locoformer 0.0.5__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
locoformer/__init__.py
ADDED
|
@@ -0,0 +1 @@
|
|
|
1
|
+
from locoformer.locoformer import Locoformer
|
locoformer/locoformer.py
ADDED
|
@@ -0,0 +1,414 @@
|
|
|
1
|
+
from __future__ import annotations
|
|
2
|
+
from functools import partial
|
|
3
|
+
|
|
4
|
+
import torch
|
|
5
|
+
from torch import cat, stack, is_tensor
|
|
6
|
+
import torch.nn.functional as F
|
|
7
|
+
from torch.nn import Module, ModuleList, Linear, RMSNorm, Identity
|
|
8
|
+
from torch.utils._pytree import tree_map
|
|
9
|
+
|
|
10
|
+
from einops import rearrange, einsum
|
|
11
|
+
from einops.layers.torch import Rearrange
|
|
12
|
+
|
|
13
|
+
from rotary_embedding_torch import RotaryEmbedding
|
|
14
|
+
|
|
15
|
+
from assoc_scan import AssocScan
|
|
16
|
+
|
|
17
|
+
LinearNoBias = partial(Linear, bias = False)
|
|
18
|
+
|
|
19
|
+
# helper functions
|
|
20
|
+
|
|
21
|
+
def exists(v):
|
|
22
|
+
return v is not None
|
|
23
|
+
|
|
24
|
+
def default(v, d):
|
|
25
|
+
return v if exists(v) else d
|
|
26
|
+
|
|
27
|
+
def divisible_by(num, den):
|
|
28
|
+
return (num % den) == 0
|
|
29
|
+
|
|
30
|
+
def tree_map_tensor(x, fn):
|
|
31
|
+
return tree_map(lambda t: t if not is_tensor(t) else fn(t), x)
|
|
32
|
+
|
|
33
|
+
def detach_all(x):
|
|
34
|
+
return tree_map_tensor(x, lambda t: t.detach())
|
|
35
|
+
|
|
36
|
+
def combine_kv_cache(cache1, cache2):
|
|
37
|
+
combined_cache = []
|
|
38
|
+
|
|
39
|
+
for layer_cache1, layer_cache2 in zip(cache1, cache2):
|
|
40
|
+
next_cache = cat((layer_cache1, layer_cache2), dim = -2)
|
|
41
|
+
combined_cache.append(next_cache)
|
|
42
|
+
|
|
43
|
+
return combined_cache
|
|
44
|
+
|
|
45
|
+
# generalized advantage estimate
|
|
46
|
+
|
|
47
|
+
@torch.no_grad()
|
|
48
|
+
def calc_gae(
|
|
49
|
+
rewards,
|
|
50
|
+
values,
|
|
51
|
+
masks,
|
|
52
|
+
gamma = 0.99,
|
|
53
|
+
lam = 0.95,
|
|
54
|
+
use_accelerated = None
|
|
55
|
+
):
|
|
56
|
+
assert values.shape[-1] == rewards.shape[-1]
|
|
57
|
+
use_accelerated = default(use_accelerated, rewards.is_cuda)
|
|
58
|
+
|
|
59
|
+
values = F.pad(values, (0, 1), value = 0.)
|
|
60
|
+
values, values_next = values[..., :-1], values[..., 1:]
|
|
61
|
+
|
|
62
|
+
delta = rewards + gamma * values_next * masks - values
|
|
63
|
+
gates = gamma * lam * masks
|
|
64
|
+
|
|
65
|
+
scan = AssocScan(reverse = True, use_accelerated = use_accelerated)
|
|
66
|
+
|
|
67
|
+
gae = scan(gates, delta)
|
|
68
|
+
|
|
69
|
+
returns = gae + values
|
|
70
|
+
|
|
71
|
+
return returns
|
|
72
|
+
|
|
73
|
+
# transformer-xl mask w/ flex attn
|
|
74
|
+
|
|
75
|
+
flex_attention = None
|
|
76
|
+
|
|
77
|
+
try:
|
|
78
|
+
from torch.nn.attention.flex_attention import flex_attention, create_block_mask
|
|
79
|
+
if torch.cuda.is_available():
|
|
80
|
+
flex_attention = torch.compile(flex_attention)
|
|
81
|
+
except ImportError:
|
|
82
|
+
pass
|
|
83
|
+
|
|
84
|
+
def create_xl_mask(
|
|
85
|
+
seq_len,
|
|
86
|
+
kv_seq_len,
|
|
87
|
+
window_size,
|
|
88
|
+
episode_ids = None, # (b n) - in the case that within the same batch there are multiple episodes
|
|
89
|
+
lookback_blocks = 1, # in transformer-xl, lookback is one window size block, but can be multiple for longer context
