lollms-client 0.19.1__py3-none-any.whl → 0.19.6__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of lollms-client might be problematic. Click here for more details.

@@ -0,0 +1,211 @@
1
+ from lollms_client import LollmsClient, MSG_TYPE
2
+ from ascii_colors import ASCIIColors, trace_exception
3
+ from typing import List, Dict, Any, Optional, Callable
4
+ import json
5
+ from pathlib import Path
6
+
7
+ # --- Mock RAG Implementation ---
8
+ # In a real application, this would interact with your vector database (Pinecone, ChromaDB, FAISS, etc.)
9
+ # and use a real sentence transformer for vectorization.
10
+
11
+ MOCK_KNOWLEDGE_BASE = {
12
+ "python_basics.md": [
13
+ {"chunk_id": 1, "text": "Python is a high-level, interpreted programming language known for its readability and versatility. It was created by Guido van Rossum and first released in 1991."},
14
+ {"chunk_id": 2, "text": "Key features of Python include dynamic typing, automatic memory management (garbage collection), and a large standard library. It supports multiple programming paradigms, such as procedural, object-oriented, and functional programming."},
15
+ {"chunk_id": 3, "text": "Common applications of Python include web development (e.g., Django, Flask), data science (e.g., Pandas, NumPy, Scikit-learn), machine learning, artificial intelligence, automation, and scripting."},
16
+ ],
17
+ "javascript_info.js": [
18
+ {"chunk_id": 1, "text": "JavaScript is a scripting language primarily used for front-end web development to create interactive effects within web browsers. It is also used in back-end development (Node.js), mobile app development, and game development."},
19
+ {"chunk_id": 2, "text": "JavaScript is dynamically typed, prototype-based, and multi-paradigm. Along with HTML and CSS, it is one of the core technologies of the World Wide Web."},
20
+ {"chunk_id": 3, "text": "Popular JavaScript frameworks and libraries include React, Angular, Vue.js for front-end, and Express.js for Node.js back-end applications."},
21
+ ],
22
+ "ai_concepts.txt": [
23
+ {"chunk_id": 1, "text": "Artificial Intelligence (AI) refers to the simulation of human intelligence in machines that are programmed to think like humans and mimic their actions. The term may also be applied to any machine that exhibits traits associated with a human mind such as learning and problem-solving."},
24
+ {"chunk_id": 2, "text": "Machine Learning (ML) is a subset of AI that provides systems the ability to automatically learn and improve from experience without being explicitly programmed. Deep Learning (DL) is a further subset of ML based on artificial neural networks with representation learning."},
25
+ {"chunk_id": 3, "text": "Retrieval Augmented Generation (RAG) is an AI framework for improving the quality of LLM-generated responses by grounding the model on external sources of knowledge to supplement the LLM’s internal representation of information."},
26
+ ]
27
+ }
28
+
29
+ def mock_rag_query_function(
30
+ query_text: str,
31
+ vectorizer_name: Optional[str] = None, # Ignored in mock
32
+ top_k: int = 3,
33
+ min_similarity_percent: float = 0.0 # Ignored in mock, simple keyword match
34
+ ) -> List[Dict[str, Any]]:
35
+ """
36
+ A mock RAG query function.
37
+ Performs a simple keyword search in the MOCK_KNOWLEDGE_BASE.
38
+ """
39
+ ASCIIColors.magenta(f" [MOCK RAG] Querying with: '{query_text}', top_k={top_k}")
40
+ results = []
41
+ query_lower = query_text.lower()
42
+
43
+ all_chunks = []
44
+ for file_path, chunks_in_file in MOCK_KNOWLEDGE_BASE.items():
45
+ for chunk_data in chunks_in_file:
46
+ all_chunks.append({"file_path": file_path, **chunk_data})
47
+
48
+ # Simple keyword matching and scoring (very basic)
49
+ scored_chunks = []
50
+ for chunk_info in all_chunks:
51
+ score = 0
52
+ for keyword in query_lower.split():
53
+ if keyword in chunk_info["text"].lower() and len(keyword)>2: # Basic relevance
54
+ score += 1
55
+ if "python" in query_lower and "python" in chunk_info["file_path"].lower(): score+=5
56
+ if "javascript" in query_lower and "javascript" in chunk_info["file_path"].lower(): score+=5
57
+ if "ai" in query_lower and "ai" in chunk_info["file_path"].lower(): score+=3
58
+
59
+
60
+ if score > 0 : # Only include if some keywords match
61
+ # Simulate similarity percentage (higher score = higher similarity)
62
+ similarity = min(100.0, score * 20.0 + 40.0) # Arbitrary scaling
63
+ if similarity >= min_similarity_percent:
64
+ scored_chunks.append({
65
+ "file_path": chunk_info["file_path"],
66
+ "chunk_text": chunk_info["text"],
67
+ "similarity_percent": similarity,
68
+ "_score_for_ranking": score # Internal score for sorting
69
+ })
70
+
71
+ # Sort by internal score (descending) and take top_k
72
+ scored_chunks.sort(key=lambda x: x["_score_for_ranking"], reverse=True)
73
+ results = [
74
+ {"file_path": c["file_path"], "chunk_text": c["chunk_text"], "similarity_percent": c["similarity_percent"]}
75
+ for c in scored_chunks[:top_k]
76
+ ]
77
+ ASCIIColors.magenta(f" [MOCK RAG] Found {len(results)} relevant chunks.")
78
+ return results
79
+
80
+ # --- Streaming Callback for RAG and LLM ---
81
+ def rag_streaming_callback(
82
+ chunk: str,
83
+ msg_type: MSG_TYPE,
84
+ metadata: Optional[Dict] = None,
85
+ turn_history: Optional[List] = None # history of this specific RAG turn
86
+ ) -> bool:
87
+ """
88
+ Handles various stages of RAG and final LLM generation.
