lollms-client 0.24.1__py3-none-any.whl → 0.25.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of lollms-client might be problematic. Click here for more details.
- lollms_client/__init__.py +1 -1
- lollms_client/llm_bindings/lollms/__init__.py +1 -0
- lollms_client/llm_bindings/openai/__init__.py +3 -2
- lollms_client/lollms_core.py +226 -160
- lollms_client/lollms_discussion.py +98 -34
- lollms_client/lollms_types.py +9 -1
- lollms_client/lollms_utilities.py +68 -0
- lollms_client/mcp_bindings/remote_mcp/__init__.py +2 -2
- {lollms_client-0.24.1.dist-info → lollms_client-0.25.0.dist-info}/METADATA +1 -1
- {lollms_client-0.24.1.dist-info → lollms_client-0.25.0.dist-info}/RECORD +13 -13
- {lollms_client-0.24.1.dist-info → lollms_client-0.25.0.dist-info}/WHEEL +0 -0
- {lollms_client-0.24.1.dist-info → lollms_client-0.25.0.dist-info}/licenses/LICENSE +0 -0
- {lollms_client-0.24.1.dist-info → lollms_client-0.25.0.dist-info}/top_level.txt +0 -0
lollms_client/__init__.py
CHANGED
|
@@ -8,7 +8,7 @@ from lollms_client.lollms_utilities import PromptReshaper # Keep general utiliti
|
|
|
8
8
|
from lollms_client.lollms_mcp_binding import LollmsMCPBinding, LollmsMCPBindingManager
|
|
9
9
|
|
|
10
10
|
|
|
11
|
-
__version__ = "0.
|
|
11
|
+
__version__ = "0.25.0" # Updated version
|
|
12
12
|
|
|
13
13
|
# Optionally, you could define __all__ if you want to be explicit about exports
|
|
14
14
|
__all__ = [
|
|
@@ -4,6 +4,7 @@ from lollms_client.lollms_llm_binding import LollmsLLMBinding
|
|
|
4
4
|
from lollms_client.lollms_types import MSG_TYPE
|
|
5
5
|
from lollms_client.lollms_utilities import encode_image
|
|
6
6
|
from lollms_client.lollms_types import ELF_COMPLETION_FORMAT
|
|
7
|
+
from lollms_client.lollms_discussion import LollmsDiscussion
|
|
7
8
|
from ascii_colors import ASCIIColors, trace_exception
|
|
8
9
|
from typing import Optional, Callable, List, Union
|
|
9
10
|
import json
|
|
@@ -30,7 +30,8 @@ class OpenAIBinding(LollmsLLMBinding):
|
|
|
30
30
|
model_name: str = "",
|
|
31
31
|
service_key: str = None,
|
|
32
32
|
verify_ssl_certificate: bool = True,
|
|
33
|
-
default_completion_format: ELF_COMPLETION_FORMAT = ELF_COMPLETION_FORMAT.Chat
|
|
33
|
+
default_completion_format: ELF_COMPLETION_FORMAT = ELF_COMPLETION_FORMAT.Chat,
|
|
34
|
+
**kwargs):
|
|
34
35
|
"""
|
|
35
36
|
Initialize the OpenAI binding.
|
|
36
37
|
|
|
@@ -52,7 +53,7 @@ class OpenAIBinding(LollmsLLMBinding):
|
|
|
52
53
|
|
|
53
54
|
if not self.service_key:
|
|
54
55
|
self.service_key = os.getenv("OPENAI_API_KEY", self.service_key)
|
|
55
|
-
self.client = openai.OpenAI(api_key=self.service_key, base_url=host_address)
|
|
56
|
+
self.client = openai.OpenAI(api_key=self.service_key, base_url=None if host_address is None else host_address if len(host_address)>0 else None)
|
|
56
57
|
self.completion_format = ELF_COMPLETION_FORMAT.Chat
|
|
57
58
|
|
|
58
59
|
|
lollms_client/lollms_core.py
CHANGED
|
@@ -13,6 +13,8 @@ from lollms_client.lollms_ttm_binding import LollmsTTMBinding, LollmsTTMBindingM
|
|
|
13
13
|
from lollms_client.lollms_mcp_binding import LollmsMCPBinding, LollmsMCPBindingManager
|
|
14
14
|
|
|
15
15
|
from lollms_client.lollms_discussion import LollmsDiscussion
|
|
16
|
+
|
|
17
|
+
from lollms_client.lollms_utilities import build_image_dicts, dict_to_markdown
|
|
16
18
|
import json, re
|
|
17
19
|
from enum import Enum
|
|
18
20
|
import base64
|
|
@@ -846,7 +848,7 @@ Don't forget encapsulate the code inside a html code tag. This is mandatory.
|
|
|
846
848
|
"2. **Check for a Single-Step Solution:** Scrutinize the available tools. Can a single tool call directly achieve the user's current goal? \n"
|
|
847
849
|
"3. **Formulate a Plan:** Based on your analysis, create a concise, numbered list of steps to achieve the goal. If the goal is simple, this may be only one step. If it is complex or multi-turn, it may be several steps.\n\n"
|
|
848
850
|
"**CRITICAL RULES:**\n"
|
|
849
|
-
"* **MANDATORY:
|
|
851
|
+
"* **MANDATORY: Be helpful, curious and creative.\n"
|
|
850
852
|
"* **Focus on the Goal:** Your plan should directly address the user's request as it stands now in the conversation.\n\n"
|
|
851
853
|
"---\n"
|
|
852
854
|
"**Available Tools:**\n"
|
|
@@ -1078,7 +1080,7 @@ Provide your response as a single JSON object with one key, "query".
|
|
|
1078
1080
|
"""
|
|
1079
1081
|
try:
|
|
1080
1082
|
raw_initial_query_response = self.generate_code(initial_query_gen_prompt, system_prompt="You are a query generation expert.", temperature=0.0)
|
|
1081
|
-
initial_plan =
|
|
1083
|
+
initial_plan = robust_json_parser(raw_initial_query_response)
|
|
1082
1084
|
current_query_for_rag = initial_plan.get("query")
|
|
1083
1085
|
if not current_query_for_rag:
|
|
1084
1086
|
raise ValueError("LLM returned an empty initial query.")
|
|
@@ -1434,7 +1436,6 @@ Provide your response as a single JSON object inside a JSON markdown tag. Use th
|
|
|
1434
1436
|
new_scratchpad_text = self.generate_text(prompt=synthesis_prompt, n_predict=1024, temperature=0.0)
|
|
1435
1437
|
return self.remove_thinking_blocks(new_scratchpad_text).strip()
|
|
1436
1438
|
|
|
1437
|
-
# In lollms_client/lollms_discussion.py -> LollmsClient class
|
|
1438
1439
|
|
|
1439
1440
|
def generate_with_mcp_rag(
|
|
1440
1441
|
self,
|
|
@@ -1444,13 +1445,14 @@ Provide your response as a single JSON object inside a JSON markdown tag. Use th
|
|
|
1444
1445
|
system_prompt: str = None,
|
|
1445
1446
|
reasoning_system_prompt: str = "You are a logical and adaptive AI assistant.",
|
|
1446
1447
|
images: Optional[List[str]] = None,
|
|
1447
|
-
max_reasoning_steps: int =
|
|
1448
|
-
decision_temperature: float =
|
|
1448
|
+
max_reasoning_steps: int = None,
|
|
1449
|
+
decision_temperature: float = None,
|
|
1449
1450
|
final_answer_temperature: float = None,
|
|
1450
1451
|
streaming_callback: Optional[Callable[[str, 'MSG_TYPE', Optional[Dict], Optional[List]], bool]] = None,
|
|
1451
|
-
rag_top_k: int =
|
|
1452
|
-
rag_min_similarity_percent: float =
|
|
1453
|
-
output_summarization_threshold: int =
|
|
1452
|
+
rag_top_k: int = None,
|
|
1453
|
+
rag_min_similarity_percent: float = None,
|
|
1454
|
+
output_summarization_threshold: int = None, # In tokens
|
|
1455
|
+
debug: bool = False,
|
|
1454
1456
|
**llm_generation_kwargs
|
|
1455
1457
|
) -> Dict[str, Any]:
|
|
1456
1458
|
"""Generates a response using a dynamic agent with stateful, ID-based step tracking.
|
|
@@ -1483,6 +1485,7 @@ Provide your response as a single JSON object inside a JSON markdown tag. Use th
|
|
|
1483
1485
|
rag_min_similarity_percent: Minimum similarity for RAG results.
|
|
1484
1486
|
output_summarization_threshold: The token count that triggers automatic
|
|
1485
1487
|
summarization of a tool's text output.
|
|
1488
|
+
debug : If true, we'll report the detailed promptin and response information
|
|
1486
1489
|
**llm_generation_kwargs: Additional keyword arguments for LLM calls.
|
|
1487
1490
|
|
|
1488
1491
|
Returns:
|
|
@@ -1490,12 +1493,28 @@ Provide your response as a single JSON object inside a JSON markdown tag. Use th
|
|
|
1490
1493
|
answer, the complete internal scratchpad, a log of tool calls,
|
|
1491
1494
|
any retrieved RAG sources, and other metadata.
