lollms-client 0.19.5__py3-none-any.whl → 0.19.6__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of lollms-client might be problematic. Click here for more details.
- examples/internet_search_with_rag.py +136 -97
- lollms_client/__init__.py +1 -1
- {lollms_client-0.19.5.dist-info → lollms_client-0.19.6.dist-info}/METADATA +1 -1
- {lollms_client-0.19.5.dist-info → lollms_client-0.19.6.dist-info}/RECORD +7 -7
- {lollms_client-0.19.5.dist-info → lollms_client-0.19.6.dist-info}/WHEEL +0 -0
- {lollms_client-0.19.5.dist-info → lollms_client-0.19.6.dist-info}/licenses/LICENSE +0 -0
- {lollms_client-0.19.5.dist-info → lollms_client-0.19.6.dist-info}/top_level.txt +0 -0
|
@@ -4,75 +4,76 @@ from typing import List, Dict, Any, Optional, Callable
|
|
|
4
4
|
import json
|
|
5
5
|
from pathlib import Path
|
|
6
6
|
|
|
7
|
-
# ---
|
|
8
|
-
|
|
7
|
+
# --- Internet Search RAG Implementation ---
|
|
8
|
+
_duckduckgo_search_installed = False
|
|
9
|
+
_search_installation_error_message = ""
|
|
9
10
|
try:
|
|
10
11
|
import pipmaster as pm
|
|
11
|
-
|
|
12
|
+
# ensure_packages should be called by the binding init ideally,
|
|
13
|
+
# but we call it here for the example's standalone execution.
|
|
14
|
+
pm.ensure_packages(["duckduckgo_search"])
|
|
12
15
|
from duckduckgo_search import DDGS
|
|
13
|
-
|
|
14
|
-
except Exception as
|
|
15
|
-
|
|
16
|
-
ASCIIColors.error(f"Could not ensure/import duckduckgo_search: {e_dep}")
|
|
17
|
-
ASCIIColors.warning("The RAG function in this example will not work.")
|
|
16
|
+
_duckduckgo_search_installed = True
|
|
17
|
+
except Exception as e:
|
|
18
|
+
_search_installation_error_message = str(e)
|
|
18
19
|
DDGS = None
|
|
19
|
-
|
|
20
|
+
ASCIIColors.error(f"Failed to import duckduckgo_search: {_search_installation_error_message}")
|
|
21
|
+
ASCIIColors.info("Please install it: pip install duckduckgo-search")
|
|
20
22
|
|
|
21
23
|
|
|
22
|
-
def
|
|
24
|
+
def perform_internet_search_rag(
|
|
23
25
|
query_text: str,
|
|
24
|
-
vectorizer_name: Optional[str] = None, # Not used for
|
|
26
|
+
vectorizer_name: Optional[str] = None, # Not used for search
|
|
25
27
|
top_k: int = 5,
|
|
26
|
-
min_similarity_percent: float = 0.0 # Not used for
|
|
28
|
+
min_similarity_percent: float = 0.0 # Not used directly for search filter, but can influence result quality/rank
|
|
27
29
|
) -> List[Dict[str, Any]]:
|
|
28
30
|
"""
|
|
29
|
-
|
|
30
|
-
|
|
31
|
-
Args:
|
|
32
|
-
query_text: The search query.
|
|
33
|
-
vectorizer_name: Ignored by this function.
|
|
34
|
-
top_k: The maximum number of search results to return.
|
|
35
|
-
min_similarity_percent: Ignored by this function.
|
|
36
|
-
|
|
37
|
-
Returns:
|
|
38
|
-
A list of dictionaries, each formatted for RAG with 'document', 'content', and 'similarity'.
|
|
31
|
+
Performs an internet search using DuckDuckGo and formats results for RAG.
|
|
32
|
+
Similarity is simulated based on rank.
|
|
39
33
|
"""
|
|
40
|
-
if not
|
|
41
|
-
|
|
42
|
-
|
|
34
|
+
if not _duckduckgo_search_installed or DDGS is None:
|
|
35
|
+
ASCIIColors.error("duckduckgo_search is not available. Cannot perform internet search.")