89
+ """
90
+ metadata = metadata or {}
91
+ turn_history = turn_history or [] # Should be populated by LollmsClient
92
+
93
+ if msg_type == MSG_TYPE.MSG_TYPE_CHUNK: # Final answer chunks
94
+ ASCIIColors.success(chunk, end="", flush=True)
95
+ elif msg_type == MSG_TYPE.MSG_TYPE_STEP_START:
96
+ step_type = metadata.get("type", "step")
97
+ hop = metadata.get("hop", "")
98
+ info = metadata.get("query", chunk) if step_type == "rag_query_generation" or step_type == "rag_retrieval" else chunk
99
+ ASCIIColors.yellow(f"\n>> RAG Step Start (Hop {hop}): {step_type} - Info: {str(info)[:100]}...", flush=True)
100
+ elif msg_type == MSG_TYPE.MSG_TYPE_STEP_END:
101
+ step_type = metadata.get("type", "step")
102
+ hop = metadata.get("hop", "")
103
+ num_chunks = metadata.get("num_chunks", "")
104
+ query = metadata.get("query", "")
105
+ decision = metadata.get("decision", "")
106
+
107
+ info_str = ""
108
+ if step_type == "rag_query_generation" and query: info_str = f"Generated Query: {query}"
109
+ elif step_type == "rag_retrieval": info_str = f"Retrieved {num_chunks} chunks"
110
+ elif step_type == "rag_llm_decision": info_str = f"LLM Decision: {json.dumps(decision)}"
111
+ elif step_type == "final_answer_generation": info_str = "Final answer generation complete."
112
+ else: info_str = chunk
113
+
114
+ ASCIIColors.green(f"\n<< RAG Step End (Hop {hop}): {step_type} - {info_str}", flush=True)
115
+ elif msg_type == MSG_TYPE.MSG_TYPE_EXCEPTION:
116
+ ASCIIColors.error(f"\nError in RAG stream: {chunk}", flush=True)
117
+
118
+ # You can inspect turn_history here if needed:
119
+ # ASCIIColors.debug(f"Current RAG Turn History: {turn_history}")
120
+ return True
121
+
122
+ # --- Main Example ---
123
+ if __name__ == "__main__":
124
+ ASCIIColors.red("--- Multi-Hop RAG Example with LollmsClient ---")
125
+
126
+ # LLM Configuration (use a model good at instruction following and JSON)
127
+ # Ensure your Ollama server is running and has this model pulled.
128
+ LLM_BINDING_NAME = "ollama"
129
+ LLM_MODEL_NAME = "qwen3:4b" # or llama3, phi3 etc.
130
+ # LLM_MODEL_NAME = "qwen2:1.5b" # Smaller model for quicker tests, but might struggle with complex JSON
131
+
132
+ try:
133
+ lc = LollmsClient(
134
+ binding_name=LLM_BINDING_NAME,
135
+ model_name=LLM_MODEL_NAME,
136
+ temperature=0.1, # Default temp for final answer if not overridden
137
+ # Other LollmsClient params as needed
138
+ )
139
+ ASCIIColors.green(f"LollmsClient initialized with LLM: {LLM_BINDING_NAME}/{LLM_MODEL_NAME}")
140
+
141
+ # --- Test Case 1: Classic RAG (max_rag_hops = 0) ---
142
+ ASCIIColors.cyan("\n\n--- Test Case 1: Classic RAG (max_rag_hops = 0) ---")
143
+ classic_rag_prompt = "What are the key features of Python?"
144
+ ASCIIColors.blue(f"User Prompt: {classic_rag_prompt}")
145
+
146
+ classic_rag_result = lc.generate_text_with_rag(
147
+ prompt=classic_rag_prompt,
148
+ rag_query_function=mock_rag_query_function,
149
+ # rag_query_text=None, # Will use `prompt` for query
150
+ max_rag_hops=0,
151
+ rag_top_k=2, # Get 2 best chunks
152
+ rag_min_similarity_percent=50.0,
153
+ streaming_callback=rag_streaming_callback,
154
+ n_predict=1024 # Max tokens for final answer
155
+ )
156
+ print("\n--- End of Classic RAG ---")
157
+ ASCIIColors.magenta("\nClassic RAG Final Output:")
158
+ print(json.dumps(classic_rag_result, indent=2))
159
+
160
+
161
+ # --- Test Case 2: Multi-Hop RAG (max_rag_hops = 1) ---
162
+ ASCIIColors.cyan("\n\n--- Test Case 2: Multi-Hop RAG (max_rag_hops = 1) ---")
163
+ multihop_prompt_1 = "Compare Python and JavaScript for web development based on their common applications and core technologies."
164
+ ASCIIColors.blue(f"User Prompt: {multihop_prompt_1}")
165
+
166
+ multihop_rag_result_1 = lc.generate_text_with_rag(
167
+ prompt=multihop_prompt_1,
168
+ rag_query_function=mock_rag_query_function,
169
+ # rag_query_text="Python web development applications", # Optional: provide an initial query
170
+ max_rag_hops=1, # Allow one hop for LLM to refine search or decide
171
+ rag_top_k=2,
172
+ rag_min_similarity_percent=60.0,
173
+ streaming_callback=rag_streaming_callback,
174
+ n_predict=1024,
175
+ rag_hop_query_generation_temperature=0.1, # Focused query gen
176
+ rag_hop_summary_temperature=0.2 # Focused summary
177
+ )
178
+ print("\n--- End of Multi-Hop RAG (1 hop) ---")
179
+ ASCIIColors.magenta("\nMulti-Hop RAG (1 hop) Final Output:")
180
+ print(json.dumps(multihop_rag_result_1, indent=2))
181
+
182
+
183
+ # --- Test Case 3: Multi-Hop RAG (max_rag_hops = 2) - LLM might decide it has enough earlier ---
184
+ ASCIIColors.cyan("\n\n--- Test Case 3: Multi-Hop RAG (max_rag_hops = 2) ---")
185
+ multihop_prompt_2 = "Explain Retrieval Augmented Generation (RAG) and its relation to Machine Learning."
186
+ ASCIIColors.blue(f"User Prompt: {multihop_prompt_2}")
187
+
188
+ multihop_rag_result_2 = lc.generate_text_with_rag(
189
+ prompt=multihop_prompt_2,
190
+ rag_query_function=mock_rag_query_function,
191
+ max_rag_hops=2, # Allow up to two refinement hops
192
+ rag_top_k=1, # Get only the best chunk per hop to force more specific queries
193
+ rag_min_similarity_percent=50.0,
194
+ streaming_callback=rag_streaming_callback,
195
+ n_predict=300
196
+ )
197
+ print("\n--- End of Multi-Hop RAG (up to 2 hops) ---")
198
+ ASCIIColors.magenta("\nMulti-Hop RAG (up to 2 hops) Final Output:")
199
+ print(json.dumps(multihop_rag_result_2, indent=2))
200
+
201
+
202
+ except ValueError as ve:
203
+ ASCIIColors.error(f"Initialization or RAG parameter error: {ve}")
204
+ trace_exception(ve)
205
+ except ConnectionRefusedError:
206
+ ASCIIColors.error(f"Connection refused. Is the Ollama server ({LLM_BINDING_NAME}) running?")