|
|
1492
1495
|
"""
|
|
1496
|
+
reasoning_step_id = None
|
|
1493
1497
|
if not self.binding:
|
|
1494
1498
|
return {"final_answer": "", "tool_calls": [], "sources": [], "error": "LLM binding not initialized."}
|
|
1495
1499
|
|
|
1500
|
+
if not max_reasoning_steps:
|
|
1501
|
+
max_reasoning_steps= 10
|
|
1502
|
+
if not rag_min_similarity_percent:
|
|
1503
|
+
rag_min_similarity_percent= 50
|
|
1504
|
+
if not rag_top_k:
|
|
1505
|
+
rag_top_k = 5
|
|
1506
|
+
if not decision_temperature:
|
|
1507
|
+
decision_temperature = 0.7
|
|
1508
|
+
if not output_summarization_threshold:
|
|
1509
|
+
output_summarization_threshold = 500
|
|
1510
|
+
|
|
1511
|
+
events = []
|
|
1512
|
+
|
|
1513
|
+
|
|
1496
1514
|
# --- Initialize Agent State ---
|
|
1497
1515
|
sources_this_turn: List[Dict[str, Any]] = []
|
|
1498
1516
|
tool_calls_this_turn: List[Dict[str, Any]] = []
|
|
1517
|
+
generated_code_store: Dict[str, str] = {} # NEW: Store for UUID -> code
|
|
1499
1518
|
original_user_prompt = prompt
|
|
1500
1519
|
|
|
1501
1520
|
initial_state_parts = [
|
|
@@ -1507,41 +1526,48 @@ Provide your response as a single JSON object inside a JSON markdown tag. Use th
|
|
|
1507
1526
|
initial_state_parts.append(f"- The user has provided {len(images)} image(s) for context.")
|
|
1508
1527
|
current_scratchpad = "\n".join(initial_state_parts)
|
|
1509
1528
|
|
|
1510
|
-
|
|
1511
|
-
|
|
1529
|
+
def log_prompt(prompt, type="prompt"):
|
|
1530
|
+
ASCIIColors.cyan(f"** DEBUG: {type} **")
|
|
1531
|
+
ASCIIColors.magenta(prompt[-15000:])
|
|
1532
|
+
ASCIIColors.cyan(f"** DEBUG: DONE **")
|
|
1533
|
+
|
|
1534
|
+
# --- Define Inner Helper Functions ---
|
|
1535
|
+
def log_event(
|
|
1512
1536
|
description: str,
|
|
1513
|
-
|
|
1537
|
+
event_type: MSG_TYPE = MSG_TYPE.MSG_TYPE_CHUNK,
|
|
1514
1538
|
metadata: Optional[Dict] = None,
|
|
1515
|
-
|
|
1539
|
+
event_id=None
|
|
1516
1540
|
) -> Optional[str]:
|
|
1517
|
-
|
|
1518
|
-
|
|
1519
|
-
|
|
1520
|
-
|
|
1521
|
-
|
|
1522
|
-
|
|
1523
|
-
|
|
1524
|
-
|
|
1525
|
-
|
|
1526
|
-
|
|
1527
|
-
|
|
1528
|
-
|
|
1529
|
-
|
|
1530
|
-
|
|
1531
|
-
|
|
1532
|
-
|
|
1533
|
-
|
|
1534
|
-
|
|
1535
|
-
|
|
1536
|
-
|
|
1537
|
-
|
|
1538
|
-
streaming_callback(description, MSG_TYPE.MSG_TYPE_STEP, params)
|
|
1539
|
-
return None
|
|
1541
|
+
if not streaming_callback: return None
|
|
1542
|
+
event_id = str(uuid.uuid4()) if event_type==MSG_TYPE.MSG_TYPE_STEP_START else event_id
|
|
1543
|
+
params = {"type": event_type, "description": description, **(metadata or {})}
|
|
1544
|
+
params["id"] = event_id
|
|
1545
|
+
streaming_callback(description, event_type, params)
|
|
1546
|
+
return event_id
|
|
1547
|
+
|
|
1548
|
+
def _substitute_code_uuids_recursive(data: Any, code_store: Dict[str, str]):
|
|
1549
|
+
"""Recursively finds and replaces code UUIDs in tool parameters."""
|
|
1550
|
+
if isinstance(data, dict):
|
|
1551
|
+
for key, value in data.items():
|
|
1552
|
+
if isinstance(value, str) and value in code_store:
|
|
1553
|
+
data[key] = code_store[value]
|
|
1554
|
+
else:
|
|
1555
|
+
_substitute_code_uuids_recursive(value, code_store)
|
|
1556
|
+
elif isinstance(data, list):
|
|
1557
|
+
for i, item in enumerate(data):
|
|
1558
|
+
if isinstance(item, str) and item in code_store:
|
|
1559
|
+
data[i] = code_store[item]
|
|
1560
|
+
else:
|
|
1561
|
+
_substitute_code_uuids_recursive(item, code_store)
|
|
1540
1562
|
|
|
1563
|
+
discovery_step_id = log_event("Discovering tools",MSG_TYPE.MSG_TYPE_STEP_START)
|
|
1541
1564
|
# --- 1. Discover Available Tools ---
|
|
1542
1565
|
available_tools = []
|
|
1543
1566
|
if use_mcps and self.mcp:
|
|
1544
|
-
|
|
1567
|
+
discovered_tools = self.mcp.discover_tools(force_refresh=True)
|
|
1568
|
+
if isinstance(use_mcps, list):
|
|
1569
|
+
available_tools.extend([t for t in discovered_tools if t["name"] in use_mcps])
|
|
1570
|
+
|
|
1545
1571
|
if use_data_store:
|
|
1546
1572
|
for store_name in use_data_store:
|
|
1547
1573
|
available_tools.append({
|
|
@@ -1550,19 +1576,33 @@ Provide your response as a single JSON object inside a JSON markdown tag. Use th
|
|
|
1550
1576
|
"input_schema": {"type": "object", "properties": {"query": {"type": "string"}}, "required": ["query"]}
|
|
1551
1577
|
})
|
|
1552
1578
|
|
|
1553
|
-
|
|
1554
|
-
|
|
1555
|
-
|
|
1579
|
+
# Add the new put_code_in_buffer tool definition
|
|
1580
|
+
available_tools.append({
|
|
1581
|
+
"name": "put_code_in_buffer",
|
|
1582
|
+
"description": "Generates a block of code (e.g., Python, SQL) to be used by another tool. It returns a unique 'code_id'. You must then use this 'code_id' as the value for the code parameter in the subsequent tool call. This **does not** execute the code. It only buffers it for future use. Only use it if another tool requires code.",
|
|
1583
|
+
"input_schema": {"type": "object", "properties": {"prompt": {"type": "string", "description": "A detailed natural language description of the code's purpose and requirements."}}, "required": ["prompt"]}
|
|
1584
|
+
})
|
|
1585
|
+
# Add the new refactor_scratchpad tool definition
|
|
1586
|
+
available_tools.append({
|
|
1587
|
+
"name": "refactor_scratchpad",
|
|
1588
|
+
"description": "Rewrites the scratchpad content to clean it and reorganize it. Only use if the scratchpad is messy or contains too much information compared to what you need.",
|
|
1589
|
+
"input_schema": {"type": "object", "properties": {}}
|
|
1590
|
+
})
|
|
1591
|
+
|
|
1592
|
+
formatted_tools_list = "\n".join([f"**{t['name']}**:\n{t['description']}\ninput schema:\n{json.dumps(t['input_schema'])}" for t in available_tools])
|
|
1593
|
+
formatted_tools_list += "\n**request_clarification**:\nUse if the user's request is ambiguous and you can not infer a clear idea of his intent. this tool has no parameters."
|
|
1594
|
+
formatted_tools_list += "\n**final_answer**:\nUse when you are ready to respond to the user. this tool has no parameters."
|
|
1595
|
+
|
|
1596
|
+
if discovery_step_id: log_event("Discovering tools",MSG_TYPE.MSG_TYPE_STEP_END, event_id=discovery_step_id)
|
|
1556
1597
|
|
|
1557
1598
|
# --- 2. Dynamic Reasoning Loop ---
|
|
1558
1599
|
for i in range(max_reasoning_steps):
|
|
1559
|
-
|
|
1560
|
-
|
|
1561
|
-
|
|
1562
|
-
|
|
1563
|
-
|
|
1564
|
-
|
|
1565
|
-
reasoning_prompt_template = f"""You are a logical AI assistant. Your task is to achieve the user's goal by thinking step-by-step and using the available tools.
|
|
1600
|
+
try:
|
|
1601
|
+
reasoning_step_id = log_event(f"Reasoning Step {i+1}/{max_reasoning_steps}", MSG_TYPE.MSG_TYPE_STEP_START)
|
|
1602
|
+
user_context = f'Original User Request: "{original_user_prompt}"'
|
|
1603
|
+
if images: user_context += f'\n(Note: {len(images)} image(s) were provided with this request.)'
|
|
1604
|
+
|
|
1605
|
+
reasoning_prompt_template = f"""You are a logical AI assistant. Your task is to achieve the user's goal by thinking step-by-step and using the available tools.
|
|
1566
1606
|
|
|
1567
1607
|
--- AVAILABLE TOOLS ---
|
|
1568
1608
|
{formatted_tools_list}
|
|
@@ -1577,122 +1617,150 @@ Provide your response as a single JSON object inside a JSON markdown tag. Use th
|
|
|
1577
1617
|
2. **THINK:**
|
|
1578
1618
|
- Does the latest observation completely fulfill the user's original request?
|
|
1579
1619
|
- If YES, your next action MUST be to use the `final_answer` tool.
|
|
1580
|
-
- If NO, what is the single next logical step needed?
|
|
1620
|
+
- If NO, what is the single next logical step needed? This may involve writing code first with `put_code_in_buffer`, then using another tool.
|
|
1581
1621
|
- If you are stuck or the request is ambiguous, use `request_clarification`.
|
|
1582
1622
|
3. **ACT:** Formulate your decision as a JSON object.
