from Hugging Face."}
789
- ]
358
+ # The server holds the state, so we fetch it.
359
+ return self._get_request("/get_settings").json()
790
360
 
791
361
  def set_settings(self, settings: Union[Dict[str, Any], List[Dict[str, Any]]], **kwargs) -> bool:
792
- parsed = settings if isinstance(settings, dict) else {i["name"]: i["value"] for i in settings if "name" in i and "value" in i}
793
- critical_keys = self.registry._get_critical_keys()
794
- needs_swap = False
795
- for key, value in parsed.items():
796
- if self.config.get(key) != value:
797
- ASCIIColors.info(f"Setting '{key}' changed to: {value}")
798
- self.config[key] = value
799
- if key == "model_name":
800
- self.model_name = value
801
- if key in critical_keys:
802
- needs_swap = True
803
- if needs_swap and self.model_name:
804
- ASCIIColors.info("Critical settings changed. Swapping model manager...")
805
- self._resolve_device_and_dtype()
806
- self._acquire_manager()
807
- if not needs_swap and self.manager:
808
- self.manager.config.update(parsed)
809
- if 'scheduler_name' in parsed and self.manager.pipeline:
810
- with self.manager.lock:
811
- self.manager._set_scheduler()
812
- return True
362
+ # Normalize settings from list of dicts to a single dict if needed
363
+ parsed_settings = settings if isinstance(settings, dict) else {s["name"]: s["value"] for s in settings if "name" in s and "value" in s}
364
+ response = self._post_json_request("/set_settings", data=parsed_settings)
365
+ return response.json().get("success", False)
366
+
367
+ def ps(self) -> List[dict]:
368
+ try:
369
+ return self._get_request("/ps").json()
370
+ except Exception:
371
+ return [{"error": "Could not connect to server to get process status."}]
372
+
373
+ def pull_model(self, model_name: str, local_name: Optional[str] = None, progress_callback: Callable[[dict], None] = None) -> dict:
374
+ """
375
+ Pulls a model from Hugging Face or URL via the server.
376
+ """
377
+ payload = {}
378
+ if model_name.startswith("http") and "huggingface.co" not in model_name:
379
+ # Assume direct file URL if not huggingface repo url (roughly)
380
+ if model_name.endswith(".safetensors"):
381
+ payload["safetensors_url"] = model_name
382
+ else:
383
+ payload["hf_id"] = model_name
384
+ else:
385
+ # Clean up URL if provided as https://huggingface.co/publisher/model
386
+ if "huggingface.co/" in model_name:
387
+ model_name = model_name.split("huggingface.co/")[-1]
388
+ payload["hf_id"] = model_name
389
+
390
+ if local_name:
391
+ payload["local_name"] = local_name
392
+
393
+ try:
394
+ if progress_callback:
395
+ progress_callback({"status": "starting", "message": f"Sending pull request for {model_name}..."})
396
+
397
+ ASCIIColors.info(f"Sending pull request for {model_name}...")
398
+ # Use a very long timeout as downloads can be huge (GBs)
399
+ response = requests.post(f"{self.base_url}/pull_model", json=payload, timeout=7200)
400
+ response.raise_for_status()
401
+
402
+ msg = "Model pulled successfully."
403
+ ASCIIColors.success(msg)
404
+ if progress_callback:
405
+ progress_callback({"status": "success", "message": msg, "completed": 100, "total": 100})
406
+ return {"status": True, "message": msg}
407
+ except Exception as e:
408
+ error_msg = f"Failed to pull model: {e}"
409
+ if hasattr(e, 'response') and e.response:
410
+ error_msg += f" Server response: {e.response.text}"
411
+ ASCIIColors.error(error_msg)
412
+ if progress_callback:
413
+ progress_callback({"status": "error", "message": error_msg})
414
+ return {"status": False, "message": error_msg}
415
+
416
+ def upgrade_diffusers(self, progress_callback: Callable[[dict], None] = None) -> dict:
417
+ """
418
+ Upgrades the diffusers library in the virtual environment.
419
+ """
420
+ try:
421
+ if progress_callback:
422
+ progress_callback({"status": "starting", "message": "Upgrading diffusers..."})
423
+
424
+ ASCIIColors.info("Upgrading diffusers from GitHub...")
425
+ if sys.platform == "win32":
426
+ python_executable = self.venv_dir / "Scripts" / "python.exe"
427
+ else:
428
+ python_executable = self.venv_dir / "bin" / "python"
429
+
430
+ subprocess.check_call([
431
+ str(python_executable), "-m", "pip", "install", "--upgrade",
432
+ "git+https://github.com/huggingface/diffusers.git"
433
+ ])
434
+ msg = "Diffusers upgraded successfully."
435
+ ASCIIColors.success(msg)
436
+ ASCIIColors.info("Please restart the application/server to apply changes.")
437
+
438
+ if progress_callback:
439
+ progress_callback({"status": "success", "message": msg})
440
+ return {"status": True, "message": msg}
441
+ except Exception as e:
442
+ error_msg = f"Failed to upgrade diffusers: {e}"
443
+ ASCIIColors.error(error_msg)
444
+ if progress_callback:
445
+ progress_callback({"status": "error", "message": error_msg})
446
+ return {"status": False, "message": error_msg}
813
447
 
814
448
  def __del__(self):
815
- self.unload_model()
816
-
817
- if __name__ == '__main__':
818
- ASCIIColors.magenta("--- Diffusers TTI Binding Test ---")
819
- if not DIFFUSERS_AVAILABLE:
820
- ASCIIColors.error("Diffusers not available. Cannot run test.")
821
- exit(1)
822
- temp_paths_dir = Path(__file__).parent / "tmp"
823
- temp_models_path = temp_paths_dir / "models"
824
- if temp_paths_dir.exists():
825
- shutil.rmtree(temp_paths_dir)
826
- temp_models_path.mkdir(parents=True, exist_ok=True)
827
- try:
828
- ASCIIColors.cyan("\n--- Test: Loading a small HF model ---")
829
- cfg = {"models_path": str(temp_models_path), "model_name": "hf-internal-testing/tiny-stable-diffusion-torch"}
830
- binding = DiffusersTTIBinding_Impl(**cfg)
831
- img_bytes = binding.generate_image("a tiny robot", width=64, height=64, num_inference_steps=2)
832
- assert len(img_bytes) > 1000
833
- ASCIIColors.green("HF t2i generation OK.")
834
- del binding
835
- time.sleep(0.1)
836
- except Exception as e:
837
- trace_exception(e)
838
- ASCIIColors.error(f"Diffusers binding test failed: {e}")
839
- finally:
840
- ASCIIColors.cyan("\nCleaning up temporary directories...")
841
- if temp_paths_dir.exists():
842
- shutil.rmtree(temp_paths_dir)
843
- ASCIIColors.magenta("--- Diffusers TTI Binding Test Finished ---")
449
+ # The client destructor does not stop the server,
450
+ # as it is a shared resource for all worker processes.
451
+ pass