207
+ except Exception as e:
208
+ ASCIIColors.error(f"An unexpected error occurred: {e}")
209
+ trace_exception(e)
210
+
211
+ ASCIIColors.red("\n--- Multi-Hop RAG Example Finished ---")
@@ -0,0 +1,228 @@
1
+ from lollms_client import LollmsClient, MSG_TYPE
2
+ from ascii_colors import ASCIIColors, trace_exception
3
+ from typing import List, Dict, Any, Optional, Callable
4
+ import json
5
+ from pathlib import Path
6
+
7
+ # --- Internet Search RAG Implementation ---
8
+ _duckduckgo_search_installed = False
9
+ _search_installation_error_message = ""
10
+ try:
11
+ import pipmaster as pm
12
+ # ensure_packages should be called by the binding init ideally,
13
+ # but we call it here for the example's standalone execution.
14
+ pm.ensure_packages(["duckduckgo_search"])
15
+ from duckduckgo_search import DDGS
16
+ _duckduckgo_search_installed = True
17
+ except Exception as e:
18
+ _search_installation_error_message = str(e)
19
+ DDGS = None
20
+ ASCIIColors.error(f"Failed to import duckduckgo_search: {_search_installation_error_message}")
21
+ ASCIIColors.info("Please install it: pip install duckduckgo-search")
22
+
23
+
24
+ def perform_internet_search_rag(
25
+ query_text: str,
26
+ vectorizer_name: Optional[str] = None, # Not used for search
27
+ top_k: int = 5,
28
+ min_similarity_percent: float = 0.0 # Not used directly for search filter, but can influence result quality/rank
29
+ ) -> List[Dict[str, Any]]:
30
+ """
31
+ Performs an internet search using DuckDuckGo and formats results for RAG.
32
+ Similarity is simulated based on rank.
33
+ """
34
+ if not _duckduckgo_search_installed or DDGS is None:
35
+ ASCIIColors.error("duckduckgo_search is not available. Cannot perform internet search.")
36
+ return []
37
+
38
+ ASCIIColors.magenta(f" [INTERNET SEARCH] Querying DuckDuckGo for: '{query_text}', max_results={top_k}")
39
+ search_results_raw = []
40
+ try:
41
+ # DDGS().text returns a generator, max_results limits it.
42
+ # Note: The DDGS library might sometimes return fewer results than max_results.
43
+ with DDGS() as ddgs:
44
+ search_results_raw = list(ddgs.text(keywords=query_text, max_results=top_k))
45
+
46
+ except Exception as e:
47
+ ASCIIColors.error(f" [INTERNET SEARCH] Search failed: {e}")
48
+ trace_exception(e)
49
+ return []
50
+
51
+ formatted_results: List[Dict[str, Any]] = []
52
+ if search_results_raw:
53
+ for i, r in enumerate(search_results_raw):
54
+ # Simulate similarity based on rank (rank 1 is highest sim)
55
+ # Max similarity is 100% for rank 1, decreases linearly or non-linearly.
56
+ # Simple linear decrease: 100 - (rank * (100 / top_k+1))
57
+ # Let's use rank-based score: 100% for rank 1, 90% for rank 2, ... 50% for rank 5 etc.
58
+ # Ensure similarity is above min_similarity_percent if that param was intended as a filter here
59
+
60
+ simulated_similarity = max(0.0, 100.0 - i * (100.0 / (top_k + 1))) # Higher rank = lower sim
61
+ simulated_similarity = round(simulated_similarity, 2)
62
+
63
+ if simulated_similarity >= min_similarity_percent:
64
+ formatted_results.append({
65
+ "file_path": r.get("href", "# Unknown URL"), # Use URL as document identifier
66
+ "chunk_text": f"Title: {r.get('title', 'N/A')}\nSnippet: {r.get('body', 'N/A')}", # Combine title and snippet
67
+ "similarity_percent": simulated_similarity,
68
+ })
69
+ else:
70
+ ASCIIColors.debug(f" [INTERNET SEARCH] Skipping result {i+1} due to low simulated similarity ({simulated_similarity}%)")
71
+
72
+ ASCIIColors.magenta(f" [INTERNET SEARCH] Formatted {len(formatted_results)} results for RAG.")
73
+ if not formatted_results: ASCIIColors.yellow(f" [INTERNET SEARCH] No results found for query: '{query_text}' or none met min_similarity_percent.")
74
+ return formatted_results
75
+
76
+ # --- Streaming Callback for RAG and LLM ---
77
+ def rag_streaming_callback(
78
+ chunk: str,
79
+ msg_type: MSG_TYPE,
80
+ metadata: Optional[Dict] = None,
81
+ turn_history: Optional[List] = None
82
+ ) -> bool:
83
+ metadata = metadata or {}
84
+ hop = metadata.get("hop", "")
85
+ type_info = metadata.get("type", "N/A")
86
+
87
+ if msg_type == MSG_TYPE.MSG_TYPE_CHUNK: # Final answer chunks
88
+ ASCIIColors.success(chunk, end="", flush=True)
89
+ elif msg_type == MSG_TYPE.MSG_TYPE_STEP_START:
90
+ info = metadata.get("query", chunk) if type_info in ["rag_query_generation", "rag_retrieval"] else chunk
91
+ ASCIIColors.yellow(f"\n>> RAG Hop {hop} | START | {type_info.upper()} | Info: {str(info)[:100]}...", flush=True)
92
+ elif msg_type == MSG_TYPE.MSG_TYPE_STEP_END:
93
+ num_chunks = metadata.get("num_chunks")
94
+ query = metadata.get("query")
95
+ decision = metadata.get("decision")
96
+
97
+ end_info = []
98
+ if query: end_info.append(f"Query: '{str(query)[:50]}...'")
99
+ if num_chunks is not None: end_info.append(f"Results: {num_chunks}")
100
+ if decision: end_info.append(f"LLM Decision: NeedMore={decision.get('need_more_data')}, Summary: '{str(decision.get('new_information_summary'))[:50]}...'")
101
+
102
+ ASCIIColors.green(f"\n<< RAG Hop {hop} | END | {type_info.upper()} | {' | '.join(end_info) if end_info else chunk}", flush=True)
103
+ elif msg_type == MSG_TYPE.MSG_TYPE_EXCEPTION:
104
+ ASCIIColors.error(f"\nError in RAG stream: {chunk}", flush=True)
105
+
106
+ return True
107
+
108
+ # --- Main Example ---
109
+ if __name__ == "__main__":
110
+ ASCIIColors.red("--- Multi-Hop Internet Search Example with LollmsClient ---")
111
+
112
+ # LLM Configuration (use a model good at instruction following and JSON)
113
+ # Ensure your Ollama server is running and has this model pulled.