|
|
1583
1623
|
"""
|
|
1584
|
-
|
|
1585
|
-
|
|
1586
|
-
|
|
1587
|
-
|
|
1588
|
-
|
|
1589
|
-
|
|
1624
|
+
action_template = {
|
|
1625
|
+
"thought": "My detailed analysis of the last observation and my reasoning for the next action and how it integrates with my global plan.",
|
|
1626
|
+
"action": {
|
|
1627
|
+
"tool_name": "The single tool to use (e.g., 'put_code_in_buffer', 'time_machine::get_current_time', 'final_answer').",
|
|
1628
|
+
"tool_params": {"param1": "value1"},
|
|
1629
|
+
"clarification_question": "(string, ONLY if tool_name is 'request_clarification')"
|
|
1630
|
+
}
|
|
1590
1631
|
}
|
|
1591
|
-
|
|
1592
|
-
|
|
1593
|
-
|
|
1594
|
-
|
|
1595
|
-
|
|
1596
|
-
|
|
1597
|
-
|
|
1598
|
-
images=images if i == 0 else None
|
|
1599
|
-
)
|
|
1600
|
-
|
|
1601
|
-
try:
|
|
1602
|
-
action_data = json.loads(structured_action_response)
|
|
1603
|
-
thought = action_data.get("thought", "No thought was generated.")
|
|
1604
|
-
action = action_data.get("action", {})
|
|
1605
|
-
tool_name = action.get("tool_name")
|
|
1606
|
-
tool_params = action.get("tool_params", {})
|
|
1607
|
-
except (json.JSONDecodeError, TypeError) as e:
|
|
1608
|
-
current_scratchpad += f"\n\n### Step {i+1} Failure\n- **Error:** Failed to generate a valid JSON action: {e}"
|
|
1609
|
-
log_step(f"\n\n### Step {i+1} Failure\n- **Error:** Failed to generate a valid JSON action: {e}", "scratchpad", is_start=False)
|
|
1610
|
-
if reasoning_step_id:
|
|
1611
|
-
log_step(f"Reasoning Step {i+1}/{max_reasoning_steps}", "reasoning_step", metadata={"id": reasoning_step_id, "error": str(e)}, is_start=False)
|
|
1612
|
-
break
|
|
1632
|
+
if debug: log_prompt(reasoning_prompt_template, f"REASONING PROMPT (Step {i+1})")
|
|
1633
|
+
structured_action_response = self.generate_code(
|
|
1634
|
+
prompt=reasoning_prompt_template, template=json.dumps(action_template, indent=2),
|
|
1635
|
+
system_prompt=reasoning_system_prompt, temperature=decision_temperature,
|
|
1636
|
+
images=images if i == 0 else None
|
|
1637
|
+
)
|
|
1638
|
+
if debug: log_prompt(structured_action_response, f"RAW REASONING RESPONSE (Step {i+1})")
|
|
1613
1639
|
|
|
1614
|
-
|
|
1615
|
-
|
|
1616
|
-
|
|
1617
|
-
|
|
1640
|
+
try:
|
|
1641
|
+
action_data = robust_json_parser(structured_action_response)
|
|
1642
|
+
thought = action_data.get("thought", "No thought was generated.")
|
|
1643
|
+
action = action_data.get("action", {})
|
|
1644
|
+
if isinstance(action,str):
|
|
1645
|
+
tool_name = action
|
|
1646
|
+
tool_params = {}
|
|
1647
|
+
else:
|
|
1648
|
+
tool_name = action.get("tool_name")
|
|
1649
|
+
tool_params = action.get("tool_params", {})
|
|
1650
|
+
except (json.JSONDecodeError, TypeError) as e:
|
|
1651
|
+
current_scratchpad += f"\n\n### Step {i+1} Failure\n- **Error:** Failed to generate a valid JSON action: {e}"
|
|
1652
|
+
log_event(f"Step Failure: Invalid JSON action.", MSG_TYPE.MSG_TYPE_EXCEPTION, metadata={"details": str(e)})
|
|
1653
|
+
if reasoning_step_id: log_event(f"Reasoning Step {i+1}/{max_reasoning_steps}", MSG_TYPE.MSG_TYPE_STEP_END, metadata={"error": str(e)}, event_id=reasoning_step_id)
|
|
1654
|
+
|
|
1618
1655
|
|
|
1619
|
-
|
|
1620
|
-
|
|
1621
|
-
log_step(f"\n\n### Step {i+1} Failure\n- **Error:** Did not specify a tool name.", "scratchpad", is_start=False)
|
|
1622
|
-
if reasoning_step_id:
|
|
1623
|
-
log_step(f"Reasoning Step {i+1}/{max_reasoning_steps}", "reasoning_step", metadata={"id": reasoning_step_id}, is_start=False)
|
|
1624
|
-
break
|
|
1656
|
+
current_scratchpad += f"\n\n### Step {i+1}: Thought\n{thought}"
|
|
1657
|
+
log_event(f"Thought: {thought}", MSG_TYPE.MSG_TYPE_THOUGHT_CONTENT)
|
|
1625
1658
|
|
|
1626
|
-
|
|
1627
|
-
|
|
1628
|
-
|
|
1629
|
-
|
|
1630
|
-
|
|
1631
|
-
|
|
1632
|
-
|
|
1633
|
-
|
|
1634
|
-
|
|
1635
|
-
|
|
1636
|
-
|
|
1637
|
-
|
|
1638
|
-
|
|
1639
|
-
|
|
1659
|
+
if not tool_name:
|
|
1660
|
+
# Handle error...
|
|
1661
|
+
break
|
|
1662
|
+
|
|
1663
|
+
# --- Handle special, non-executing tools ---
|
|
1664
|
+
if tool_name == "request_clarification":
|
|
1665
|
+
# Handle clarification...
|
|
1666
|
+
return {"final_answer": action.get("clarification_question", "Could you please provide more details?"), "final_scratchpad": current_scratchpad, "tool_calls": tool_calls_this_turn, "sources": sources_this_turn, "clarification_required": True, "error": None}
|
|
1667
|
+
|
|
1668
|
+
if tool_name == "final_answer":
|
|
1669
|
+
current_scratchpad += f"\n\n### Step {i+1}: Action\n- **Action:** Decided to formulate the final answer."
|
|
1670
|
+
log_event("Action: Formulate final answer.", MSG_TYPE.MSG_TYPE_THOUGHT_CHUNK)
|
|
1671
|
+
if reasoning_step_id: log_event(f"Reasoning Step {i+1}/{max_reasoning_steps}",MSG_TYPE.MSG_TYPE_STEP_END, event_id=reasoning_step_id)
|
|
1672
|
+
break
|
|
1640
1673
|
|
|
1641
|
-
|
|
1642
|
-
|
|
1643
|
-
|
|
1644
|
-
|
|
1645
|
-
|
|
1646
|
-
|
|
1647
|
-
|
|
1648
|
-
|
|
1649
|
-
|
|
1650
|
-
|
|
1651
|
-
|
|
1674
|
+
# --- Handle the `put_code_in_buffer` tool specifically ---
|
|
1675
|
+
if tool_name == 'put_code_in_buffer':
|
|
1676
|
+
code_gen_id = log_event(f"Generating code...", MSG_TYPE.MSG_TYPE_STEP_START, metadata={"name": "put_code_in_buffer", "id": "gencode"})
|
|
1677
|
+
code_prompt = tool_params.get("prompt", "Generate the requested code.")
|
|
1678
|
+
|
|
1679
|
+
# Use a specific system prompt to get raw code
|
|
1680
|
+
code_generation_system_prompt = "You are a code generation assistant. Generate ONLY the raw code based on the user's request. Do not add any explanations, markdown code fences, or other text outside of the code itself."
|
|
1681
|
+
generated_code = self.generate_code(prompt=code_prompt, system_prompt=code_generation_system_prompt + "\n----\n" + reasoning_prompt_template, **llm_generation_kwargs)
|
|
1682
|
+
|
|
1683
|
+
code_uuid = str(uuid.uuid4())
|
|
1684
|
+
generated_code_store[code_uuid] = generated_code
|
|
1685
|
+
|
|
1686
|
+
tool_result = {"status": "success", "code_id": code_uuid, "summary": f"Code generated successfully. Use this ID in the next tool call that requires code."}
|
|
1687
|
+
tool_calls_this_turn.append({"name": "put_code_in_buffer", "params": tool_params, "result": tool_result})
|
|
1688
|
+
observation_text = f"```json\n{json.dumps(tool_result, indent=2)}\n```"
|
|
1689
|
+
current_scratchpad += f"\n\n### Step {i+1}: Observation\n- **Action:** Called `{tool_name}`\n- **Result:**\n{observation_text}"
|
|
1690
|
+
log_event(f"Observation: Code generated with ID: {code_uuid}", MSG_TYPE.MSG_TYPE_OBSERVATION)
|
|
1691
|
+
if code_gen_id: log_event(f"Generating code...", MSG_TYPE.MSG_TYPE_TOOL_CALL, metadata={"id": code_gen_id, "result": tool_result})
|
|
1692
|
+
if reasoning_step_id: log_event(f"Reasoning Step {i+1}/{max_reasoning_steps}", MSG_TYPE.MSG_TYPE_STEP_END, event_id= reasoning_step_id)
|
|
1693
|
+
continue # Go to the next reasoning step immediately
|
|
1694
|
+
if tool_name == 'refactor_scratchpad':
|
|
1695
|
+
scratchpad_cleaning_prompt = f"""Enhance this scratchpad content to be more organized and comprehensive. Keep relevant experience information and remove any useless redundancies. Try to log learned things from the context so that you won't make the same mistakes again. Do not remove the main objective information or any crucial information that may be useful for the next iterations. Answer directly with the new scratchpad content without any comments.