|
|
90
|
+
device = None
|
|
91
|
+
):
|
|
92
|
+
assert kv_seq_len >= seq_len
|
|
93
|
+
assert window_size <= seq_len
|
|
94
|
+
|
|
95
|
+
offset = kv_seq_len - seq_len
|
|
96
|
+
|
|
97
|
+
def create_block_mask_fn(b, __, q, k):
|
|
98
|
+
offset_q = q + offset
|
|
99
|
+
block_q = offset_q // window_size
|
|
100
|
+
block_k = k // window_size
|
|
101
|
+
|
|
102
|
+
causal_mask = offset_q >= k
|
|
103
|
+
|
|
104
|
+
# in transformer-xl, the previous segment is fully attended to - may just double the segments and make this sliding for ease of inference logic
|
|
105
|
+
|
|
106
|
+
block_mask = (block_q >= block_k) & (block_q <= (block_k + lookback_blocks))
|
|
107
|
+
|
|
108
|
+
mask = causal_mask & block_mask
|
|
109
|
+
|
|
110
|
+
# handle intra-episodic attention if needed
|
|
111
|
+
|
|
112
|
+
if exists(episode_ids):
|
|
113
|
+
q_episode = episodes[b, q + offset]
|
|
114
|
+
k_episode = episodes[b, k]
|
|
115
|
+
|
|
116
|
+
intra_episode_mask = q_episode == k_episode
|
|
117
|
+
mask = mask & intra_episode_mask
|
|
118
|
+
|
|
119
|
+
return mask
|
|
120
|
+
|
|
121
|
+
create_kwargs = dict(device = device) if exists(device) else dict()
|
|
122
|
+
return create_block_mask(create_block_mask_fn, B = None, H = None, Q_LEN = seq_len, KV_LEN = kv_seq_len, _compile = True, **create_kwargs)
|
|
123
|
+
|
|
124
|
+
def create_sliding_mask(
|
|
125
|
+
seq_len,
|
|
126
|
+
kv_seq_len,
|
|
127
|
+
window_size,
|
|
128
|
+
device = None
|
|
129
|
+
):
|
|
130
|
+
assert kv_seq_len >= seq_len
|
|
131
|
+
offset = kv_seq_len - seq_len
|
|
132
|
+
|
|
133
|
+
def sliding_mask(_, __, q, k):
|
|
134
|
+
offset_q = q + offset
|
|
135
|
+
distance = offset_q - k
|
|
136
|
+
|
|
137
|
+
backward_sliding_mask = distance <= window_size
|
|
138
|
+
forward_sliding_mask = distance >= 0
|
|
139
|
+
|
|
140
|
+
return backward_sliding_mask & forward_sliding_mask
|
|
141
|
+
|
|
142
|
+
create_kwargs = dict(device = device) if exists(device) else dict()
|
|
143
|
+
return create_block_mask(sliding_mask, B = None, H = None, Q_LEN = seq_len, KV_LEN = kv_seq_len, _compile = True, **create_kwargs)
|
|
144
|
+
|
|
145
|
+
# transformer-xl with ppo
|
|
146
|
+
|
|
147
|
+
class Attention(Module):
|
|
148
|
+
def __init__(
|
|
149
|
+
self,
|
|
150
|
+
dim,
|
|
151
|
+
dim_head = 64,
|
|
152
|
+
heads = 8,
|
|
153
|
+
pre_rmsnorm = True
|
|
154
|
+
):
|
|
155
|
+
super().__init__()
|
|
156
|
+
self.scale = dim_head ** -0.5
|
|
157
|
+
|
|
158
|
+
self.norm = RMSNorm(dim) if pre_rmsnorm else Identity()
|
|
159
|
+
|
|
160
|
+
self.split_heads = Rearrange('b n (h d) -> b h n d', h = heads)
|
|
161
|
+
self.merge_heads = Rearrange('b h n d -> b n (h d)')
|
|
162
|
+
|
|
163
|
+
self.rotary_embed = RotaryEmbedding(dim_head)
|
|
164
|
+
|
|
165
|
+
dim_inner = dim_head * heads
|
|
166
|
+
self.to_q = LinearNoBias(dim, dim_inner)
|
|
167
|
+
self.to_kv = LinearNoBias(dim, dim_inner * 2)
|
|
168
|
+
self.to_out = LinearNoBias(dim_inner, dim)
|
|
169
|
+
|
|
170
|
+
def forward(
|
|
171
|
+
self,
|
|
172
|
+
tokens,
|
|
173
|
+
kv_cache = None,
|
|
174
|
+
return_kv_cache = False
|
|
175
|
+
):
|
|
176
|
+
tokens = self.norm(tokens)
|
|
177
|
+
|
|
178
|
+
q, k, v = (self.to_q(tokens), *self.to_kv(tokens).chunk(2, dim = -1))