|
|
36
|
+
return []
|
|
43
37
|
|
|
44
|
-
ASCIIColors.magenta(f" [INTERNET
|
|
45
|
-
|
|
38
|
+
ASCIIColors.magenta(f" [INTERNET SEARCH] Querying DuckDuckGo for: '{query_text}', max_results={top_k}")
|
|
39
|
+
search_results_raw = []
|
|
46
40
|
try:
|
|
41
|
+
# DDGS().text returns a generator, max_results limits it.
|
|
42
|
+
# Note: The DDGS library might sometimes return fewer results than max_results.
|
|
47
43
|
with DDGS() as ddgs:
|
|
48
|
-
|
|
49
|
-
search_results = ddgs.text(keywords=query_text, max_results=top_k)
|
|
44
|
+
search_results_raw = list(ddgs.text(keywords=query_text, max_results=top_k))
|
|
50
45
|
|
|
51
|
-
if not search_results:
|
|
52
|
-
ASCIIColors.yellow(" [INTERNET RAG] DuckDuckGo returned no results for this query.")
|
|
53
|
-
return []
|
|
54
|
-
|
|
55
|
-
for i, result in enumerate(search_results):
|
|
56
|
-
# Format the search result into the structure expected by generate_text_with_rag
|
|
57
|
-
# 'document' will be the URL.
|
|
58
|
-
# 'content' will be a combination of title and snippet.
|
|
59
|
-
# 'similarity' is emulated based on rank, as DDG doesn't provide a score.
|
|
60
|
-
formatted_results.append({
|
|
61
|
-
"document": result.get("href", "#"),
|
|
62
|
-
"similarity": round(100.0 - (i * (10.0 / top_k)), 2), # Create a descending score
|
|
63
|
-
"content": f"Title: {result.get('title', 'N/A')}\nSnippet: {result.get('body', 'N/A')}"
|
|
64
|
-
})
|
|
65
|
-
|
|
66
|
-
ASCIIColors.magenta(f" [INTERNET RAG] Found {len(formatted_results)} results.")
|
|
67
|
-
return formatted_results
|
|
68
|
-
|
|
69
46
|
except Exception as e:
|
|
47
|
+
ASCIIColors.error(f" [INTERNET SEARCH] Search failed: {e}")
|
|
70
48
|
trace_exception(e)
|
|
71
|
-
ASCIIColors.error(f" [INTERNET RAG] An error occurred during search: {e}")
|
|
72
49
|
return []
|
|
73
50
|
|
|
51
|
+
formatted_results: List[Dict[str, Any]] = []
|
|
52
|
+
if search_results_raw:
|
|
53
|
+
for i, r in enumerate(search_results_raw):
|
|
54
|
+
# Simulate similarity based on rank (rank 1 is highest sim)
|
|
55
|
+
# Max similarity is 100% for rank 1, decreases linearly or non-linearly.
|
|
56
|
+
# Simple linear decrease: 100 - (rank * (100 / top_k+1))
|
|
57
|
+
# Let's use rank-based score: 100% for rank 1, 90% for rank 2, ... 50% for rank 5 etc.
|
|
58
|
+
# Ensure similarity is above min_similarity_percent if that param was intended as a filter here
|
|
59
|
+
|
|
60
|
+
simulated_similarity = max(0.0, 100.0 - i * (100.0 / (top_k + 1))) # Higher rank = lower sim
|
|
61
|
+
simulated_similarity = round(simulated_similarity, 2)
|
|
62
|
+
|
|
63
|
+
if simulated_similarity >= min_similarity_percent:
|
|
64
|
+
formatted_results.append({
|
|
65
|
+
"file_path": r.get("href", "# Unknown URL"), # Use URL as document identifier
|
|
66
|
+
"chunk_text": f"Title: {r.get('title', 'N/A')}\nSnippet: {r.get('body', 'N/A')}", # Combine title and snippet
|
|
67
|
+
"similarity_percent": simulated_similarity,
|
|
68
|
+
})
|
|
69
|
+
else:
|
|
70
|
+
ASCIIColors.debug(f" [INTERNET SEARCH] Skipping result {i+1} due to low simulated similarity ({simulated_similarity}%)")
|
|
71
|
+
|
|
72
|
+
ASCIIColors.magenta(f" [INTERNET SEARCH] Formatted {len(formatted_results)} results for RAG.")