|
|
1696
|
+
--- YOUR INTERNAL SCRATCHPAD (Work History & Analysis) ---
|
|
1697
|
+
{current_scratchpad}
|
|
1698
|
+
--- END OF SCRATCHPAD ---"""
|
|
1699
|
+
current_scratchpad = self.generate_text(scratchpad_cleaning_prompt)
|
|
1700
|
+
log_event(f"New scratchpad:\n{current_scratchpad}")
|
|
1701
|
+
|
|
1702
|
+
# --- Substitute UUIDs and Execute Standard Tools ---
|
|
1703
|
+
log_event(f"Calling tool: `{tool_name}` with params:\n{dict_to_markdown(tool_params)}", MSG_TYPE.MSG_TYPE_STEP)
|
|
1704
|
+
_substitute_code_uuids_recursive(tool_params, generated_code_store)
|
|
1705
|
+
|
|
1706
|
+
tool_call_id = log_event(f"Executing tool: {tool_name}",MSG_TYPE.MSG_TYPE_STEP_START, metadata={"name": tool_name, "parameters": tool_params, "id":"executing tool"})
|
|
1707
|
+
tool_result = None
|
|
1708
|
+
try:
|
|
1709
|
+
if tool_name.startswith("research::") and use_data_store:
|
|
1710
|
+
store_name = tool_name.split("::")[1]
|
|
1711
|
+
rag_callable = use_data_store.get(store_name, {}).get("callable")
|
|
1712
|
+
query = tool_params.get("query", "")
|
|
1713
|
+
retrieved_chunks = rag_callable(query, rag_top_k=rag_top_k, rag_min_similarity_percent=rag_min_similarity_percent)
|
|
1714
|
+
if retrieved_chunks:
|
|
1715
|
+
sources_this_turn.extend(retrieved_chunks)
|
|
1716
|
+
tool_result = {"status": "success", "summary": f"Found {len(retrieved_chunks)} relevant chunks.", "chunks": retrieved_chunks}
|
|
1717
|
+
else:
|
|
1718
|
+
tool_result = {"status": "success", "summary": "No relevant documents found."}
|
|
1719
|
+
elif use_mcps and self.mcp:
|
|
1720
|
+
mcp_result = self.mcp.execute_tool(tool_name, tool_params, lollms_client_instance=self)
|
|
1721
|
+
tool_result = {"status": "success", "output": mcp_result} if not (isinstance(mcp_result, dict) and "error" in mcp_result) else {"status": "failure", **mcp_result}
|
|
1652
1722
|
else:
|
|
1653
|
-
tool_result = {"status": "
|
|
1654
|
-
|
|
1655
|
-
|
|
1656
|
-
tool_result = {"status": "
|
|
1723
|
+
tool_result = {"status": "failure", "error": f"Tool '{tool_name}' not found."}
|
|
1724
|
+
except Exception as e:
|
|
1725
|
+
trace_exception(e)
|
|
1726
|
+
tool_result = {"status": "failure", "error": f"Exception executing tool: {str(e)}"}
|
|
1727
|
+
|
|
1728
|
+
if tool_call_id: log_event(f"Executing tool: {tool_name}", MSG_TYPE.MSG_TYPE_STEP_END, metadata={"result": tool_result}, event_id= tool_call_id)
|
|
1729
|
+
|
|
1730
|
+
observation_text = ""
|
|
1731
|
+
sanitized_result = {}
|
|
1732
|
+
if isinstance(tool_result, dict):
|
|
1733
|
+
sanitized_result = tool_result.copy()
|
|
1734
|
+
summarized_fields = {}
|
|
1735
|
+
for key, value in tool_result.items():
|
|
1736
|
+
if isinstance(value, str) and key.endswith("_base64") and len(value) > 256:
|
|
1737
|
+
sanitized_result[key] = f"[Image was generated. Size: {len(value)} bytes]"
|
|
1738
|
+
continue
|
|
1739
|
+
if isinstance(value, str) and len(self.tokenize(value)) > output_summarization_threshold:
|
|
1740
|
+
if streaming_callback: streaming_callback(f"Summarizing long output from field '{key}'...", MSG_TYPE.MSG_TYPE_STEP, {"type": "summarization"})
|
|
1741
|
+
summary = self.sequential_summarize(text=value, chunk_processing_prompt=f"Summarize key info from this chunk of '{key}'.", callback=streaming_callback)
|
|
1742
|
+
summarized_fields[key] = summary
|
|
1743
|
+
sanitized_result[key] = f"[Content summarized, see summary below. Original length: {len(value)} chars]"
|
|
1744
|
+
observation_text = f"```json\n{json.dumps(sanitized_result, indent=2)}\n```"
|
|
1745
|
+
if summarized_fields:
|
|
1746
|
+
observation_text += "\n\n**Summaries of Long Outputs:**"
|
|
1747
|
+
for key, summary in summarized_fields.items():
|
|
1748
|
+
observation_text += f"\n- **Summary of '{key}':**\n{summary}"
|
|
1657
1749
|
else:
|
|
1658
|
-
|
|
1659
|
-
|
|
1660
|
-
|
|
1661
|
-
|
|
1662
|
-
|
|
1663
|
-
|
|
1664
|
-
|
|
1665
|
-
|
|
1666
|
-
|
|
1667
|
-
|
|
1668
|
-
|
|
1669
|
-
|
|
1670
|
-
for key, value in tool_result.items():
|
|
1671
|
-
if isinstance(value, str) and key.endswith("_base64") and len(value) > 256:
|
|
1672
|
-
sanitized_result[key] = f"[Image was generated. Size: {len(value)} bytes]"
|
|
1673
|
-
continue
|
|
1674
|
-
if isinstance(value, str) and len(self.tokenize(value)) > output_summarization_threshold:
|
|
1675
|
-
if streaming_callback: streaming_callback(f"Summarizing long output from field '{key}'...", MSG_TYPE.MSG_TYPE_STEP, {"type": "summarization"})
|
|
1676
|
-
summary = self.sequential_summarize(text=value, chunk_processing_prompt=f"Summarize key info from this chunk of '{key}'.", callback=streaming_callback)
|
|
1677
|
-
summarized_fields[key] = summary
|
|
1678
|
-
sanitized_result[key] = f"[Content summarized, see summary below. Original length: {len(value)} chars]"
|
|
1679
|
-
observation_text = f"```json\n{json.dumps(sanitized_result, indent=2)}\n```"
|
|
1680
|
-
if summarized_fields:
|
|
1681
|
-
observation_text += "\n\n**Summaries of Long Outputs:**"
|
|
1682
|
-
for key, summary in summarized_fields.items():
|
|
1683
|
-
observation_text += f"\n- **Summary of '{key}':**\n{summary}"
|
|
1684
|
-
else:
|
|
1685
|
-
observation_text = f"Tool returned non-dictionary output: {str(tool_result)}"
|
|
1686
|
-
|
|
1687
|
-
tool_calls_this_turn.append({"name": tool_name, "params": tool_params, "result": tool_result})
|
|
1688
|
-
current_scratchpad += f"\n\n### Step {i+1}: Observation\n- **Action:** Called `{tool_name}`\n- **Result:**\n{observation_text}"
|
|
1689
|
-
log_step(f"### Step {i+1}: Observation\n- **Action:** Called `{tool_name}`\n", "scratchpad", is_start=False)
|
|
1690
|
-
|
|
1691
|
-
if reasoning_step_id:
|
|
1692
|
-
log_step(f"Reasoning Step {i+1}/{max_reasoning_steps}", "reasoning_step", metadata={"id": reasoning_step_id}, is_start=False)
|
|
1693
|
-
|
|
1750
|
+
observation_text = f"Tool returned non-dictionary output: {str(tool_result)}"
|
|
1751
|
+
|
|
1752
|
+
tool_calls_this_turn.append({"name": tool_name, "params": tool_params, "result": tool_result})
|
|
1753
|
+
current_scratchpad += f"\n\n### Step {i+1}: Observation\n- **Action:** Called `{tool_name}`\n- **Result:**\n{observation_text}"
|
|
1754
|
+
log_event(f"Observation: Result from `{tool_name}`:\n{dict_to_markdown(sanitized_result)}", MSG_TYPE.MSG_TYPE_OBSERVATION)
|
|
1755
|
+
|
|
1756
|
+
if reasoning_step_id: log_event(f"Reasoning Step {i+1}/{max_reasoning_steps}", MSG_TYPE.MSG_TYPE_STEP_END, event_id = reasoning_step_id)
|
|
1757
|
+
except Exception as ex:
|
|
1758
|
+
trace_exception(ex)
|
|
1759
|
+
current_scratchpad += f"\n\n### Error : {ex}"
|
|
1760
|
+
if reasoning_step_id: log_event(f"Reasoning Step {i+1}/{max_reasoning_steps}", MSG_TYPE.MSG_TYPE_STEP_END, event_id = reasoning_step_id)
|
|
1761
|
+
|
|
1694
1762
|
# --- Final Answer Synthesis ---
|
|
1695
|
-
synthesis_id =
|
|
1763
|
+
synthesis_id = log_event("Synthesizing final answer...", MSG_TYPE.MSG_TYPE_STEP_START)
|
|
1696
1764
|
|
|
1697
1765
|
final_answer_prompt = f"""You are an AI assistant. Provide a final, comprehensive answer based on your work.
|
|
1698
1766
|
--- Original User Request ---
|
|
@@ -1704,11 +1772,12 @@ Provide your response as a single JSON object inside a JSON markdown tag. Use th
|
|
|
1704
1772
|
- If images were provided by the user, incorporate your analysis of them into the answer.