114
+ LLM_BINDING_NAME = "ollama"
115
+ LLM_MODEL_NAME = "mistral:latest" # or llama3, phi3 etc.
116
+
117
+ # You could also enable the internet_search tool via MCP,
118
+ # but this example specifically uses it directly via generate_text_with_rag.
119
+ # For MCP example, see examples/local_mcp.py
120
+
121
+ try:
122
+ lc = LollmsClient(
123
+ binding_name=LLM_BINDING_NAME,
124
+ model_name=LLM_MODEL_NAME,
125
+ temperature=0.1,
126
+ ctx_size=4096
127
+ )
128
+ ASCIIColors.green(f"LollmsClient initialized with LLM: {LLM_BINDING_NAME}/{LLM_MODEL_NAME}")
129
+
130
+ if not _duckduckgo_search_installed or DDGS is None:
131
+ ASCIIColors.error("duckduckgo_search is not installed. Cannot run search examples.")
132
+ exit()
133
+
134
+
135
+ # --- Test Case 1: Classic Search RAG (max_rag_hops = 0) ---
136
+ ASCIIColors.cyan("\n\n--- Test Case 1: Classic Internet Search RAG (max_rag_hops = 0) ---")
137
+ classic_search_prompt = "What is the current population of Japan?"
138
+ ASCIIColors.blue(f"User Prompt: {classic_search_prompt}")
139
+
140
+ classic_rag_result = lc.generate_text_with_rag(
141
+ prompt=classic_search_prompt,
142
+ rag_query_function=perform_internet_search_rag, # Use the search function
143
+ max_rag_hops=0,
144
+ rag_top_k=3, # Get 3 search results
145
+ rag_min_similarity_percent=50.0, # Only use results with simulated sim >= 50%
146
+ streaming_callback=rag_streaming_callback,
147
+ n_predict=250
148
+ )
149
+ print("\n--- End of Classic Search RAG ---")
150
+ ASCIIColors.magenta("\nClassic Search RAG Final Output Structure:")
151
+ print(f" Final Answer (first 100 chars): {classic_rag_result.get('final_answer', '')[:100]}...")
152
+ print(f" Error: {classic_rag_result.get('error')}")
153
+ print(f" Number of Hops: {len(classic_rag_result.get('rag_hops_history', []))}")
154
+ print(f" Total Unique Sources Retrieved: {len(classic_rag_result.get('all_retrieved_sources', []))}")
155
+ if classic_rag_result.get('all_retrieved_sources'):
156
+ print(" Example Retrieved Source:")
157
+ source_ex = classic_rag_result['all_retrieved_sources'][0]
158
+ print(f" Document (URL): {source_ex.get('document')}")
159
+ print(f" Similarity: {source_ex.get('similarity')}%")
160
+ print(f" Content (Snippet, first 50 chars): {source_ex.get('content', '')[:50]}...")
161
+
162
+
163
+ # --- Test Case 2: Multi-Hop Search RAG (max_rag_hops = 1) ---
164
+ ASCIIColors.cyan("\n\n--- Test Case 2: Multi-Hop Internet Search RAG (max_rag_hops = 1) ---")
165
+ multihop_search_prompt_1 = "Tell me about the latest developments in fusion energy, including any recent news."
166
+ ASCIIColors.blue(f"User Prompt: {multihop_search_prompt_1}")
167
+
168
+ multihop_rag_result_1 = lc.generate_text_with_rag(
169
+ prompt=multihop_search_prompt_1,
170
+ rag_query_function=perform_internet_search_rag,
171
+ rag_query_text=None, # LLM will generate first query
172
+ max_rag_hops=1, # Allow one refinement hop
173
+ rag_top_k=2, # Get 2 search results per query
174
+ rag_min_similarity_percent=50.0,
175
+ streaming_callback=rag_streaming_callback,
176
+ n_predict=400,
177
+ rag_hop_query_generation_temperature=0.1,
178
+ rag_hop_summary_temperature=0.2
179
+ )
180
+ print("\n--- End of Multi-Hop Search RAG (1 hop max) ---")
181
+ ASCIIColors.magenta("\nMulti-Hop Search RAG (1 hop max) Final Output Structure:")
182
+ print(f" Final Answer (first 100 chars): {multihop_rag_result_1.get('final_answer', '')[:100]}...")
183
+ print(f" Error: {multihop_rag_result_1.get('error')}")
184
+ print(f" Number of Hops Made: {len(multihop_rag_result_1.get('rag_hops_history', []))}")
185
+ for i, hop_info in enumerate(multihop_rag_result_1.get('rag_hops_history', [])):
186
+ print(f" Hop {i+1} Query: '{hop_info.get('query')}'")
187
+ print(f" Hop {i+1} Results Count: {len(hop_info.get('retrieved_chunks_details',[]))}")
188
+ print(f" Hop {i+1} Summary (first 50): '{str(hop_info.get('new_information_summary'))[:50]}...'")
189
+ print(f" Hop {i+1} LLM Decision: NeedMoreData={hop_info.get('llm_decision_json',{}).get('need_more_data')}")
190
+ print(f" Total Unique Sources Retrieved: {len(multihop_rag_result_1.get('all_retrieved_sources', []))}")
191
+
192
+
193
+ # --- Test Case 3: More complex multi-hop (max_rag_hops = 2) ---
194
+ ASCIIColors.cyan("\n\n--- Test Case 3: More Complex Multi-Hop Internet Search RAG (max_rag_hops = 2) ---")
195
+ multihop_search_prompt_2 = "What are the requirements and steps to install the lollms_client python library, and what are some of its key features?"
196
+ ASCIIColors.blue(f"User Prompt: {multihop_search_prompt_2}")
197
+
198
+ multihop_rag_result_2 = lc.generate_text_with_rag(
199
+ prompt=multihop_search_prompt_2,
200
+ rag_query_function=perform_internet_search_rag,
201
+ max_rag_hops=2, # Allow up to two refinement hops
202
+ rag_top_k=2, # Get 2 results per query
203
+ rag_min_similarity_percent=40.0, # Lower similarity to maybe get broader initial results
204
+ streaming_callback=rag_streaming_callback,
205
+ n_predict=500 # Allow more for the installation steps and features
206
+ )
207
+ print("\n--- End of More Complex Multi-Hop Search RAG (up to 2 hops) ---")
208
+ ASCIIColors.magenta("\nMore Complex Multi-Hop Search RAG (up to 2 hops) Final Output Structure:")
209
+ print(f" Final Answer (first 100 chars): {multihop_rag_result_2.get('final_answer', '')[:100]}...")