|
|
73
|
+
if not formatted_results: ASCIIColors.yellow(f" [INTERNET SEARCH] No results found for query: '{query_text}' or none met min_similarity_percent.")
|
|
74
|
+
return formatted_results
|
|
75
|
+
|
|
74
76
|
# --- Streaming Callback for RAG and LLM ---
|
|
75
|
-
# (This is the same useful callback from the previous example)
|
|
76
77
|
def rag_streaming_callback(
|
|
77
78
|
chunk: str,
|
|
78
79
|
msg_type: MSG_TYPE,
|
|
@@ -83,7 +84,7 @@ def rag_streaming_callback(
|
|
|
83
84
|
hop = metadata.get("hop", "")
|
|
84
85
|
type_info = metadata.get("type", "N/A")
|
|
85
86
|
|
|
86
|
-
if msg_type == MSG_TYPE.MSG_TYPE_CHUNK:
|
|
87
|
+
if msg_type == MSG_TYPE.MSG_TYPE_CHUNK: # Final answer chunks
|
|
87
88
|
ASCIIColors.success(chunk, end="", flush=True)
|
|
88
89
|
elif msg_type == MSG_TYPE.MSG_TYPE_STEP_START:
|
|
89
90
|
info = metadata.get("query", chunk) if type_info in ["rag_query_generation", "rag_retrieval"] else chunk
|
|
@@ -95,8 +96,8 @@ def rag_streaming_callback(
|
|
|
95
96
|
|
|
96
97
|
end_info = []
|
|
97
98
|
if query: end_info.append(f"Query: '{str(query)[:50]}...'")
|
|
98
|
-
if num_chunks is not None: end_info.append(f"
|
|
99
|
-
if decision: end_info.append(f"LLM Decision: NeedMore={decision.get('need_more_data')}, Summary: '{str(decision.get('new_information_summary'))[:
|
|
99
|
+
if num_chunks is not None: end_info.append(f"Results: {num_chunks}")
|
|
100
|
+
if decision: end_info.append(f"LLM Decision: NeedMore={decision.get('need_more_data')}, Summary: '{str(decision.get('new_information_summary'))[:50]}...'")
|
|
100
101
|
|
|
101
102
|
ASCIIColors.green(f"\n<< RAG Hop {hop} | END | {type_info.upper()} | {' | '.join(end_info) if end_info else chunk}", flush=True)
|
|
102
103
|
elif msg_type == MSG_TYPE.MSG_TYPE_EXCEPTION:
|
|
@@ -106,75 +107,113 @@ def rag_streaming_callback(
|
|
|
106
107
|
|
|
107
108
|
# --- Main Example ---
|
|
108
109
|
if __name__ == "__main__":
|
|
109
|
-
ASCIIColors.red("--- Internet Search with
|
|
110
|
+
ASCIIColors.red("--- Multi-Hop Internet Search Example with LollmsClient ---")
|
|
110
111
|
|
|
112
|
+
# LLM Configuration (use a model good at instruction following and JSON)
|
|
113
|
+
# Ensure your Ollama server is running and has this model pulled.
|
|
111
114
|
LLM_BINDING_NAME = "ollama"
|
|
112
|
-
LLM_MODEL_NAME = "mistral
|
|
115
|
+
LLM_MODEL_NAME = "mistral:latest" # or llama3, phi3 etc.
