lollms-client 0.29.1__py3-none-any.whl → 0.29.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of lollms-client might be problematic. Click here for more details.
- lollms_client/__init__.py +1 -1
- lollms_client/llm_bindings/llamacpp/__init__.py +5 -2
- lollms_client/lollms_discussion.py +60 -64
- {lollms_client-0.29.1.dist-info → lollms_client-0.29.2.dist-info}/METADATA +86 -34
- {lollms_client-0.29.1.dist-info → lollms_client-0.29.2.dist-info}/RECORD +8 -8
- {lollms_client-0.29.1.dist-info → lollms_client-0.29.2.dist-info}/WHEEL +0 -0
- {lollms_client-0.29.1.dist-info → lollms_client-0.29.2.dist-info}/licenses/LICENSE +0 -0
- {lollms_client-0.29.1.dist-info → lollms_client-0.29.2.dist-info}/top_level.txt +0 -0
lollms_client/__init__.py
CHANGED
|
@@ -8,7 +8,7 @@ from lollms_client.lollms_utilities import PromptReshaper # Keep general utiliti
|
|
|
8
8
|
from lollms_client.lollms_mcp_binding import LollmsMCPBinding, LollmsMCPBindingManager
|
|
9
9
|
from lollms_client.lollms_llm_binding import LollmsLLMBindingManager
|
|
10
10
|
|
|
11
|
-
__version__ = "0.29.
|
|
11
|
+
__version__ = "0.29.2" # Updated version
|
|
12
12
|
|
|
13
13
|
# Optionally, you could define __all__ if you want to be explicit about exports
|
|
14
14
|
__all__ = [
|
|
@@ -352,8 +352,11 @@ class LlamaCppServerBinding(LollmsLLMBinding):
|
|
|
352
352
|
|
|
353
353
|
|
|
354
354
|
def load_model(self, model_name_or_path: str) -> bool:
|
|
355
|
-
|
|
356
|
-
|
|
355
|
+
try:
|
|
356
|
+
resolved_model_path = self._resolve_model_path(model_name_or_path)
|
|
357
|
+
except Exception as ex:
|
|
358
|
+
trace_exception(ex)
|
|
359
|
+
return False
|
|
357
360
|
# Determine the clip_model_path for this server instance
|
|
358
361
|
# Priority: 1. Explicit `clip_model_path` from init (if exists) 2. Auto-detection
|
|
359
362
|
final_clip_model_path: Optional[Path] = None
|
|
@@ -1251,19 +1251,16 @@ class LollmsDiscussion:
|
|
|
1251
1251
|
text_to_count = "\n".join(full_content)
|
|
1252
1252
|
|
|
1253
1253
|
return self.lollmsClient.count_tokens(text_to_count)
|
|
1254
|
-
|
|
1255
1254
|
def get_context_status(self, branch_tip_id: Optional[str] = None) -> Dict[str, Any]:
|
|
1256
1255
|
"""
|
|
1257
1256
|
Returns a detailed breakdown of the context size and its components.
|
|
1258
1257
|
|
|
1259
|
-
This provides a comprehensive snapshot of the context usage
|
|
1260
|
-
|
|
1261
|
-
|
|
1262
|
-
"lollms_text" export format, which is the format used for pruning calculations.
|
|
1258
|
+
This provides a comprehensive snapshot of the context usage. It accurately calculates
|
|
1259
|
+
the token count of the combined system context (prompt, all data zones, summary)
|
|
1260
|
+
and the message history, reflecting how the `lollms_text` export format works.
|
|
1263
1261
|
|
|
1264
1262
|
Args:
|
|
1265
|
-
branch_tip_id: The ID of the message branch to measure. Defaults
|
|
1266
|
-
to the active branch.
|
|
1263
|
+
branch_tip_id: The ID of the message branch to measure. Defaults to the active branch.