210
+ print(f" Error: {multihop_rag_result_2.get('error')}")
211
+ print(f" Number of Hops Made: {len(multihop_rag_result_2.get('rag_hops_history', []))}")
212
+ for i, hop_info in enumerate(multihop_rag_result_2.get('rag_hops_history', [])):
213
+ print(f" Hop {i+1} Query: '{hop_info.get('query')}'")
214
+ print(f" Hop {i+1} Results Count: {len(hop_info.get('retrieved_chunks_details',[]))}")
215
+ print(f" Hop {i+1} Summary (first 50): '{str(hop_info.get('new_information_summary'))[:50]}...'")
216
+ print(f" Total Unique Sources Retrieved: {len(multihop_rag_result_2.get('all_retrieved_sources', []))}")
217
+
218
+
219
+ except ValueError as ve:
220
+ ASCIIColors.error(f"Initialization or RAG parameter error: {ve}")
221
+ trace_exception(ve)
222
+ except ConnectionRefusedError:
223
+ ASCIIColors.error(f"Connection refused. Is the Ollama server ({LLM_BINDING_NAME}) running?")
224
+ except Exception as e:
225
+ ASCIIColors.error(f"An unexpected error occurred: {e}")
226
+ trace_exception(e)
227
+
228
+ ASCIIColors.red("\n--- Multi-Hop Internet Search Example Finished ---")
lollms_client/__init__.py CHANGED
@@ -7,7 +7,7 @@ from lollms_client.lollms_utilities import PromptReshaper # Keep general utiliti
7
7
  from lollms_client.lollms_mcp_binding import LollmsMCPBinding, LollmsMCPBindingManager
8
8
 
9
9
 
10
- __version__ = "0.19.1" # Updated version
10
+ __version__ = "0.19.6" # Updated version
11
11
 
12
12
  # Optionally, you could define __all__ if you want to be explicit about exports
13
13
  __all__ = [
@@ -12,7 +12,7 @@ from lollms_client.lollms_ttv_binding import LollmsTTVBinding, LollmsTTVBindingM
12
12
  from lollms_client.lollms_ttm_binding import LollmsTTMBinding, LollmsTTMBindingManager
13
13
  from lollms_client.lollms_mcp_binding import LollmsMCPBinding, LollmsMCPBindingManager
14
14
 
15
- import json
15
+ import json, re
16
16
  from enum import Enum
17
17
  import base64
18
18
  import requests
@@ -853,6 +853,243 @@ Respond with a JSON object containing ONE of the following structures:
853
853
  turn_history.append({"type":"final_answer_generated", "content":final_answer_text})
854
854
  return {"final_answer": final_answer_text, "tool_calls": tool_calls_made_this_turn, "error": None}
855
855
 
856
+ # --- RAG ---
857
+
858
+ def generate_text_with_rag(
859
+ self,
860
+ prompt: str,
861
+ rag_query_function: Callable[[str, Optional[str], int, float], List[Dict[str, Any]]],
862
+ rag_query_text: Optional[str] = None,
863
+ rag_vectorizer_name: Optional[str] = None,
864
+ rag_top_k: int = 5,
865
+ rag_min_similarity_percent: float = 70.0,
866
+ max_rag_hops: int = 0,
867
+ images: Optional[List[str]] = None,
868
+ system_prompt: str = "",
869
+ n_predict: Optional[int] = None,
870
+ stream: Optional[bool] = None,
871
+ temperature: Optional[float] = None,
872
+ top_k: Optional[int] = None,
873
+ top_p: Optional[float] = None,
874
+ repeat_penalty: Optional[float] = None,
875
+ repeat_last_n: Optional[int] = None,
876
+ seed: Optional[int] = None,
877
+ n_threads: Optional[int] = None,
878
+ ctx_size: int | None = None,
879
+ streaming_callback: Optional[Callable[[str, MSG_TYPE, Optional[Dict], Optional[List]], bool]] = None,
880
+ rag_hop_query_generation_temperature: float = 0.2,
881
+ rag_hop_summary_temperature: float = 0.3,
882
+ **llm_generation_kwargs
883
+ ) -> Dict[str, Any]:
884
+ if not self.binding:
885
+ return {"final_answer": "", "rag_hops_history": [], "all_retrieved_sources": [], "error": "LLM binding not initialized."}
886
+
887
+ turn_rag_history_for_callback: List[Dict[str, Any]] = []
888
+ accumulated_rag_context_str = ""
889
+ rag_hops_details_list: List[Dict[str, Any]] = []
890
+ all_unique_retrieved_chunks_map: Dict[str, Dict[str, Any]] = {} # To store unique chunks by content hash or path+text
891
+ current_query_for_rag = rag_query_text
892
+ original_user_prompt = prompt
893
+
894
+ for hop_count in range(max_rag_hops + 1):
895
+ if streaming_callback:
896
+ streaming_callback(f"Starting RAG Hop {hop_count + 1}", MSG_TYPE.MSG_TYPE_STEP, {"type": "rag_hop_start", "hop": hop_count + 1}, turn_rag_history_for_callback)
897
+
898
+ # 1. Determine/Generate RAG Query Text
899
+ if hop_count > 0 or (current_query_for_rag is None and max_rag_hops > 0):
900
+ if streaming_callback:
901
+ streaming_callback("LLM generating refined RAG query...", MSG_TYPE.MSG_TYPE_STEP_START, {"type": "rag_query_generation", "hop": hop_count + 1}, turn_rag_history_for_callback)
902
+
903
+ query_gen_prompt_parts = [
904
+ f"{self.system_full_header}You are an expert research assistant. Your task is to formulate the best possible search query to find information relevant to the user's original request, considering the information already gathered.",
905
+ f"{self.user_full_header}Original user request: '{original_user_prompt}'"
906
+ ]
907
+ if accumulated_rag_context_str:
908
+ query_gen_prompt_parts.append(f"Information gathered so far (summaries):\n{accumulated_rag_context_str}")
909
+ if rag_hops_details_list:
910
+ query_gen_prompt_parts.append("Previous search attempts and their summarized findings:")
911
+ for prev_hop in rag_hops_details_list:
912
+ query_gen_prompt_parts.append(f" - Queried for: '{prev_hop['query']}', Summary: '{prev_hop.get('new_information_summary', 'N/A')}'")
913
+
914
+ query_gen_prompt_parts.append("Based on this, what is the most effective and specific search query to perform next to get closer to answering the user's request? Output only the search query text, nothing else.")