|
|
113
116
|
|
|
114
|
-
|
|
115
|
-
|
|
116
|
-
|
|
117
|
+
# You could also enable the internet_search tool via MCP,
|
|
118
|
+
# but this example specifically uses it directly via generate_text_with_rag.
|
|
119
|
+
# For MCP example, see examples/local_mcp.py
|
|
117
120
|
|
|
118
121
|
try:
|
|
119
122
|
lc = LollmsClient(
|
|
120
123
|
binding_name=LLM_BINDING_NAME,
|
|
121
124
|
model_name=LLM_MODEL_NAME,
|
|
122
125
|
temperature=0.1,
|
|
123
|
-
ctx_size=4096
|
|
126
|
+
ctx_size=4096
|
|
124
127
|
)
|
|
125
128
|
ASCIIColors.green(f"LollmsClient initialized with LLM: {LLM_BINDING_NAME}/{LLM_MODEL_NAME}")
|
|
126
129
|
|
|
127
|
-
|
|
128
|
-
|
|
129
|
-
|
|
130
|
-
|
|
130
|
+
if not _duckduckgo_search_installed or DDGS is None:
|
|
131
|
+
ASCIIColors.error("duckduckgo_search is not installed. Cannot run search examples.")
|
|
132
|
+
exit()
|
|
133
|
+
|
|
134
|
+
|
|
135
|
+
# --- Test Case 1: Classic Search RAG (max_rag_hops = 0) ---
|
|
136
|
+
ASCIIColors.cyan("\n\n--- Test Case 1: Classic Internet Search RAG (max_rag_hops = 0) ---")
|
|
137
|
+
classic_search_prompt = "What is the current population of Japan?"
|
|
138
|
+
ASCIIColors.blue(f"User Prompt: {classic_search_prompt}")
|
|
131
139
|
|
|
132
140
|
classic_rag_result = lc.generate_text_with_rag(
|
|
133
|
-
prompt=
|
|
134
|
-
rag_query_function=
|
|
141
|
+
prompt=classic_search_prompt,
|
|
142
|
+
rag_query_function=perform_internet_search_rag, # Use the search function
|
|
135
143
|
max_rag_hops=0,
|
|
136
|
-
rag_top_k=3,
|
|
144
|
+
rag_top_k=3, # Get 3 search results
|
|
145
|
+
rag_min_similarity_percent=50.0, # Only use results with simulated sim >= 50%
|
|
137
146
|
streaming_callback=rag_streaming_callback,
|
|
138
|
-
n_predict=
|
|
147
|
+
n_predict=250
|
|
139
148
|
)
|
|
140
|
-
print("\n--- End of Classic RAG ---")
|
|
141
|
-
ASCIIColors.magenta("\nClassic RAG Final Output
|
|
142
|
-
print(f" Final Answer (first
|
|
149
|
+
print("\n--- End of Classic Search RAG ---")
|
|
150
|
+
ASCIIColors.magenta("\nClassic Search RAG Final Output Structure:")
|
|
151
|
+
print(f" Final Answer (first 100 chars): {classic_rag_result.get('final_answer', '')[:100]}...")
|
|
143
152
|
print(f" Error: {classic_rag_result.get('error')}")
|
|
153
|
+
print(f" Number of Hops: {len(classic_rag_result.get('rag_hops_history', []))}")
|
|
144
154
|
print(f" Total Unique Sources Retrieved: {len(classic_rag_result.get('all_retrieved_sources', []))}")
|
|
145
155
|
if classic_rag_result.get('all_retrieved_sources'):
|
|
146
|
-
print(" Retrieved
|
|
147
|
-
|
|
148
|
-
|
|
149
|
-
|
|
150
|
-
|
|
151
|
-
|
|
152
|
-
|
|
153
|
-
|
|
154
|
-
|
|
155
|
-
|
|
156
|
-
|
|
157
|
-
|
|
158
|
-
|
|
159
|
-
|
|
160
|
-
|
|
156
|
+
print(" Example Retrieved Source:")
|
|
157
|
+
source_ex = classic_rag_result['all_retrieved_sources'][0]
|
|
158
|
+
print(f" Document (URL): {source_ex.get('document')}")
|
|
159
|
+
print(f" Similarity: {source_ex.get('similarity')}%")
|
|
160
|
+
print(f" Content (Snippet, first 50 chars): {source_ex.get('content', '')[:50]}...")