|
|
1267
1264
|
|
|
1268
1265
|
Returns:
|
|
1269
1266
|
A dictionary with a detailed breakdown:
|
|
@@ -1271,72 +1268,71 @@ class LollmsDiscussion:
|
|
|
1271
1268
|
"max_tokens": int | None,
|
|
1272
1269
|
"current_tokens": int,
|
|
1273
1270
|
"zones": {
|
|
1274
|
-
"
|
|
1275
|
-
|
|
1276
|
-
|
|
1277
|
-
|
|
1278
|
-
|
|
1279
|
-
|
|
1280
|
-
|
|
1271
|
+
"system_context": {
|
|
1272
|
+
"content": str,
|
|
1273
|
+
"tokens": int,
|
|
1274
|
+
"breakdown": {
|
|
1275
|
+
"system_prompt": str,
|
|
1276
|
+
"memory": str,
|
|
1277
|
+
...
|
|
1278
|
+
}
|
|
1279
|
+
},
|
|
1280
|
+
"message_history": {
|
|
1281
|
+
"content": str,
|
|
1282
|
+
"tokens": int,
|
|
1283
|
+
"message_count": int
|
|
1284
|
+
}
|
|
1281
1285
|
}
|
|
1282
1286
|
}
|
|
1283
|
-
Zones are only included if they contain content.
|
|
1287
|
+
Zones and breakdown components are only included if they contain content.
|
|
1284
1288
|
"""
|
|
1285
1289
|
result = {
|
|
1286
1290
|
"max_tokens": self.max_context_size,
|
|
1287
1291
|
"current_tokens": 0,
|
|
1288
1292
|
"zones": {}
|
|
1289
1293
|
}
|
|
1290
|
-
total_tokens = 0
|
|
1291
1294
|
|
|
1292
|
-
# 1. System
|
|
1295
|
+
# --- 1. Assemble and Tokenize the Entire System Context Block ---
|
|
1293
1296
|
system_prompt_text = (self._system_prompt or "").strip()
|
|
1294
|
-
|
|
1295
|
-
|
|
1296
|
-
|
|
1297
|
-
|
|
1298
|
-
|
|
1299
|
-
"content": system_prompt_text,
|
|
1300
|
-
"tokens": tokens
|
|
1301
|
-
}
|
|
1302
|
-
total_tokens += tokens
|
|
1303
|
-
|
|
1304
|
-
# 2. All Data Zones
|
|
1305
|
-
zones_to_process = {
|
|
1306
|
-
"memory": self.memory,
|
|
1307
|
-
"user_data_zone": self.user_data_zone,
|
|
1308
|
-
"discussion_data_zone": self.discussion_data_zone,
|
|
1309
|
-
"personality_data_zone": self.personality_data_zone,
|
|
1310
|
-
}
|
|
1297
|
+
data_zone_text = self.get_full_data_zone() # This already formats all zones correctly
|
|
1298
|
+
|
|
1299
|
+
pruning_summary_text = ""
|
|
1300
|
+
if self.pruning_summary and self.pruning_point_id:
|
|
1301
|
+
pruning_summary_text = f"--- Conversation Summary ---\n{self.pruning_summary.strip()}"
|
|
1311
1302
|
|
|
1312
|
-
|
|
1313
|
-
|
|
1314
|
-
if
|
|
1315
|
-
|
|
1316
|
-
|
|
1317
|
-
|
|
1318
|
-
|
|
1319
|
-
|
|
1320
|
-
|
|
1321
|
-
|
|
1322
|
-
|
|
1323
|
-
|
|
1324
|
-
|
|
1325
|
-
|
|
1326
|
-
|
|
1327
|
-
|
|
1328
|
-
|
|
1329
|
-
|
|
1330
|
-
|
|
1331
|
-
|
|
1332
|
-
|
|
1333
|
-
|
|
1334
|
-
"
|
|
1335
|
-
|
|
1303
|
+
# Combine all parts that go into the system block, separated by newlines
|
|
1304
|
+
full_system_content_parts = [
|
|
1305
|
+
part for part in [system_prompt_text, data_zone_text, pruning_summary_text] if part
|
|
1306
|
+
]
|
|
1307
|
+
full_system_content = "\n\n".join(full_system_content_parts).strip()
|
|
1308
|
+
|
|
1309
|
+
if full_system_content:
|
|
1310
|
+
# Create the final system block as it would be exported
|
|
1311
|
+
system_block = f"!@>system:\n{full_system_content}\n"
|
|
1312
|
+
system_tokens = self.lollmsClient.count_tokens(system_block)
|
|
1313
|
+
|
|
1314
|
+
# Create the breakdown for user visibility
|
|
1315
|
+
breakdown = {}
|
|
1316
|
+
if system_prompt_text:
|
|
1317
|
+
breakdown["system_prompt"] = system_prompt_text
|
|
1318
|
+
if self.memory and self.memory.strip():
|
|
1319
|
+
breakdown["memory"] = self.memory.strip()