|
|
1705
1773
|
- Do not talk about your internal process unless it's necessary to explain why you couldn't find an answer.
|
|
1706
1774
|
"""
|
|
1775
|
+
if debug: log_prompt(final_answer_prompt, "FINAL ANSWER SYNTHESIS PROMPT")
|
|
1707
1776
|
final_answer_text = self.generate_text(prompt=final_answer_prompt, system_prompt=system_prompt, images=images, stream=streaming_callback is not None, streaming_callback=streaming_callback, temperature=final_answer_temperature, **llm_generation_kwargs)
|
|
1708
1777
|
final_answer = self.remove_thinking_blocks(final_answer_text)
|
|
1778
|
+
if debug: log_prompt(final_answer_text, "FINAL ANSWER RESPONSE")
|
|
1709
1779
|
|
|
1710
|
-
if synthesis_id:
|
|
1711
|
-
log_step("Synthesizing final answer...", "final_answer_synthesis", metadata={"id": synthesis_id}, is_start=False)
|
|
1780
|
+
if synthesis_id: log_event("Synthesizing final answer...", MSG_TYPE.MSG_TYPE_STEP_END, event_id= synthesis_id)
|
|
1712
1781
|
|
|
1713
1782
|
return {
|
|
1714
1783
|
"final_answer": final_answer,
|
|
@@ -1718,7 +1787,6 @@ Provide your response as a single JSON object inside a JSON markdown tag. Use th
|
|
|
1718
1787
|
"clarification_required": False,
|
|
1719
1788
|
"error": None
|
|
1720
1789
|
}
|
|
1721
|
-
|
|
1722
1790
|
def generate_code(
|
|
1723
1791
|
self,
|
|
1724
1792
|
prompt,
|
|
@@ -1797,7 +1865,7 @@ Do not split the code in multiple tags.
|
|
|
1797
1865
|
while not last_code["is_complete"] and retries < max_retries:
|
|
1798
1866
|
retries += 1
|
|
1799
1867
|
ASCIIColors.info(f"Code block seems incomplete. Attempting continuation ({retries}/{max_retries})...")
|
|
1800
|
-
continuation_prompt = f"{
|
|
1868
|
+
continuation_prompt = f"{prompt}\n\nAssistant:\n{code_content}\n\n{self.user_full_header}The previous code block was incomplete. Continue the code exactly from where it left off. Do not repeat the previous part. Only provide the continuation inside a single {code_tag_format} code tag.\n{self.ai_full_header}"
|
|
1801
1869
|
|
|
1802
1870
|
continuation_response = self.generate_text(
|
|
1803
1871
|
continuation_prompt,
|
|
@@ -2067,7 +2135,7 @@ Do not split the code in multiple tags.
|
|
|
2067
2135
|
response_json_str = re.sub(r",\s*}", "}", response_json_str)
|
|
2068
2136
|
response_json_str = re.sub(r",\s*]", "]", response_json_str)
|
|
2069
2137
|
|
|
2070
|
-
parsed_response =
|
|
2138
|
+
parsed_response = robust_json_parser(response_json_str)
|
|
2071
2139
|
answer = parsed_response.get("answer")
|
|
2072
2140
|
explanation = parsed_response.get("explanation", "")
|
|
2073
2141
|
|
|
@@ -2161,7 +2229,7 @@ Do not split the code in multiple tags.
|
|
|
2161
2229
|
response_json_str = re.sub(r",\s*}", "}", response_json_str)
|
|
2162
2230
|
response_json_str = re.sub(r",\s*]", "]", response_json_str)
|
|
2163
2231
|
|
|
2164
|
-
result =
|
|
2232
|
+
result = robust_json_parser(response_json_str)
|
|
2165
2233
|
index = result.get("index")
|
|
2166
2234
|
explanation = result.get("explanation", "")
|
|
2167
2235
|
|
|
@@ -2234,7 +2302,7 @@ Do not split the code in multiple tags.
|
|
|
2234
2302
|
response_json_str = re.sub(r",\s*}", "}", response_json_str)
|
|
2235
2303
|
response_json_str = re.sub(r",\s*]", "]", response_json_str)
|
|
2236
2304
|
|
|
2237
|
-
result =
|
|
2305
|
+
result = robust_json_parser(response_json_str)
|
|
2238
2306
|
ranking = result.get("ranking")
|
|
2239
2307
|
explanations = result.get("explanations", []) if return_explanation else None
|
|
2240
2308
|
|
|
@@ -2858,5 +2926,3 @@ def chunk_text(text, tokenizer, detokenizer, chunk_size, overlap, use_separators
|
|
|
2858
2926
|
break
|
|
2859
2927
|
|
|
2860
2928
|
return chunks
|
|
2861
|
-
|
|
2862
|
-
|
|
@@ -29,6 +29,8 @@ if False:
|
|
|
29
29
|
from lollms_client import LollmsClient
|
|
30
30
|
from lollms_personality import LollmsPersonality
|
|
31
31
|
|
|
32
|
+
from lollms_client.lollms_utilities import build_image_dicts, robust_json_parser
|
|
33
|
+
from ascii_colors import ASCIIColors, trace_exception
|
|
32
34
|
|
|
33
35
|
class EncryptedString(TypeDecorator):
|
|
34
36
|
"""A SQLAlchemy TypeDecorator for field-level database encryption.
|
|
@@ -564,11 +566,13 @@ class LollmsDiscussion:
|
|
|
564
566
|
self,
|
|
565
567
|
user_message: str,
|
|
566
568
|
personality: Optional['LollmsPersonality'] = None,
|
|
569
|
+
branch_tip_id: Optional[str | None] = None,
|
|
567
570
|
use_mcps: Union[None, bool, List[str]] = None,
|
|
568
571
|
use_data_store: Union[None, Dict[str, Callable]] = None,
|
|
569
572
|
add_user_message: bool = True,
|
|
570
|
-
max_reasoning_steps: int =
|
|
573
|
+
max_reasoning_steps: int = 20,
|
|
571
574
|
images: Optional[List[str]] = None,
|
|
575
|
+
debug: bool = False,
|
|
572
576
|
**kwargs
|
|
573
577
|
) -> Dict[str, 'LollmsMessage']:
|
|
574
578
|
"""Main interaction method that can invoke the dynamic, multi-modal agent.
|
|
@@ -597,6 +601,7 @@ class LollmsDiscussion:
|
|
|
597
601
|
before it must provide a final answer.
|
|
598
602
|
images: A list of base64-encoded images provided by the user, which will
|
|
599
603
|
be passed to the agent or a multi-modal LLM.
|
|
604
|
+
debug: If True, prints full prompts and raw AI responses to the console.
|
|
600
605
|
**kwargs: Additional keyword arguments passed to the underlying generation
|
|
601
606
|
methods, such as 'streaming_callback'.
|
|
602
607
|
|
|
@@ -640,12 +645,21 @@ class LollmsDiscussion:
|
|
|
640
645
|
# Step 3: Execute the appropriate generation logic.
|
|
641
646
|
if is_agentic_turn:
|
|
642
647
|
# --- AGENTIC TURN ---
|
|
648
|
+
prompt_for_agent = self.export("markdown", branch_tip_id if branch_tip_id else self.active_branch_id)
|
|
649
|
+
if debug:
|
|
650
|
+
ASCIIColors.cyan("\n" + "="*50)
|
|
651
|
+
ASCIIColors.cyan("--- DEBUG: AGENTIC TURN TRIGGERED ---")
|
|
652
|
+
ASCIIColors.cyan(f"--- PROMPT FOR AGENT (from discussion history) ---")
|
|
653
|
+
ASCIIColors.magenta(prompt_for_agent)
|
|
654
|
+
ASCIIColors.cyan("="*50 + "\n")
|
|
655
|
+
|
|
643
656
|
agent_result = self.lollmsClient.generate_with_mcp_rag(
|
|
644
|
-
prompt=
|
|
657
|
+
prompt=prompt_for_agent,
|
|
645
658
|
use_mcps=use_mcps,
|
|
646
659
|
use_data_store=use_data_store,
|
|
647
660
|
max_reasoning_steps=max_reasoning_steps,
|
|
648
661
|
images=images,
|
|
662
|
+
debug=debug, # Pass the debug flag down
|
|
649
663
|
**kwargs
|
|
650
664
|
)
|
|
651
665
|
final_content = agent_result.get("final_answer", "The agent did not produce a final answer.")