|
|
161
|
+
|
|
162
|
+
|
|
163
|
+
# --- Test Case 2: Multi-Hop Search RAG (max_rag_hops = 1) ---
|
|
164
|
+
ASCIIColors.cyan("\n\n--- Test Case 2: Multi-Hop Internet Search RAG (max_rag_hops = 1) ---")
|
|
165
|
+
multihop_search_prompt_1 = "Tell me about the latest developments in fusion energy, including any recent news."
|
|
166
|
+
ASCIIColors.blue(f"User Prompt: {multihop_search_prompt_1}")
|
|
167
|
+
|
|
168
|
+
multihop_rag_result_1 = lc.generate_text_with_rag(
|
|
169
|
+
prompt=multihop_search_prompt_1,
|
|
170
|
+
rag_query_function=perform_internet_search_rag,
|
|
171
|
+
rag_query_text=None, # LLM will generate first query
|
|
172
|
+
max_rag_hops=1, # Allow one refinement hop
|
|
173
|
+
rag_top_k=2, # Get 2 search results per query
|
|
174
|
+
rag_min_similarity_percent=50.0,
|
|
161
175
|
streaming_callback=rag_streaming_callback,
|
|
162
176
|
n_predict=400,
|
|
177
|
+
rag_hop_query_generation_temperature=0.1,
|
|
178
|
+
rag_hop_summary_temperature=0.2
|
|
163
179
|
)
|
|
164
|
-
print("\n--- End of Multi-Hop RAG ---")
|
|
165
|
-
ASCIIColors.magenta("\nMulti-Hop RAG Final Output
|
|
166
|
-
print(f" Final Answer (first
|
|
167
|
-
print(f" Error: {
|
|
168
|
-
print(f" Number of Hops Made: {len(
|
|
169
|
-
for i, hop_info in enumerate(
|
|
180
|
+
print("\n--- End of Multi-Hop Search RAG (1 hop max) ---")
|
|
181
|
+
ASCIIColors.magenta("\nMulti-Hop Search RAG (1 hop max) Final Output Structure:")
|
|
182
|
+
print(f" Final Answer (first 100 chars): {multihop_rag_result_1.get('final_answer', '')[:100]}...")
|
|
183
|
+
print(f" Error: {multihop_rag_result_1.get('error')}")
|
|
184
|
+
print(f" Number of Hops Made: {len(multihop_rag_result_1.get('rag_hops_history', []))}")
|
|
185
|
+
for i, hop_info in enumerate(multihop_rag_result_1.get('rag_hops_history', [])):
|
|
170
186
|
print(f" Hop {i+1} Query: '{hop_info.get('query')}'")
|
|
171
|
-
print(f" Hop {i+1}
|
|
187
|
+
print(f" Hop {i+1} Results Count: {len(hop_info.get('retrieved_chunks_details',[]))}")
|
|
188
|
+
print(f" Hop {i+1} Summary (first 50): '{str(hop_info.get('new_information_summary'))[:50]}...'")
|
|
172
189
|
print(f" Hop {i+1} LLM Decision: NeedMoreData={hop_info.get('llm_decision_json',{}).get('need_more_data')}")
|
|
173
|
-
print(f" Total Unique Sources Retrieved: {len(
|
|
174
|
-
|
|
175
|
-
|
|
176
|
-
|
|
177
|
-
|
|
190
|
+
print(f" Total Unique Sources Retrieved: {len(multihop_rag_result_1.get('all_retrieved_sources', []))}")
|
|
191
|
+
|
|
192
|
+
|
|
193
|
+
# --- Test Case 3: More complex multi-hop (max_rag_hops = 2) ---
|
|
194
|
+
ASCIIColors.cyan("\n\n--- Test Case 3: More Complex Multi-Hop Internet Search RAG (max_rag_hops = 2) ---")
|
|
195
|
+
multihop_search_prompt_2 = "What are the requirements and steps to install the lollms_client python library, and what are some of its key features?"