|
|
1320
|
+
if self.user_data_zone and self.user_data_zone.strip():
|
|
1321
|
+
breakdown["user_data_zone"] = self.user_data_zone.strip()
|
|
1322
|
+
if self.discussion_data_zone and self.discussion_data_zone.strip():
|
|
1323
|
+
breakdown["discussion_data_zone"] = self.discussion_data_zone.strip()
|
|
1324
|
+
if self.personality_data_zone and self.personality_data_zone.strip():
|
|
1325
|
+
breakdown["personality_data_zone"] = self.personality_data_zone.strip()
|
|
1326
|
+
if self.pruning_summary and self.pruning_summary.strip():
|
|
1327
|
+
breakdown["pruning_summary"] = self.pruning_summary.strip()
|
|
1328
|
+
|
|
1329
|
+
result["zones"]["system_context"] = {
|
|
1330
|
+
"content": full_system_content,
|
|
1331
|
+
"tokens": system_tokens,
|
|
1332
|
+
"breakdown": breakdown
|
|
1336
1333
|
}
|
|
1337
|
-
|
|
1338
|
-
|
|
1339
|
-
# 4. Message History
|
|
1334
|
+
|
|
1335
|
+
# --- 2. Assemble and Tokenize the Message History Block ---
|
|
1340
1336
|
branch_tip_id = branch_tip_id or self.active_branch_id
|
|
1341
1337
|
messages_text = ""
|
|
1342
1338
|
message_count = 0
|
|
@@ -1373,10 +1369,10 @@ class LollmsDiscussion:
|
|
|
1373
1369
|
"tokens": tokens,
|
|
1374
1370
|
"message_count": message_count
|
|
1375
1371
|
}
|
|
1376
|
-
total_tokens += tokens
|
|
1377
1372
|
|
|
1378
|
-
#
|
|
1379
|
-
#
|
|
1373
|
+
# --- 3. Finalize the Total Count ---
|
|
1374
|
+
# This remains the most accurate way to get the final count, as it uses the
|
|
1375
|
+
# exact same export logic as the chat method.
|
|
1380
1376
|
result["current_tokens"] = self.count_discussion_tokens("lollms_text", branch_tip_id)
|
|
1381
1377
|
|
|
1382
1378
|
return result
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: lollms_client
|
|
3
|
-
Version: 0.29.
|
|
3
|
+
Version: 0.29.2
|
|
4
4
|
Summary: A client library for LoLLMs generate endpoint
|
|
5
5
|
Author-email: ParisNeo <parisneoai@gmail.com>
|
|
6
6
|
License: Apache Software License
|
|
@@ -296,9 +296,22 @@ This example showcases how `lollms-client` allows you to build powerful, knowled
|
|
|
296
296
|
|
|
297
297
|
### Building Stateful Agents with Memory and Data Zones
|
|
298
298
|
|
|
299
|
-
The
|
|
299
|
+
The `LollmsDiscussion` class provides a sophisticated system for creating stateful agents that can remember information across conversations. This is achieved through a layered system of "context zones" that are automatically combined into the AI's system prompt.
|
|
300
300
|
|
|
301
|
-
|
|
301
|
+
#### Understanding the Context Zones
|
|
302
|
+
|
|
303
|
+
The AI's context is more than just chat history. It's built from several distinct components, each with a specific purpose:
|
|
304
|
+
|
|
305
|
+
* **`system_prompt`**: The foundational layer defining the AI's core identity, persona, and primary instructions.
|
|
306
|
+
* **`memory`**: The AI's long-term, persistent memory. It stores key facts about the user or topics, built up over time using the `memorize()` method.
|
|
307
|
+
* **`user_data_zone`**: Holds session-specific information about the user's current state or goals (e.g., "User is currently working on 'file.py'").
|
|
308
|
+
* **`discussion_data_zone`**: Contains state or meta-information about the current conversational task (e.g., "Step 1 of the plan is complete").