|
|
@@ -654,9 +668,27 @@ class LollmsDiscussion:
|
|
|
654
668
|
|
|
655
669
|
else:
|
|
656
670
|
# --- SIMPLE CHAT TURN ---
|
|
671
|
+
if debug:
|
|
672
|
+
prompt_for_chat = self.export("markdown", branch_tip_id if branch_tip_id else self.active_branch_id)
|
|
673
|
+
ASCIIColors.cyan("\n" + "="*50)
|
|
674
|
+
ASCIIColors.cyan("--- DEBUG: SIMPLE CHAT PROMPT ---")
|
|
675
|
+
ASCIIColors.magenta(prompt_for_chat)
|
|
676
|
+
ASCIIColors.cyan("="*50 + "\n")
|
|
677
|
+
|
|
657
678
|
# For simple chat, we also need to consider images if the model is multi-modal
|
|
658
679
|
final_raw_response = self.lollmsClient.chat(self, images=images, **kwargs) or ""
|
|
659
|
-
|
|
680
|
+
|
|
681
|
+
if debug:
|
|
682
|
+
ASCIIColors.cyan("\n" + "="*50)
|
|
683
|
+
ASCIIColors.cyan("--- DEBUG: RAW SIMPLE CHAT RESPONSE ---")
|
|
684
|
+
ASCIIColors.magenta(final_raw_response)
|
|
685
|
+
ASCIIColors.cyan("="*50 + "\n")
|
|
686
|
+
|
|
687
|
+
if isinstance(final_raw_response, dict) and final_raw_response.get("status") == "error":
|
|
688
|
+
raise Exception(final_raw_response.get("message", "Unknown error from lollmsClient.chat"))
|
|
689
|
+
else:
|
|
690
|
+
final_content = self.lollmsClient.remove_thinking_blocks(final_raw_response)
|
|
691
|
+
|
|
660
692
|
final_scratchpad = None # No agentic scratchpad in a simple turn
|
|
661
693
|
|
|
662
694
|
# Step 4: Post-generation processing and statistics.
|
|
@@ -694,7 +726,7 @@ class LollmsDiscussion:
|
|
|
694
726
|
|
|
695
727
|
return {"user_message": user_msg, "ai_message": ai_message_obj}
|
|
696
728
|
|
|
697
|
-
def regenerate_branch(self, **kwargs) -> Dict[str, 'LollmsMessage']:
|
|
729
|
+
def regenerate_branch(self, branch_tip_id=None, **kwargs) -> Dict[str, 'LollmsMessage']:
|
|
698
730
|
"""Regenerates the last AI response in the active branch.
|
|
699
731
|
|
|
700
732
|
It deletes the previous AI response and calls chat() again with the
|
|
@@ -706,8 +738,15 @@ class LollmsDiscussion:
|
|
|
706
738
|
Returns:
|
|
707
739
|
A dictionary with the user and the newly generated AI message.
|
|
708
740
|
"""
|
|
741
|
+
if not branch_tip_id:
|
|
742
|
+
branch_tip_id = self.active_branch_id
|
|
709
743
|
if not self.active_branch_id or self.active_branch_id not in self._message_index:
|
|
710
|
-
|
|
744
|
+
if len(self._message_index)>0:
|
|
745
|
+
ASCIIColors.warning("No active message to regenerate from.\n")
|
|
746
|
+
ASCIIColors.warning(f"Using last available message:{list(self._message_index.keys())[-1]}\n")
|
|
747
|
+
else:
|
|
748
|
+
branch_tip_id = list(self._message_index.keys())[-1]
|
|
749
|
+
raise ValueError("No active message to regenerate from.")
|
|
711
750
|
|
|
712
751
|
last_message_orm = self._message_index[self.active_branch_id]
|
|
713
752
|
|
|
@@ -722,11 +761,8 @@ class LollmsDiscussion:
|
|
|
722
761
|
if self._is_db_backed:
|
|
723
762
|
self._messages_to_delete_from_db.add(last_message_id)
|
|
724
763
|
|
|
725
|
-
|
|
726
|
-
|
|
727
|
-
|
|
728
|
-
prompt_to_regenerate = self._message_index[self.active_branch_id].content
|
|
729
|
-
return self.chat(user_message=prompt_to_regenerate, add_user_message=False, **kwargs)
|
|
764
|
+
return self.chat(user_message="", add_user_message=False, branch_tip_id=branch_tip_id, **kwargs)
|
|
765
|
+
|
|
730
766
|
def delete_branch(self, message_id: str):
|
|
731
767
|
"""Deletes a message and its entire descendant branch.
|
|
732
768
|
|
|
@@ -801,7 +837,7 @@ class LollmsDiscussion:
|
|
|
801
837
|
|
|
802
838
|
Args:
|
|
803
839
|
format_type: The target format. Can be "lollms_text", "openai_chat",
|
|
804
|
-
or "
|
|
840
|
+
"ollama_chat", or "markdown".
|
|
805
841
|
branch_tip_id: The ID of the message to use as the end of the context.
|
|
806
842
|
Defaults to the active branch ID.
|
|
807
843
|
max_allowed_tokens: The maximum number of tokens the final prompt can contain.
|
|
@@ -809,15 +845,15 @@ class LollmsDiscussion:
|
|
|
809
845
|
|
|
810
846
|
Returns:
|
|
811
847
|
A string for "lollms_text" or a list of dictionaries for "openai_chat"
|
|
812
|
-
and "ollama_chat".
|
|
848
|
+
and "ollama_chat". For "markdown", returns a Markdown-formatted string.
|
|
813
849
|
|
|
814
850
|
Raises:
|
|
815
851
|
ValueError: If an unsupported format_type is provided.
|
|
816
852
|
"""
|
|
817
853
|
branch_tip_id = branch_tip_id or self.active_branch_id
|
|
818
|
-
if not branch_tip_id and format_type in ["lollms_text", "openai_chat", "ollama_chat"]:
|
|
854
|
+
if not branch_tip_id and format_type in ["lollms_text", "openai_chat", "ollama_chat", "markdown"]:
|
|
819
855
|
return "" if format_type == "lollms_text" else []
|
|
820
|
-
|
|
856
|
+
|
|
821
857
|
branch = self.get_branch(branch_tip_id)
|
|
822
858
|
full_system_prompt = self.system_prompt # Simplified for clarity
|
|
823
859
|
participants = self.participants or {}
|
|
@@ -829,14 +865,12 @@ class LollmsDiscussion:
|
|
|
829
865
|
|
|
830
866
|
# --- NATIVE LOLLMS_TEXT FORMAT ---
|
|
831
867
|
if format_type == "lollms_text":
|
|
832
|
-
# --- FIX STARTS HERE ---
|
|
833
868
|
final_prompt_parts = []
|
|
834
869
|
message_parts = [] # Temporary list for correctly ordered messages
|
|
835
|
-
|
|
870
|
+
|
|
836
871
|
current_tokens = 0
|
|
837
872
|
messages_to_render = branch
|
|
838
873
|
|
|
839
|
-
# 1. Handle non-destructive pruning summary
|
|
840
874
|
summary_text = ""
|
|
841
875
|
if self.pruning_summary and self.pruning_point_id:
|
|
842
876
|
pruning_index = -1
|
|
@@ -848,7 +882,6 @@ class LollmsDiscussion:
|
|
|
848
882
|
messages_to_render = branch[pruning_index:]
|
|
849
883
|
summary_text = f"!@>system:\n--- Conversation Summary ---\n{self.pruning_summary.strip()}\n"
|
|
850
884
|
|
|
851
|
-
# 2. Add main system prompt to the final list
|
|
852
885
|
sys_msg_text = ""
|
|
853
886
|
if full_system_prompt:
|
|
854
887
|
sys_msg_text = f"!@>system:\n{full_system_prompt.strip()}\n"
|
|
@@ -856,15 +889,13 @@ class LollmsDiscussion:
|
|
|
856
889
|
if max_allowed_tokens is None or sys_tokens <= max_allowed_tokens:
|
|
857
890
|
final_prompt_parts.append(sys_msg_text)
|
|
858
891
|
current_tokens += sys_tokens
|
|
859
|
-
|
|
860
|
-
# 3. Add pruning summary (if it exists) to the final list
|
|
892
|
+
|
|
861
893
|
if summary_text:
|
|
862
894
|
summary_tokens = self.lollmsClient.count_tokens(summary_text)
|
|
863
895
|
if max_allowed_tokens is None or current_tokens + summary_tokens <= max_allowed_tokens:
|
|
864
896
|
final_prompt_parts.append(summary_text)
|
|
865
897
|
current_tokens += summary_tokens
|
|
866
898
|
|
|
867
|
-
# 4. Build the message list in correct order, respecting token limits
|
|
868
899
|
for msg in reversed(messages_to_render):
|
|
869
900
|
sender_str = msg.sender.replace(':', '').replace('!@>', '')
|
|
870
901
|
content = get_full_content(msg)
|
|
@@ -872,24 +903,21 @@ class LollmsDiscussion:
|
|
|
872
903
|
content += f"\n({len(msg.images)} image(s) attached)"
|
|
873
904
|
msg_text = f"!@>{sender_str}:\n{content}\n"
|
|
874
905
|
msg_tokens = self.lollmsClient.count_tokens(msg_text)
|
|
875
|
-
|
|
906
|
+
|
|
876
907
|
if max_allowed_tokens is not None and current_tokens + msg_tokens > max_allowed_tokens:
|
|
877
908
|
break
|
|
878
|
-
|
|
879
|
-
# Always insert at the beginning of the temporary list
|
|
909
|
+
|
|
880
910
|
message_parts.insert(0, msg_text)
|
|
881
911
|
current_tokens += msg_tokens
|
|
882
|
-
|
|
883
|
-
# 5. Combine system/summary prompts with the message parts
|
|
912
|
+
|
|
884
913
|
final_prompt_parts.extend(message_parts)
|
|
885
914
|
return "".join(final_prompt_parts).strip()
|
|
886
|
-
|
|
887
|
-
|
|
888
|
-
# --- OPENAI & OLLAMA CHAT FORMATS (remains the same and is correct) ---
|
|
915
|
+
|
|
916
|
+
# --- OPENAI & OLLAMA CHAT FORMATS ---
|
|
889
917
|
messages = []
|
|
890
918
|
if full_system_prompt:
|
|
891
919
|
messages.append({"role": "system", "content": full_system_prompt})
|
|
892
|
-
|
|
920
|
+
|
|
893
921
|
for msg in branch:
|
|
894
922
|
if msg.sender_type == 'user':
|
|
895
923
|
role = participants.get(msg.sender, "user")
|
|
@@ -897,6 +925,8 @@ class LollmsDiscussion:
|
|
|
897
925
|
role = participants.get(msg.sender, "assistant")
|
|
898
926
|
|
|
899
927
|
content, images = get_full_content(msg), msg.images or []
|
|
928
|
+
images = build_image_dicts(images)
|
|
929
|
+
|
|
900
930
|
|
|
901
931
|
if format_type == "openai_chat":
|
|
902
932
|
if images:
|
|
@@ -908,18 +938,29 @@ class LollmsDiscussion:
|
|
|
908
938
|
messages.append({"role": role, "content": content_parts})
|
|
909
939
|
else:
|
|
910
940
|
messages.append({"role": role, "content": content})
|
|
911
|
-
|
|
941
|
+
|
|
912
942
|
elif format_type == "ollama_chat":
|
|
913
943
|
message_dict = {"role": role, "content": content}
|
|
944
|
+
|
|
914
945
|
base64_images = [img['data'] for img in images if img['type'] == 'base64']
|
|
915
946
|
if base64_images:
|
|
916
947
|
message_dict["images"] = base64_images
|
|
917
948
|
messages.append(message_dict)
|
|
918
949
|
|
|
950
|
+
elif format_type == "markdown":
|
|
951
|
+
# Create Markdown content based on the role and content
|
|
952
|
+
markdown_line = f"**{role.capitalize()}**: {content}\n"
|
|
953
|
+
if images:
|
|
954
|
+
for img in images:
|
|
955
|
+
img_data = img['data']
|
|
956
|
+
url = f"" if img['type'] == 'base64' else f""
|
|
957
|
+
markdown_line += f"\n{url}\n"
|
|
958
|
+
messages.append(markdown_line)
|
|
959
|
+
|
|
919
960
|
else:
|
|
920
961
|
raise ValueError(f"Unsupported export format_type: {format_type}")
|
|
921
|
-
|
|
922
|
-
return messages
|
|
962
|
+
|
|
963
|
+
return "\n".join(messages) if format_type == "markdown" else messages
|
|
923
964
|
|
|
924
965
|
|
|
925
966
|
def summarize_and_prune(self, max_tokens: int, preserve_last_n: int = 4):
|
|
@@ -966,4 +1007,27 @@ class LollmsDiscussion:
|
|
|
966
1007
|
self.pruning_point_id = pruning_point_message.id
|
|
967
1008
|
|
|
968
1009
|
self.touch()
|
|
969
|
-
print(f"[INFO] Discussion auto-pruned. {len(messages_to_prune)} messages summarized. History preserved.")