915
+ query_gen_prompt_parts.append(self.ai_full_header)
916
+
917
+ new_query_text_raw = self.remove_thinking_blocks(self.generate_text(prompt="".join(query_gen_prompt_parts), temperature=rag_hop_query_generation_temperature, n_predict=100, stream=False))
918
+ if isinstance(new_query_text_raw, dict) and "error" in new_query_text_raw:
919
+ return {"final_answer": "", "rag_hops_history": rag_hops_details_list, "all_retrieved_sources": list(all_unique_retrieved_chunks_map.values()), "error": f"Failed to generate RAG query: {new_query_text_raw['error']}"}
920
+
921
+ current_query_for_rag = new_query_text_raw.strip().replace("Search query:", "").replace("Query:", "").strip("\"'")
922
+
923
+ if streaming_callback:
924
+ streaming_callback(f"Generated RAG query: {current_query_for_rag}", MSG_TYPE.MSG_TYPE_STEP_END, {"type": "rag_query_generation", "hop": hop_count + 1, "query": current_query_for_rag}, turn_rag_history_for_callback)
925
+
926
+ elif current_query_for_rag is None and max_rag_hops == 0:
927
+ current_query_for_rag = original_user_prompt
928
+
929
+ if not current_query_for_rag:
930
+ if max_rag_hops > 0 and hop_count < max_rag_hops:
931
+ ASCIIColors.warning(f"RAG Hop {hop_count + 1}: Generated query was empty. Skipping hop.")
932
+ rag_hops_details_list.append({"query": "EMPTY_QUERY_SKIPPED", "retrieved_chunks_details": [], "new_information_summary": "Skipped due to empty query.", "llm_decision_json": {"need_more_data": True if hop_count < max_rag_hops -1 else False}})
933
+ turn_rag_history_for_callback.append({"type":"rag_hop_info", "hop": hop_count + 1, "query": "EMPTY_QUERY_SKIPPED", "summary":"Skipped."})
934
+ continue
935
+ else:
936
+ ASCIIColors.warning("RAG query is empty. Proceeding without RAG context.")
937
+ break
938
+
939
+ # 2. Perform RAG Query
940
+ if streaming_callback:
941
+ streaming_callback(f"Querying knowledge base for: '{current_query_for_rag}'...", MSG_TYPE.MSG_TYPE_STEP_START, {"type": "rag_retrieval", "hop": hop_count + 1, "query": current_query_for_rag}, turn_rag_history_for_callback)
942
+
943
+ try:
944
+ retrieved_chunks_raw = rag_query_function(current_query_for_rag, rag_vectorizer_name, rag_top_k, rag_min_similarity_percent)
945
+ except Exception as e_rag_query:
946
+ trace_exception(e_rag_query)
947
+ return {"final_answer": "", "rag_hops_history": rag_hops_details_list, "all_retrieved_sources": list(all_unique_retrieved_chunks_map.values()), "error": f"RAG query function failed: {e_rag_query}"}
948
+
949
+ if streaming_callback:
950
+ streaming_callback(f"Retrieved {len(retrieved_chunks_raw)} chunks.", MSG_TYPE.MSG_TYPE_STEP_END, {"type": "rag_retrieval", "hop": hop_count + 1, "num_chunks": len(retrieved_chunks_raw)}, turn_rag_history_for_callback)
951
+
952
+ current_hop_details = {"query": current_query_for_rag, "retrieved_chunks_details": []}
953
+
954
+ formatted_new_chunks_for_llm_summary = ""
955
+ if retrieved_chunks_raw:
956
+ for i, chunk in enumerate(retrieved_chunks_raw):
957
+ doc_path = chunk.get('file_path', 'Unknown Document')
958
+ similarity = chunk.get('similarity_percent', 'N/A')
959
+ content = chunk.get('chunk_text', '')
960
+
961
+ chunk_detail_for_history = {"document": doc_path, "similarity": similarity, "content": content}
962
+ current_hop_details["retrieved_chunks_details"].append(chunk_detail_for_history)
963
+
964
+ # Add to unique list for final output
965
+ # Use a combination of path and content to uniquely identify a chunk to avoid duplicates if same content appears from different queries.
966
+ # A more robust unique key might involve hashing content if it's very large.
967
+ unique_key = f"{doc_path}::{content[:100]}" # Simple key
968
+ if unique_key not in all_unique_retrieved_chunks_map:
969
+ all_unique_retrieved_chunks_map[unique_key] = chunk_detail_for_history
970
+
971
+ # Format for LLM processing (summary or direct use)
972
+ formatted_new_chunks_for_llm_summary += f"Document: {doc_path} (Similarity: {similarity}%)\nContent:\n{content}\n---\n"
973
+
974
+ if not retrieved_chunks_raw:
975
+ current_hop_details["new_information_summary"] = "No relevant information found for this query."
976
+ current_hop_details["llm_decision_json"] = {"need_more_data": True if max_rag_hops > 0 and hop_count < max_rag_hops -1 else False, "reasoning_for_decision":"No new information retrieved."}
977
+ rag_hops_details_list.append(current_hop_details)
978
+ turn_rag_history_for_callback.append({"type":"rag_hop_info", **current_hop_details})
979
+ if max_rag_hops == 0 or hop_count >= max_rag_hops -1 :
980
+ break
981
+ else:
982
+ accumulated_rag_context_str += f"\n\n---\nAttempted query: '{current_query_for_rag}' - No new information found.\n---"
983
+ continue
984
+
985
+ if max_rag_hops == 0: # Classic RAG
986
+ accumulated_rag_context_str += formatted_new_chunks_for_llm_summary
987
+ current_hop_details["new_information_summary"] = "Directly used in context (classic RAG)."