|
|
309
|
+
* **`personality_data_zone`**: A knowledge base or set of rules automatically injected from a `LollmsPersonality`'s `data_source`.
|
|
310
|
+
* **`pruning_summary`**: An automatic, AI-generated summary of the oldest messages in a very long chat, used to conserve tokens without losing the gist of the early conversation.
|
|
311
|
+
|
|
312
|
+
The `get_context_status()` method is your window into this system, showing you exactly how these zones are combined and how many tokens they consume.
|
|
313
|
+
|
|
314
|
+
Let's see this in action with a "Personal Assistant" agent that learns about the user over time.
|
|
302
315
|
|
|
303
316
|
```python
|
|
304
317
|
from lollms_client import LollmsClient, LollmsDataManager, LollmsDiscussion, MSG_TYPE
|
|
@@ -320,7 +333,8 @@ if not discussion:
|
|
|
320
333
|
id=discussion_id,
|
|
321
334
|
autosave=True # Important for persistence
|
|
322
335
|
)
|
|
323
|
-
# Let's preset some
|
|
336
|
+
# Let's preset some data in different zones
|
|
337
|
+
discussion.system_prompt = "You are a helpful Personal Assistant."
|
|
324
338
|
discussion.user_data_zone = "User's Name: Alex\nUser's Goal: Learn about AI development."
|
|
325
339
|
discussion.commit()
|
|
326
340
|
else:
|
|
@@ -331,13 +345,24 @@ def run_chat_turn(prompt: str):
|
|
|
331
345
|
"""Helper function to run a single chat turn and print details."""
|
|
332
346
|
ASCIIColors.cyan(f"\n> User: {prompt}")
|
|
333
347
|
|
|
334
|
-
# --- A. Check context status BEFORE the turn ---
|
|
348
|
+
# --- A. Check context status BEFORE the turn using get_context_status() ---
|
|
335
349
|
ASCIIColors.magenta("\n--- Context Status (Before Generation) ---")
|
|
336
350
|
status = discussion.get_context_status()
|
|
337
|
-
print(f"Max Tokens: {status.get('max_tokens')}, Current
|
|
338
|
-
|
|
339
|
-
|
|
340
|
-
|
|
351
|
+
print(f"Max Tokens: {status.get('max_tokens')}, Current Tokens: {status.get('current_tokens')}")
|
|
352
|
+
|
|
353
|
+
# Print the system context details
|
|
354
|
+
if 'system_context' in status['zones']:
|
|
355
|
+
sys_ctx = status['zones']['system_context']
|
|
356
|
+
print(f" - System Context Tokens: {sys_ctx['tokens']}")
|
|
357
|
+
# The 'breakdown' shows the individual zones that were combined
|
|
358
|
+
for name, content in sys_ctx.get('breakdown', {}).items():
|
|
359
|
+
print(f" -> Contains '{name}': {content.split(chr(10))[0]}...")
|
|
360
|
+
|
|
361
|
+
# Print the message history details
|
|
362
|
+
if 'message_history' in status['zones']:
|
|
363
|
+
msg_hist = status['zones']['message_history']
|
|
364
|
+
print(f" - Message History Tokens: {msg_hist['tokens']} ({msg_hist['message_count']} messages)")
|
|
365
|
+
|
|
341
366
|
print("------------------------------------------")
|
|
342
367
|
|
|
343
368
|
# --- B. Run the chat ---
|
|
@@ -348,7 +373,7 @@ def run_chat_turn(prompt: str):
|
|
|
348
373
|
)
|
|
349
374
|
print() # Newline after stream
|
|
350
375
|
|
|
351
|
-
# --- C. Trigger memorization ---
|
|
376
|
+
# --- C. Trigger memorization to update the 'memory' zone ---
|
|
352
377
|
ASCIIColors.yellow("\nTriggering memorization process...")
|
|
353
378
|
discussion.memorize()
|
|
354
379
|
discussion.commit() # Save the new memory to the DB
|
|
@@ -359,24 +384,30 @@ run_chat_turn("Hi there! Can you recommend a good Python library for building we
|
|
|
359
384
|
run_chat_turn("That sounds great. By the way, my favorite programming language is Rust, I find its safety features amazing.")
|
|
360
385
|
run_chat_turn("What was my favorite programming language again?")