|
|
1010
|
+
print(f"[INFO] Discussion auto-pruned. {len(messages_to_prune)} messages summarized. History preserved.")
|
|
1011
|
+
|
|
1012
|
+
def switch_to_branch(self, branch_id):
|
|
1013
|
+
self.active_branch_id = branch_id
|
|
1014
|
+
|
|
1015
|
+
def auto_title(self):
|
|
1016
|
+
try:
|
|
1017
|
+
if self.metadata is None:
|
|
1018
|
+
self.metadata = {}
|
|
1019
|
+
discussion = self.export("markdown")[0:1000]
|
|
1020
|
+
prompt = f"""You are a title builder. Your oibjective is to build a title for the following discussion:
|
|
1021
|
+
{discussion}
|
|
1022
|
+
...
|
|
1023
|
+
"""
|
|
1024
|
+
template = """{
|
|
1025
|
+
"title": "An short but comprehensive discussion title"
|
|
1026
|
+
}"""
|
|
1027
|
+
infos = self.lollmsClient.generate_code(prompt = prompt, template = template)
|
|
1028
|
+
discussion_title = robust_json_parser(infos)["title"]
|
|
1029
|
+
self.metadata['title'] = discussion_title
|
|
1030
|
+
self.commit()
|
|
1031
|
+
return discussion_title
|
|
1032
|
+
except Exception as ex:
|
|
1033
|
+
trace_exception(ex)
|
lollms_client/lollms_types.py
CHANGED
|
@@ -1,7 +1,7 @@
|
|
|
1
1
|
from enum import Enum
|
|
2
2
|
class MSG_TYPE(Enum):
|
|
3
3
|
# Messaging
|
|
4
|
-
MSG_TYPE_CHUNK
|
|
4
|
+
MSG_TYPE_CHUNK = 0 # A chunk of a message (used for classical chat)
|
|
5
5
|
MSG_TYPE_CONTENT = 1 # A full message (for some personality the answer is sent in bulk)
|
|
6
6
|
MSG_TYPE_CONTENT_INVISIBLE_TO_AI = 2 # A full message (for some personality the answer is sent in bulk)
|
|
7
7
|
MSG_TYPE_CONTENT_INVISIBLE_TO_USER = 3 # A full message (for some personality the answer is sent in bulk)
|
|
@@ -36,6 +36,14 @@ class MSG_TYPE(Enum):
|
|
|
36
36
|
MSG_TYPE_TOOL_CALL = 19# a tool call
|
|
37
37
|
MSG_TYPE_TOOL_OUTPUT = 20# the output of the tool
|
|
38
38
|
|
|
39
|
+
MSG_TYPE_REASONING = 21# the ai shows its reasoning
|
|
40
|
+
MSG_TYPE_SCRATCHPAD = 22# the ai shows its scratchpad
|
|
41
|
+
MSG_TYPE_OBSERVATION = 23# the ai shows its reasoning
|
|
42
|
+
|
|
43
|
+
MSG_TYPE_ERROR = 24#a severe error hapened
|
|
44
|
+
MSG_TYPE_GENERATING_TITLE_START = 25#a severe error hapened
|
|
45
|
+
MSG_TYPE_GENERATING_TITLE_END = 26#a severe error hapened
|
|
46
|
+
|
|
39
47
|
|
|
40
48
|
class SENDER_TYPES(Enum):
|
|
41
49
|
SENDER_TYPES_USER = 0 # Sent by user
|
|
@@ -11,6 +11,74 @@ import numpy as np
|
|
|
11
11
|
import json
|
|
12
12
|
from ascii_colors import ASCIIColors, trace_exception
|
|
13
13
|
|
|
14
|
+
def dict_to_markdown(d, indent=0):
|
|
15
|
+
"""
|
|
16
|
+
Formats a dictionary (with potential nested lists and dicts) as a markdown list.
|
|
17
|
+
|
|
18
|
+
Args:
|
|
19
|
+
d (dict): The dictionary to format.
|
|
20
|
+
indent (int): Current indentation level (used recursively).
|
|
21
|
+
|
|
22
|
+
Returns:
|
|
23
|
+
str: The formatted markdown string.
|
|
24
|
+
"""
|
|
25
|
+
lines = []
|
|
26
|
+
indent_str = ' ' * (indent * 2)
|
|
27
|
+
|
|
28
|
+
for key, value in d.items():
|
|
29
|
+
if isinstance(value, dict):
|
|
30
|
+
# Recursively handle nested dictionary
|
|
31
|
+
lines.append(f"{indent_str}- {key}:")
|
|
32
|
+
lines.append(dict_to_markdown(value, indent + 1))
|
|
33
|
+
elif isinstance(value, list):
|
|
34
|
+
lines.append(f"{indent_str}- {key}:")
|
|
35
|
+
for item in value:
|
|
36
|
+
if isinstance(item, dict):
|
|
37
|
+
# Render nested dicts in the list
|
|
38
|
+
lines.append(dict_to_markdown(item, indent + 1))
|
|
39
|
+
else:
|
|
40
|
+
# Render strings or other simple items in the list
|
|
41
|
+
lines.append(f"{' ' * (indent + 1) * 2}- {item}")
|
|
42
|
+
else:
|
|
43
|
+
# Simple key-value pair
|
|
44
|
+
lines.append(f"{indent_str}- {key}: {value}")
|
|
45
|
+
|
|
46
|
+
return "\n".join(lines)
|
|
47
|
+
|
|
48
|
+
def is_base64(s):
|
|
49
|
+
"""Check if the string is a valid base64 encoded string."""
|
|
50
|
+
try:
|
|
51
|
+
# Try to decode and then encode back to check for validity
|
|
52
|
+
import base64
|
|
53
|
+
base64.b64decode(s)
|
|
54
|
+
return True
|
|
55
|
+
except Exception as e:
|
|
56
|
+
return False
|
|
57
|
+
|
|
58
|
+
def build_image_dicts(images):
|
|
59
|
+
"""
|
|
60
|
+
Convert a list of image strings (base64 or URLs) into a list of dictionaries with type and data.
|
|
61
|
+
|
|
62
|
+
Args:
|
|
63
|
+
images (list): List of image strings (either base64-encoded or URLs).
|
|
64
|
+
|
|
65
|
+
Returns:
|
|
66
|
+
list: List of dictionaries in the format {'type': 'base64'/'url', 'data': <image string>}.
|
|
67
|
+
"""
|
|
68
|
+
result = []
|
|
69
|
+
|
|
70
|
+
for img in images:
|
|
71
|
+
if isinstance(img, str):
|
|
72
|
+
if is_base64(img):
|
|
73
|
+
result.append({'type': 'base64', 'data': img})
|
|
74
|
+
else:
|
|
75
|
+
# Assuming it's a URL if not base64
|
|
76
|
+
result.append({'type': 'url', 'data': img})
|
|
77
|
+
else:
|
|
78
|
+
result.append(img)
|
|
79
|
+
|
|
80
|
+
return result
|
|
81
|
+
|
|
14
82
|
def robust_json_parser(json_string: str) -> dict:
|
|
15
83
|
"""
|
|
16
84
|
Parses a possibly malformed JSON string using a series of corrective strategies.