988
+ current_hop_details["llm_decision_json"] = {"need_more_data": False}
989
+ rag_hops_details_list.append(current_hop_details)
990
+ turn_rag_history_for_callback.append({"type":"rag_hop_info", **current_hop_details})
991
+ break
992
+
993
+ # Multi-hop: LLM summarizes and decides
994
+ if streaming_callback:
995
+ streaming_callback("LLM processing retrieved data and deciding next step...", MSG_TYPE.MSG_TYPE_STEP_START, {"type": "rag_llm_decision", "hop": hop_count + 1}, turn_rag_history_for_callback)
996
+
997
+ decision_prompt_llm_parts = [
998
+ f"{self.system_full_header}You are an AI research assistant. Analyze newly retrieved information against the user's request and prior knowledge, then decide if more searching is needed.",
999
+ f"{self.user_full_header}Original user request: '{original_user_prompt}'",
1000
+ ]
1001
+ if accumulated_rag_context_str:
1002
+ decision_prompt_llm_parts.append(f"Current accumulated knowledge summary:\n{accumulated_rag_context_str}")
1003
+ decision_prompt_llm_parts.append(f"You just searched for: '{current_query_for_rag}'")
1004
+ decision_prompt_llm_parts.append(f"And found this new information:\n--- New Information Start ---\n{formatted_new_chunks_for_llm_summary}--- New Information End ---")
1005
+ decision_prompt_llm_parts.append(
1006
+ "Task: Provide a concise summary of ONLY the new information relevant to the original request. "
1007
+ "Then, assess if you now have sufficient information to comprehensively answer the user's original request or if another, more targeted search is necessary. "
1008
+ "Respond STRICTLY in the following JSON format, with no other text before or after the JSON block:"
1009
+ )
1010
+ json_template_for_decision = """
1011
+ {
1012
+ "new_information_summary": "<Your concise summary of ONLY the new_information relevant to the original_user_request. Focus on what's new and useful. If nothing new is relevant, state that.>",
1013
+ "need_more_data": <true_or_false>,
1014
+ "reasoning_for_decision": "<Briefly explain why you need more data or why you have enough. If needing more, suggest what kind of information is still missing.>"
1015
+ }
1016
+ """
1017
+ decision_prompt_llm_parts.append(f"```json\n{json_template_for_decision}\n```")
1018
+ decision_prompt_llm_parts.append(self.ai_full_header)
1019
+
1020
+ llm_decision_json_str = self.generate_code(prompt="".join(decision_prompt_llm_parts), language="json", template=json_template_for_decision, temperature=rag_hop_summary_temperature, max_size=1024)
1021
+
1022
+ if isinstance(llm_decision_json_str, dict) and "error" in llm_decision_json_str:
1023
+ return {"final_answer": "", "rag_hops_history": rag_hops_details_list, "all_retrieved_sources": list(all_unique_retrieved_chunks_map.values()), "error": f"LLM failed to make RAG decision: {llm_decision_json_str['error']}"}
1024
+ if not llm_decision_json_str:
1025
+ return {"final_answer": "", "rag_hops_history": rag_hops_details_list, "all_retrieved_sources": list(all_unique_retrieved_chunks_map.values()), "error": "LLM provided empty decision for RAG hop."}
1026
+
1027
+ try:
1028
+ llm_decision = json.loads(llm_decision_json_str)
1029
+ except json.JSONDecodeError:
1030
+ try:
1031
+ match = re.search(r"```json\s*(\{.*?\})\s*```", llm_decision_json_str, re.DOTALL)
1032
+ if match: llm_decision = json.loads(match.group(1))
1033
+ else: llm_decision = json.loads(self.extract_code_blocks(llm_decision_json_str, format="markdown")[0]["content"])
1034
+ except Exception as e_json_parse:
1035
+ trace_exception(e_json_parse)
1036
+ return {"final_answer": "", "rag_hops_history": rag_hops_details_list, "all_retrieved_sources": list(all_unique_retrieved_chunks_map.values()), "error": f"Failed to parse LLM RAG decision JSON: {llm_decision_json_str}. Error: {e_json_parse}"}
1037
+
1038
+ new_summary = llm_decision.get("new_information_summary", "Summary not provided by LLM.")
1039
+ need_more_data = llm_decision.get("need_more_data", True)
1040
+
1041
+ current_hop_details["new_information_summary"] = new_summary
1042
+ current_hop_details["llm_decision_json"] = llm_decision
1043
+ rag_hops_details_list.append(current_hop_details)
1044
+ turn_rag_history_for_callback.append({"type":"rag_hop_info", **current_hop_details})
1045
+
1046
+ if streaming_callback:
1047
+ streaming_callback(f"LLM decision: Summary='{new_summary[:100]}...', NeedMoreData={need_more_data}", MSG_TYPE.MSG_TYPE_STEP_END, {"type": "rag_llm_decision", "hop": hop_count + 1, "decision": llm_decision}, turn_rag_history_for_callback)
1048
+
1049
+ accumulated_rag_context_str += f"\n\n--- Summary of findings from query '{current_query_for_rag}' (Hop {hop_count + 1}) ---\n{new_summary}\n---"
1050
+
1051
+ if not need_more_data or hop_count >= max_rag_hops -1 : # Subtract 1 because current hop is finishing
1052
+ break
1053
+
1054
+ # 4. Final Answer Generation
1055
+ if streaming_callback:
1056
+ streaming_callback("LLM generating final answer using all gathered information...", MSG_TYPE.MSG_TYPE_STEP_START, {"type": "final_answer_generation"}, turn_rag_history_for_callback)
1057
+
1058
+ final_answer_prompt_parts = []
1059
+ if system_prompt:
1060
+ final_answer_prompt_parts.append(f"{self.system_full_header}{system_prompt}")
1061
+
1062
+ final_answer_prompt_parts.append(f"{self.user_full_header}Original request: {original_user_prompt}")
1063
+ if accumulated_rag_context_str:
1064
+ final_answer_prompt_parts.append(f"\nBased on the information I have gathered:\n--- Gathered Context Start ---\n{accumulated_rag_context_str.strip()}\n--- Gathered Context End ---")
1065
+ else:
1066
+ final_answer_prompt_parts.append("\n(No specific information was retrieved from the knowledge base for this request.)")
1067
+
1068
+ final_answer_prompt_parts.append("\nPlease provide a comprehensive answer to the original request using ONLY the provided gathered context. If the context is insufficient, clearly state that.")