|
|
361
386
|
|
|
362
|
-
# --- Final Inspection ---
|
|
387
|
+
# --- Final Inspection of Memory ---
|
|
363
388
|
ASCIIColors.magenta("\n--- Final Context Status ---")
|
|
364
389
|
status = discussion.get_context_status()
|
|
365
|
-
print(f"Max Tokens: {status.get('max_tokens')}, Current
|
|
366
|
-
|
|
367
|
-
|
|
368
|
-
print(f"
|
|
390
|
+
print(f"Max Tokens: {status.get('max_tokens')}, Current Tokens: {status.get('current_tokens')}")
|
|
391
|
+
if 'system_context' in status['zones']:
|
|
392
|
+
sys_ctx = status['zones']['system_context']
|
|
393
|
+
print(f" - System Context Tokens: {sys_ctx['tokens']}")
|
|
394
|
+
for name, content in sys_ctx.get('breakdown', {}).items():
|
|
395
|
+
# Print the full content of the memory zone to verify it was updated
|
|
396
|
+
if name == 'memory':
|
|
397
|
+
ASCIIColors.yellow(f" -> Full '{name}' content:\n{content}")
|
|
398
|
+
else:
|
|
399
|
+
print(f" -> Contains '{name}': {content.split(chr(10))[0]}...")
|
|
369
400
|
print("------------------------------------------")
|
|
370
401
|
|
|
371
402
|
```
|
|
372
403
|
|
|
373
404
|
#### How it Works:
|
|
374
405
|
|
|
375
|
-
1. **Persistence:** The `LollmsDataManager` and
|
|
376
|
-
2. **`
|
|
377
|
-
3. **`
|
|
378
|
-
4.
|
|
379
|
-
|
|
406
|
+
1. **Persistence & Initialization:** The `LollmsDataManager` saves and loads the discussion. We initialize the `system_prompt` and `user_data_zone` to provide initial context.
|
|
407
|
+
2. **`get_context_status()`:** Before each generation, we call this method. The output shows a `system_context` block with a token count for all combined zones and a `breakdown` field that lets us see the content of each individual zone that contributed to it.
|
|
408
|
+
3. **`memorize()`:** After the user mentions their favorite language, `memorize()` is called. The LLM analyzes the last turn, identifies this new, important fact, and appends it to the `discussion.memory` zone.
|
|
409
|
+
4. **Recall:** In the final turn, when asked to recall the favorite language, the AI has access to the updated `memory` content within its system context and can correctly answer "Rust". This demonstrates true long-term, stateful memory.
|
|
410
|
+
|
|
380
411
|
|
|
381
412
|
## Documentation
|
|
382
413
|
|
|
@@ -922,33 +953,54 @@ discussion.commit() # Save the updated memory to the database
|
|
|
922
953
|
```
|
|
923
954
|
|
|
924
955
|
#### `get_context_status()`
|
|
925
|
-
Provides a detailed, real-time breakdown of the current prompt context, showing exactly what will be sent to the model and how many tokens each part occupies.
|
|
926
956
|
|
|
927
|
-
|
|
928
|
-
|
|
957
|
+
Provides a detailed, real-time breakdown of the current prompt context, showing exactly what will be sent to the model and how many tokens each major component occupies. This is crucial for debugging context issues and understanding token usage.
|
|
958
|
+
|
|
959
|
+
The method accurately reflects the structure of the `lollms_text` format, where all system-level instructions (the main prompt, all data zones, and the pruning summary) are combined into a single system block.
|
|
960
|
+
|
|
961
|
+
- **Return Value:** A dictionary containing:
|
|
962
|
+
- `max_tokens`: The configured maximum token limit for the discussion.
|
|
963
|
+
- `current_tokens`: The total, most accurate token count for the entire prompt, calculated using the same logic as the `chat()` method.
|
|
964
|
+
- `zones`: A dictionary with up to two keys:
|
|
965
|
+
- **`system_context`**: Present if there is any system-level content. It contains:
|
|
966
|
+
- `tokens`: The total token count for the **entire combined system block** (e.g., `!@>system:\n...\n`).
|
|
967
|
+
- `content`: The full string content of the system block, showing exactly how all zones are merged.