|
|
@@ -294,7 +294,7 @@ class RemoteMCPBinding(LollmsMCPBinding):
|
|
|
294
294
|
|
|
295
295
|
try:
|
|
296
296
|
# Ensure this specific server is connected before executing
|
|
297
|
-
self._ensure_initialized_sync(alias, timeout=
|
|
297
|
+
self._ensure_initialized_sync(alias, timeout=timeout)
|
|
298
298
|
return self._run_async(self._execute_tool_async(alias, actual_tool_name, params), timeout=timeout)
|
|
299
299
|
except (ConnectionError, RuntimeError) as e:
|
|
300
300
|
return {"error": f"{self.binding_name}: Connection issue for server '{alias}': {e}", "status_code": 503}
|
|
@@ -342,4 +342,4 @@ class RemoteMCPBinding(LollmsMCPBinding):
|
|
|
342
342
|
ASCIIColors.info(f"{self.binding_name}: Remote connection binding closed.")
|
|
343
343
|
|
|
344
344
|
def get_binding_config(self) -> Dict[str, Any]:
|
|
345
|
-
return self.config
|
|
345
|
+
return self.config
|
|
@@ -26,10 +26,10 @@ examples/mcp_examples/openai_mcp.py,sha256=7IEnPGPXZgYZyiES_VaUbQ6viQjenpcUxGiHE
|
|
|
26
26
|
examples/mcp_examples/run_remote_mcp_example_v2.py,sha256=bbNn93NO_lKcFzfIsdvJJijGx2ePFTYfknofqZxMuRM,14626
|
|
27
27
|
examples/mcp_examples/run_standard_mcp_example.py,sha256=GSZpaACPf3mDPsjA8esBQVUsIi7owI39ca5avsmvCxA,9419
|
|
28
28
|
examples/test_local_models/local_chat.py,sha256=slakja2zaHOEAUsn2tn_VmI4kLx6luLBrPqAeaNsix8,456
|
|
29
|
-
lollms_client/__init__.py,sha256=
|
|
29
|
+
lollms_client/__init__.py,sha256=Oa7LTqicgM_xArVjSRh-oGxuAXBR5QimNkcCCvsO8qo,1047
|
|
30
30
|
lollms_client/lollms_config.py,sha256=goEseDwDxYJf3WkYJ4IrLXwg3Tfw73CXV2Avg45M_hE,21876
|
|
31
|
-
lollms_client/lollms_core.py,sha256=
|
|
32
|
-
lollms_client/lollms_discussion.py,sha256=
|
|
31
|
+
lollms_client/lollms_core.py,sha256=J6lGDhUiIS0jqY81AsLp6Nv6pLJbqlDCgxZI-1J-MNc,158724
|
|
32
|
+
lollms_client/lollms_discussion.py,sha256=9mpEFz8UWMXrbyZonnq2nt1u5jDEgQqddHghUhSy9Yc,47516
|
|
33
33
|
lollms_client/lollms_js_analyzer.py,sha256=01zUvuO2F_lnUe_0NLxe1MF5aHE1hO8RZi48mNPv-aw,8361
|
|
34
34
|
lollms_client/lollms_llm_binding.py,sha256=Kpzhs5Jx8eAlaaUacYnKV7qIq2wbME5lOEtKSfJKbpg,12161
|
|
35
35
|
lollms_client/lollms_mcp_binding.py,sha256=0rK9HQCBEGryNc8ApBmtOlhKE1Yfn7X7xIQssXxS2Zc,8933
|
|
@@ -40,13 +40,13 @@ lollms_client/lollms_tti_binding.py,sha256=afO0-d-Kqsmh8UHTijTvy6dZAt-XDB6R-IHmd
|
|
|
40
40
|
lollms_client/lollms_ttm_binding.py,sha256=FjVVSNXOZXK1qvcKEfxdiX6l2b4XdGOSNnZ0utAsbDg,4167
|
|
41
41
|
lollms_client/lollms_tts_binding.py,sha256=5cJYECj8PYLJAyB6SEH7_fhHYK3Om-Y3arkygCnZ24o,4342
|
|
42
42
|
lollms_client/lollms_ttv_binding.py,sha256=KkTaHLBhEEdt4sSVBlbwr5i_g_TlhcrwrT-7DjOsjWQ,4131
|
|
43
|
-
lollms_client/lollms_types.py,sha256=
|
|
44
|
-
lollms_client/lollms_utilities.py,sha256=
|
|
43
|
+
lollms_client/lollms_types.py,sha256=0iSH1QHRRD-ddBqoL9EEKJ8wWCuwDUlN_FrfbCdg7Lw,3522
|
|
44
|
+
lollms_client/lollms_utilities.py,sha256=zx1X4lAXQ2eCUM4jDpu_1QV5oMGdFkpaSEdTASmaiqE,13545
|
|
45
45
|
lollms_client/llm_bindings/__init__.py,sha256=9sWGpmWSSj6KQ8H4lKGCjpLYwhnVdL_2N7gXCphPqh4,14
|
|
46
46
|
lollms_client/llm_bindings/llamacpp/__init__.py,sha256=Qj5RvsgPeHGNfb5AEwZSzFwAp4BOWjyxmm9qBNtstrc,63716
|
|
47
|
-
lollms_client/llm_bindings/lollms/__init__.py,sha256=
|
|
47
|
+
lollms_client/llm_bindings/lollms/__init__.py,sha256=jfiCGJqMensJ7RymeGDDJOsdokEdlORpw9ND_Q30GYc,17831
|
|
48
48
|
lollms_client/llm_bindings/ollama/__init__.py,sha256=QufsYqak2VlA2XGbzks8u55yNJFeDH2V35NGeZABkm8,32554
|
|
49
|
-
lollms_client/llm_bindings/openai/__init__.py,sha256=
|
|
49
|
+
lollms_client/llm_bindings/openai/__init__.py,sha256=i4T-QncGhrloslIF3zTlf6ZGJNZA43KCeFyOixD3Ums,19239
|
|
50
50
|
lollms_client/llm_bindings/openllm/__init__.py,sha256=xv2XDhJNCYe6NPnWBboDs24AQ1VJBOzsTuMcmuQ6xYY,29864
|
|
51
51
|
lollms_client/llm_bindings/pythonllamacpp/__init__.py,sha256=7dM42TCGKh0eV0njNL1tc9cInhyvBRIXzN3dcy12Gl0,33551
|
|
52
52
|
lollms_client/llm_bindings/tensor_rt/__init__.py,sha256=nPaNhGRd-bsG0UlYwcEqjd_UagCMEf5VEbBUW-GWu6A,32203
|
|
@@ -57,7 +57,7 @@ lollms_client/mcp_bindings/local_mcp/default_tools/file_writer/file_writer.py,sh
|
|
|
57
57
|
lollms_client/mcp_bindings/local_mcp/default_tools/generate_image_from_prompt/generate_image_from_prompt.py,sha256=THtZsMxNnXZiBdkwoBlfbWY2C5hhDdmPtnM-8cSKN6s,9488
|
|
58
58
|
lollms_client/mcp_bindings/local_mcp/default_tools/internet_search/internet_search.py,sha256=PLC31-D04QKTOTb1uuCHnrAlpysQjsk89yIJngK0VGc,4586
|
|
59
59
|
lollms_client/mcp_bindings/local_mcp/default_tools/python_interpreter/python_interpreter.py,sha256=McDCBVoVrMDYgU7EYtyOY7mCk1uEeTea0PSD69QqDsQ,6228
|
|
60
|
-
lollms_client/mcp_bindings/remote_mcp/__init__.py,sha256=
|
|
60
|
+
lollms_client/mcp_bindings/remote_mcp/__init__.py,sha256=NBhmk9g9iMrzoraxbQo7wacUTTB1a_azZekuRPS8SO8,16606
|
|
61
61
|
lollms_client/mcp_bindings/standard_mcp/__init__.py,sha256=zpF4h8cTUxoERI-xcVjmS_V772LK0V4jegjz2k1PK98,31658
|
|
62
62
|
lollms_client/stt_bindings/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
63
63
|
lollms_client/stt_bindings/lollms/__init__.py,sha256=jBz3285atdPRqQe9ZRrb-AvjqKRB4f8tjLXjma0DLfE,6082
|
|
@@ -79,8 +79,8 @@ lollms_client/tts_bindings/piper_tts/__init__.py,sha256=0IEWG4zH3_sOkSb9WbZzkeV5
|
|
|
79
79
|
lollms_client/tts_bindings/xtts/__init__.py,sha256=FgcdUH06X6ZR806WQe5ixaYx0QoxtAcOgYo87a2qxYc,18266
|
|
80
80
|
lollms_client/ttv_bindings/__init__.py,sha256=UZ8o2izQOJLQgtZ1D1cXoNST7rzqW22rL2Vufc7ddRc,3141
|
|
81
81
|
lollms_client/ttv_bindings/lollms/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
82
|
-
lollms_client-0.
|
|
83
|
-
lollms_client-0.
|
|
84
|
-
lollms_client-0.
|
|
85
|
-
lollms_client-0.
|
|
86
|
-
lollms_client-0.
|
|
82
|
+
lollms_client-0.25.0.dist-info/licenses/LICENSE,sha256=HrhfyXIkWY2tGFK11kg7vPCqhgh5DcxleloqdhrpyMY,11558
|
|
83
|
+
lollms_client-0.25.0.dist-info/METADATA,sha256=BEfNVx_C0xdqP-26V5UbPL-mCuhtGzxsgPAEv_XveD0,13401
|
|
84
|
+
lollms_client-0.25.0.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
|
85
|
+
lollms_client-0.25.0.dist-info/top_level.txt,sha256=NI_W8S4OYZvJjb0QWMZMSIpOrYzpqwPGYaklhyWKH2w,23
|
|
86
|
+
lollms_client-0.25.0.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|