|
|
196
|
+
ASCIIColors.blue(f"User Prompt: {multihop_search_prompt_2}")
|
|
197
|
+
|
|
198
|
+
multihop_rag_result_2 = lc.generate_text_with_rag(
|
|
199
|
+
prompt=multihop_search_prompt_2,
|
|
200
|
+
rag_query_function=perform_internet_search_rag,
|
|
201
|
+
max_rag_hops=2, # Allow up to two refinement hops
|
|
202
|
+
rag_top_k=2, # Get 2 results per query
|
|
203
|
+
rag_min_similarity_percent=40.0, # Lower similarity to maybe get broader initial results
|
|
204
|
+
streaming_callback=rag_streaming_callback,
|
|
205
|
+
n_predict=500 # Allow more for the installation steps and features
|
|
206
|
+
)
|
|
207
|
+
print("\n--- End of More Complex Multi-Hop Search RAG (up to 2 hops) ---")
|
|
208
|
+
ASCIIColors.magenta("\nMore Complex Multi-Hop Search RAG (up to 2 hops) Final Output Structure:")
|
|
209
|
+
print(f" Final Answer (first 100 chars): {multihop_rag_result_2.get('final_answer', '')[:100]}...")
|
|
210
|
+
print(f" Error: {multihop_rag_result_2.get('error')}")
|
|
211
|
+
print(f" Number of Hops Made: {len(multihop_rag_result_2.get('rag_hops_history', []))}")
|
|
212
|
+
for i, hop_info in enumerate(multihop_rag_result_2.get('rag_hops_history', [])):
|
|
213
|
+
print(f" Hop {i+1} Query: '{hop_info.get('query')}'")
|
|
214
|
+
print(f" Hop {i+1} Results Count: {len(hop_info.get('retrieved_chunks_details',[]))}")
|
|
215
|
+
print(f" Hop {i+1} Summary (first 50): '{str(hop_info.get('new_information_summary'))[:50]}...'")
|
|
216
|
+
print(f" Total Unique Sources Retrieved: {len(multihop_rag_result_2.get('all_retrieved_sources', []))}")
|
|
178
217
|
|
|
179
218
|
|
|
180
219
|
except ValueError as ve:
|
|
@@ -186,4 +225,4 @@ if __name__ == "__main__":
|
|
|
186
225
|
ASCIIColors.error(f"An unexpected error occurred: {e}")
|
|
187
226
|
trace_exception(e)
|
|
188
227
|
|
|
189
|
-
ASCIIColors.red("\n--- Internet Search
|
|
228
|
+
ASCIIColors.red("\n--- Multi-Hop Internet Search Example Finished ---")
|
lollms_client/__init__.py
CHANGED
|
@@ -7,7 +7,7 @@ from lollms_client.lollms_utilities import PromptReshaper # Keep general utiliti
|
|
|
7
7
|
from lollms_client.lollms_mcp_binding import LollmsMCPBinding, LollmsMCPBindingManager