|
|
968
|
+
- `breakdown`: A sub-dictionary showing the raw text of each individual component (e.g., `system_prompt`, `memory`, `user_data_zone`) that was used to build the `content`.
|
|
969
|
+
- **`message_history`**: Present if there are messages in the branch. It contains:
|
|
970
|
+
- `tokens`: The total token count for the message history part of the prompt.
|
|
971
|
+
- `content`: The full string of the formatted message history.
|
|
972
|
+
- `message_count`: The number of messages included in the history.
|
|
973
|
+
|
|
974
|
+
- **Use Case:** Essential for debugging context issues, visualizing how different data zones contribute to the final prompt, and monitoring token consumption.
|
|
929
975
|
|
|
930
976
|
```python
|
|
931
977
|
import json
|
|
932
978
|
|
|
979
|
+
# Assuming 'discussion' is an LollmsDiscussion object with some data
|
|
980
|
+
discussion.system_prompt = "You are a helpful AI."
|
|
981
|
+
discussion.user_data_zone = "User is named Bob."
|
|
982
|
+
discussion.add_message(sender="user", content="Hello!")
|
|
983
|
+
discussion.add_message(sender="assistant", content="Hi Bob!")
|
|
984
|
+
|
|
933
985
|
status = discussion.get_context_status()
|
|
934
986
|
print(json.dumps(status, indent=2))
|
|
935
987
|
|
|
936
988
|
# Expected Output Structure:
|
|
937
989
|
# {
|
|
938
|
-
# "max_tokens":
|
|
939
|
-
# "current_tokens":
|
|
990
|
+
# "max_tokens": null,
|
|
991
|
+
# "current_tokens": 46,
|
|
940
992
|
# "zones": {
|
|
941
|
-
# "
|
|
942
|
-
# "content": "You are a helpful
|
|
943
|
-
# "tokens":
|
|
944
|
-
#
|
|
945
|
-
#
|
|
946
|
-
#
|
|
947
|
-
#
|
|
993
|
+
# "system_context": {
|
|
994
|
+
# "content": "You are a helpful AI.\n\n-- User Data Zone --\nUser is named Bob.",
|
|
995
|
+
# "tokens": 25,
|
|
996
|
+
# "breakdown": {
|
|
997
|
+
# "system_prompt": "You are a helpful AI.",
|
|
998
|
+
# "user_data_zone": "User is named Bob."
|
|
999
|
+
# }
|
|
948
1000
|
# },
|
|
949
1001
|
# "message_history": {
|
|
950
|
-
# "content": "!@>user:\
|
|
951
|
-
# "tokens":
|
|
1002
|
+
# "content": "!@>user:\nHello!\n!@>assistant:\nHi Bob!\n",
|
|
1003
|
+
# "tokens": 21,
|
|
952
1004
|
# "message_count": 2
|
|
953
1005
|
# }
|
|
954
1006
|
# }
|
|
@@ -29,10 +29,10 @@ examples/mcp_examples/openai_mcp.py,sha256=7IEnPGPXZgYZyiES_VaUbQ6viQjenpcUxGiHE
|
|
|
29
29
|
examples/mcp_examples/run_remote_mcp_example_v2.py,sha256=bbNn93NO_lKcFzfIsdvJJijGx2ePFTYfknofqZxMuRM,14626
|
|
30
30
|
examples/mcp_examples/run_standard_mcp_example.py,sha256=GSZpaACPf3mDPsjA8esBQVUsIi7owI39ca5avsmvCxA,9419
|
|
31
31
|
examples/test_local_models/local_chat.py,sha256=slakja2zaHOEAUsn2tn_VmI4kLx6luLBrPqAeaNsix8,456
|
|
32
|
-
lollms_client/__init__.py,sha256=
|
|
32
|
+
lollms_client/__init__.py,sha256=LxA6e1pnyzABUjUxqp1DEKrIMUKfPWj7VRwv24Jra3A,1147