1069
+ final_answer_prompt_parts.append(self.ai_full_header)
1070
+
1071
+ final_answer_llm_prompt = "\n".join(final_answer_prompt_parts)
1072
+
1073
+ final_answer_streaming_callback = None
1074
+ if streaming_callback:
1075
+ def final_answer_cb_adapter(chunk, msg_type):
1076
+ return streaming_callback(chunk, msg_type, {"type": "final_answer_chunk"}, turn_rag_history_for_callback)
1077
+ final_answer_streaming_callback = final_answer_cb_adapter
1078
+
1079
+ final_answer_text = self.remove_thinking_blocks(self.generate_text(
1080
+ prompt=final_answer_llm_prompt, images=images,
1081
+ n_predict=n_predict, stream=stream, temperature=temperature, top_k=top_k, top_p=top_p,
1082
+ repeat_penalty=repeat_penalty, repeat_last_n=repeat_last_n, seed=seed, n_threads=n_threads,
1083
+ ctx_size=ctx_size, streaming_callback=final_answer_streaming_callback, **llm_generation_kwargs
1084
+ ))
1085
+
1086
+ if streaming_callback:
1087
+ streaming_callback("Final answer generation complete.", MSG_TYPE.MSG_TYPE_STEP_END, {"type": "final_answer_generation"}, turn_rag_history_for_callback)
1088
+
1089
+ if isinstance(final_answer_text, dict) and "error" in final_answer_text:
1090
+ return {"final_answer": "", "rag_hops_history": rag_hops_details_list, "all_retrieved_sources": list(all_unique_retrieved_chunks_map.values()), "error": f"Final answer generation failed: {final_answer_text['error']}"}
1091
+
1092
+ return {"final_answer": final_answer_text, "rag_hops_history": rag_hops_details_list, "all_retrieved_sources": list(all_unique_retrieved_chunks_map.values()), "error": None}
856
1093
 
857
1094
  def generate_code(
858
1095
  self,
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: lollms_client
3
- Version: 0.19.1
3
+ Version: 0.19.6
4
4
  Summary: A client library for LoLLMs generate endpoint
5
5
  Author-email: ParisNeo <parisneoai@gmail.com>
6
6
  License: Apache Software License
@@ -1,4 +1,6 @@
1
1
  examples/function_calling_with_local_custom_mcp.py,sha256=g6wOFRB8-p9Cv7hKmQaGzPvtMX3H77gas01QVNEOduM,12407
2
+ examples/generate_text_with_multihop_rag_example.py,sha256=Z6TbVqThOCHNK6kzIqRnEi76JDxIFlg1-IIMWehZars,11582
3
+ examples/internet_search_with_rag.py,sha256=WBoYFBEjGIFKyKTzezm7lI0bGPNuHFMyoq_8iY32qLY,12434
2
4
  examples/local_mcp.py,sha256=w40dgayvHYe01yvekEE0LjcbkpwKjWwJ-9v4_wGYsUk,9113
3
5
  examples/simple_text_gen_test.py,sha256=RoX9ZKJjGMujeep60wh5WT_GoBn0O9YKJY6WOy-ZmOc,8710
4
6
  examples/simple_text_gen_with_image_test.py,sha256=rR1O5Prcb52UHtJ3c6bv7VuTd1cvbkr5aNZU-v-Rs3Y,9263
@@ -17,9 +19,9 @@ examples/personality_test/chat_test.py,sha256=o2jlpoddFc-T592iqAiA29xk3x27KsdK5D
17
19
  examples/personality_test/chat_with_aristotle.py,sha256=4X_fwubMpd0Eq2rCReS2bgVlUoAqJprjkLXk2Jz6pXU,1774
18
20
  examples/personality_test/tesks_test.py,sha256=7LIiwrEbva9WWZOLi34fsmCBN__RZbPpxoUOKA_AtYk,1924
19
21
  examples/test_local_models/local_chat.py,sha256=slakja2zaHOEAUsn2tn_VmI4kLx6luLBrPqAeaNsix8,456
20
- lollms_client/__init__.py,sha256=rbZUoiSGIFLwCBjEUsAC68azS9mIfZ9EXmyasnBDbkY,910
22
+ lollms_client/__init__.py,sha256=6_HMLYZ2YejnZPhg5Tomyq6wYfndu9otuy-o7YAinWQ,910
21
23
  lollms_client/lollms_config.py,sha256=goEseDwDxYJf3WkYJ4IrLXwg3Tfw73CXV2Avg45M_hE,21876
22
- lollms_client/lollms_core.py,sha256=psVTrEtHYhjy9h014rHLotBC4Aj72PvG2OV0UAjLcvw,102496
24
+ lollms_client/lollms_core.py,sha256=56wntZAimRfx0qBR_96_1h9_ZKuvY1Uq_kMVs9xg-dE,119768
23
25
  lollms_client/lollms_discussion.py,sha256=9b83m0D894jwpgssWYTQHbVxp1gJoI-J947Ui_dRXII,2073
24
26
  lollms_client/lollms_js_analyzer.py,sha256=01zUvuO2F_lnUe_0NLxe1MF5aHE1hO8RZi48mNPv-aw,8361
25
27
  lollms_client/lollms_llm_binding.py,sha256=bdElz_IBx0zZ-85YTT1fyY_mSoHo46tKIMiHYJlKCkM,9809
@@ -67,8 +69,8 @@ lollms_client/tts_bindings/piper_tts/__init__.py,sha256=0IEWG4zH3_sOkSb9WbZzkeV5
67
69
  lollms_client/tts_bindings/xtts/__init__.py,sha256=FgcdUH06X6ZR806WQe5ixaYx0QoxtAcOgYo87a2qxYc,18266
68
70
  lollms_client/ttv_bindings/__init__.py,sha256=UZ8o2izQOJLQgtZ1D1cXoNST7rzqW22rL2Vufc7ddRc,3141
69
71
  lollms_client/ttv_bindings/lollms/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
70
- lollms_client-0.19.1.dist-info/licenses/LICENSE,sha256=HrhfyXIkWY2tGFK11kg7vPCqhgh5DcxleloqdhrpyMY,11558
71
- lollms_client-0.19.1.dist-info/METADATA,sha256=MKuTL8GsNdArHgSQ_xxhqViSdpEVs0cAK4akk5tNGVM,13374
72
- lollms_client-0.19.1.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
73
- lollms_client-0.19.1.dist-info/top_level.txt,sha256=NI_W8S4OYZvJjb0QWMZMSIpOrYzpqwPGYaklhyWKH2w,23
74
- lollms_client-0.19.1.dist-info/RECORD,,
72
+ lollms_client-0.19.6.dist-info/licenses/LICENSE,sha256=HrhfyXIkWY2tGFK11kg7vPCqhgh5DcxleloqdhrpyMY,11558
73
+ lollms_client-0.19.6.dist-info/METADATA,sha256=kI_H4LhMJWMmt1rTJUMP7CdZVlzA-N7RhnyDSHEYJvA,13374
74
+ lollms_client-0.19.6.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
75
+ lollms_client-0.19.6.dist-info/top_level.txt,sha256=NI_W8S4OYZvJjb0QWMZMSIpOrYzpqwPGYaklhyWKH2w,23
76
+ lollms_client-0.19.6.dist-info/RECORD,,