|
|
8
8
|
|
|
9
9
|
|
|
10
|
-
__version__ = "0.19.
|
|
10
|
+
__version__ = "0.19.6" # Updated version
|
|
11
11
|
|
|
12
12
|
# Optionally, you could define __all__ if you want to be explicit about exports
|
|
13
13
|
__all__ = [
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
examples/function_calling_with_local_custom_mcp.py,sha256=g6wOFRB8-p9Cv7hKmQaGzPvtMX3H77gas01QVNEOduM,12407
|
|
2
2
|
examples/generate_text_with_multihop_rag_example.py,sha256=Z6TbVqThOCHNK6kzIqRnEi76JDxIFlg1-IIMWehZars,11582
|
|
3
|
-
examples/internet_search_with_rag.py,sha256=
|
|
3
|
+
examples/internet_search_with_rag.py,sha256=WBoYFBEjGIFKyKTzezm7lI0bGPNuHFMyoq_8iY32qLY,12434
|
|
4
4
|
examples/local_mcp.py,sha256=w40dgayvHYe01yvekEE0LjcbkpwKjWwJ-9v4_wGYsUk,9113
|
|
5
5
|
examples/simple_text_gen_test.py,sha256=RoX9ZKJjGMujeep60wh5WT_GoBn0O9YKJY6WOy-ZmOc,8710
|
|
6
6
|
examples/simple_text_gen_with_image_test.py,sha256=rR1O5Prcb52UHtJ3c6bv7VuTd1cvbkr5aNZU-v-Rs3Y,9263
|
|
@@ -19,7 +19,7 @@ examples/personality_test/chat_test.py,sha256=o2jlpoddFc-T592iqAiA29xk3x27KsdK5D
|
|
|
19
19
|
examples/personality_test/chat_with_aristotle.py,sha256=4X_fwubMpd0Eq2rCReS2bgVlUoAqJprjkLXk2Jz6pXU,1774
|
|
20
20
|
examples/personality_test/tesks_test.py,sha256=7LIiwrEbva9WWZOLi34fsmCBN__RZbPpxoUOKA_AtYk,1924
|
|
21
21
|
examples/test_local_models/local_chat.py,sha256=slakja2zaHOEAUsn2tn_VmI4kLx6luLBrPqAeaNsix8,456
|
|
22
|
-
lollms_client/__init__.py,sha256=
|
|
22
|
+
lollms_client/__init__.py,sha256=6_HMLYZ2YejnZPhg5Tomyq6wYfndu9otuy-o7YAinWQ,910
|
|
23
23
|
lollms_client/lollms_config.py,sha256=goEseDwDxYJf3WkYJ4IrLXwg3Tfw73CXV2Avg45M_hE,21876
|
|
24
24
|
lollms_client/lollms_core.py,sha256=56wntZAimRfx0qBR_96_1h9_ZKuvY1Uq_kMVs9xg-dE,119768
|
|
25
25
|
lollms_client/lollms_discussion.py,sha256=9b83m0D894jwpgssWYTQHbVxp1gJoI-J947Ui_dRXII,2073
|
|
@@ -69,8 +69,8 @@ lollms_client/tts_bindings/piper_tts/__init__.py,sha256=0IEWG4zH3_sOkSb9WbZzkeV5
|
|
|
69
69
|
lollms_client/tts_bindings/xtts/__init__.py,sha256=FgcdUH06X6ZR806WQe5ixaYx0QoxtAcOgYo87a2qxYc,18266
|
|
70
70
|
lollms_client/ttv_bindings/__init__.py,sha256=UZ8o2izQOJLQgtZ1D1cXoNST7rzqW22rL2Vufc7ddRc,3141
|
|
71
71
|
lollms_client/ttv_bindings/lollms/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
72
|
-
lollms_client-0.19.
|
|
73
|
-
lollms_client-0.19.
|
|
74
|
-
lollms_client-0.19.
|
|
75
|
-
lollms_client-0.19.
|
|
76
|
-
lollms_client-0.19.
|
|
72
|
+
lollms_client-0.19.6.dist-info/licenses/LICENSE,sha256=HrhfyXIkWY2tGFK11kg7vPCqhgh5DcxleloqdhrpyMY,11558
|
|
73
|
+
lollms_client-0.19.6.dist-info/METADATA,sha256=kI_H4LhMJWMmt1rTJUMP7CdZVlzA-N7RhnyDSHEYJvA,13374
|
|
74
|
+
lollms_client-0.19.6.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
|
75
|
+
lollms_client-0.19.6.dist-info/top_level.txt,sha256=NI_W8S4OYZvJjb0QWMZMSIpOrYzpqwPGYaklhyWKH2w,23
|
|
76
|
+
lollms_client-0.19.6.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|