|
|
33
33
|
lollms_client/lollms_config.py,sha256=goEseDwDxYJf3WkYJ4IrLXwg3Tfw73CXV2Avg45M_hE,21876
|
|
34
34
|
lollms_client/lollms_core.py,sha256=KfeOs-xt3QZCQUsHCsPi2Zh_ZpfmEmMhJLR2sMiP27Y,170420
|
|
35
|
-
lollms_client/lollms_discussion.py,sha256=
|
|
35
|
+
lollms_client/lollms_discussion.py,sha256=QxA2ZtsLD-teWCURAvHWkguiwq7BC1eYAPQSICYD2hw,67159
|
|
36
36
|
lollms_client/lollms_js_analyzer.py,sha256=01zUvuO2F_lnUe_0NLxe1MF5aHE1hO8RZi48mNPv-aw,8361
|
|
37
37
|
lollms_client/lollms_llm_binding.py,sha256=cU0cmxZfIrp-ofutbRLx7W_59dxzPXpU-vO98MqVnQA,14788
|
|
38
38
|
lollms_client/lollms_mcp_binding.py,sha256=0rK9HQCBEGryNc8ApBmtOlhKE1Yfn7X7xIQssXxS2Zc,8933
|
|
@@ -53,7 +53,7 @@ lollms_client/llm_bindings/grok/__init__.py,sha256=5tIf3348RgAEaSp6FdG-LM9N8R7aR
|
|
|
53
53
|
lollms_client/llm_bindings/groq/__init__.py,sha256=zyWKM78qHwSt5g0Bb8Njj7Jy8CYuLMyplx2maOKFFpg,12218
|
|
54
54
|
lollms_client/llm_bindings/hugging_face_inference_api/__init__.py,sha256=PxgeRqT8dpa9GZoXwtSncy9AUgAN2cDKrvp_nbaWq0E,14027
|
|
55
55
|
lollms_client/llm_bindings/litellm/__init__.py,sha256=pNkwyRPeENvTM4CDh6Pj3kQfxHfhX2pvXhGJDjKjp30,12340
|
|
56
|
-
lollms_client/llm_bindings/llamacpp/__init__.py,sha256=
|
|
56
|
+
lollms_client/llm_bindings/llamacpp/__init__.py,sha256=4cotP3cYhiA0501UnGVljlEBBVatNyfIyrZsHUPJk24,63878
|
|
57
57
|
lollms_client/llm_bindings/lollms/__init__.py,sha256=scGHEKzlGX5fw2XwefVicsf28GrwgN3wU5nl4EPJ_Sk,24424
|
|
58
58
|
lollms_client/llm_bindings/lollms_webui/__init__.py,sha256=Thoq3PJR2e03Y2Kd_FBb-DULJK0zT5-2ID1YIJLcPlw,17864
|
|
59
59
|
lollms_client/llm_bindings/mistral/__init__.py,sha256=624Gr462yBh52ttHFOapKgJOn8zZ1vZcTEcC3i4FYt8,12750
|
|
@@ -92,8 +92,8 @@ lollms_client/tts_bindings/piper_tts/__init__.py,sha256=0IEWG4zH3_sOkSb9WbZzkeV5
|
|
|
92
92
|
lollms_client/tts_bindings/xtts/__init__.py,sha256=FgcdUH06X6ZR806WQe5ixaYx0QoxtAcOgYo87a2qxYc,18266
|
|
93
93
|
lollms_client/ttv_bindings/__init__.py,sha256=UZ8o2izQOJLQgtZ1D1cXoNST7rzqW22rL2Vufc7ddRc,3141
|
|
94
94
|
lollms_client/ttv_bindings/lollms/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
95
|
-
lollms_client-0.29.
|
|
96
|
-
lollms_client-0.29.
|
|
97
|
-
lollms_client-0.29.
|
|
98
|
-
lollms_client-0.29.
|
|
99
|
-
lollms_client-0.29.
|
|
95
|
+
lollms_client-0.29.2.dist-info/licenses/LICENSE,sha256=HrhfyXIkWY2tGFK11kg7vPCqhgh5DcxleloqdhrpyMY,11558
|
|
96
|
+
lollms_client-0.29.2.dist-info/METADATA,sha256=3u052c1Z_YlqK8G3IfIk5PplFABjjMipOXLa06wKGw4,47847
|
|
97
|
+
lollms_client-0.29.2.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
|
98
|
+
lollms_client-0.29.2.dist-info/top_level.txt,sha256=NI_W8S4OYZvJjb0QWMZMSIpOrYzpqwPGYaklhyWKH2w,23
|
|
99
|
+
lollms_client-0.29.2.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|