|
|
179
|
+
|
|
180
|
+
q, k, v = map(self.split_heads, (q, k, v))
|
|
181
|
+
|
|
182
|
+
q = q * self.scale
|
|
183
|
+
|
|
184
|
+
if exists(kv_cache):
|
|
185
|
+
ck, cv = kv_cache
|
|
186
|
+
k = cat((ck, k), dim = -2)
|
|
187
|
+
v = cat((cv, v), dim = -2)
|
|
188
|
+
|
|
189
|
+
if return_kv_cache:
|
|
190
|
+
next_kv_cache = stack((k, v))
|
|
191
|
+
|
|
192
|
+
q, k = self.rotary_embed.rotate_queries_with_cached_keys(q, k)
|
|
193
|
+
|
|
194
|
+
sim = einsum(q, k, 'b h i d, b h j d -> b h i j')
|
|
195
|
+
|
|
196
|
+
i, j = sim.shape[-2:]
|
|
197
|
+
|
|
198
|
+
causal_mask = torch.ones((i, j), dtype = torch.bool, device = sim.device).triu(j - i + 1)
|
|
199
|
+
|
|
200
|
+
sim = sim.masked_fill(causal_mask, -torch.finfo(sim.dtype).max)
|
|
201
|
+
|
|
202
|
+
attn = sim.softmax(dim = -1)
|
|
203
|
+
|
|
204
|
+
out = einsum(attn, v, 'b h i j, b h j d -> b h i d')
|
|
205
|
+
|
|
206
|
+
out = self.merge_heads(out)
|
|
207
|
+
|
|
208
|
+
out = self.to_out(out)
|
|
209
|
+
|
|
210
|
+
if not return_kv_cache:
|
|
211
|
+
return out
|
|
212
|
+
|
|
213
|
+
return out, next_kv_cache
|
|
214
|
+
|
|
215
|
+
class FeedForward(Module):
|
|
216
|
+
def __init__(
|
|
217
|
+
self,
|
|
218
|
+
dim,
|
|
219
|
+
expansion_factor = 4.,
|
|
220
|
+
pre_rmsnorm = True
|
|
221
|
+
):
|
|
222
|
+
super().__init__()
|
|
223
|
+
self.norm = RMSNorm(dim) if pre_rmsnorm else Identity()
|
|
224
|
+
|
|
225
|
+
dim_inner = int(dim * expansion_factor * 2 / 3)
|
|
226
|
+
|
|
227
|
+
self.proj_in = Linear(dim, dim_inner * 2)
|
|
228
|
+
self.proj_out = Linear(dim_inner, dim)
|
|
229
|
+
|
|
230
|
+
def forward(
|
|
231
|
+
self,
|
|
232
|
+
x
|
|
233
|
+
):
|
|
234
|
+
x = self.norm(x)
|
|
235
|
+
|
|
236
|
+
x, gates = self.proj_in(x).chunk(2, dim = -1)
|
|
237
|
+
|
|
238
|
+
x = x * F.gelu(gates)
|
|
239
|
+
|
|
240
|
+
return self.proj_out(x)
|
|
241
|
+
|
|
242
|
+
class TransformerXL(Module):
|
|
243
|
+
def __init__(
|
|
244
|
+
self,
|
|
245
|
+
dim,
|
|
246
|
+
depth,
|
|
247
|
+
dim_head = 64,
|
|
248
|
+
heads = 8,
|
|
249
|
+
expansion_factor = 4.,
|
|
250
|
+
final_norm = True
|
|
251
|
+
):
|
|
252
|
+
super().__init__()
|
|
253
|
+
|
|
254
|
+
layers = ModuleList([])
|
|
255
|
+
|
|
256
|
+
for _ in range(depth):
|
|
257
|
+
attn = Attention(dim = dim, dim_head = dim_head, heads = heads)
|
|
258
|
+
|
|
259
|
+
ff = FeedForward(dim = dim, expansion_factor = expansion_factor)
|
|
260
|
+
|
|
261
|
+
layers.append(ModuleList([
|
|
262
|
+
attn, ff
|
|
263
|
+
]))
|
|
264
|
+
|
|
265
|
+
self.layers = layers
|
|
266
|
+
self.norm = RMSNorm(dim) if final_norm else Identity()
|
|
267
|
+
|
|
268
|
+
def forward(
|
|
269
|
+
self,
|
|
270
|
+
x,
|
|
271
|
+
cache = None,
|
|
272
|
+
return_kv_cache = False
|
|
273
|
+
):
|
|
274
|
+
|
|
275
|
+
cache = default(cache, (None,) * len(self.layers))
|
|
276
|
+
|
|
277
|
+
next_kv_caches = []
|
|
278
|
+
|
|
279
|
+
for (attn, ff), kv_cache in zip(self.layers, cache):
|
|
280
|
+
|
|
281
|
+
attn_out, next_kv_cache = attn(x, kv_cache = kv_cache, return_kv_cache = True)
|
|
282
|
+
|
|
283
|
+
next_kv_caches.append(next_kv_cache)
|
|
284
|
+
|
|
285
|
+
x = attn_out + x
|
|
286
|
+
x = ff(x) + x
|
|
287
|
+
|
|
288
|
+
embed = self.norm(x)
|
|
289
|
+
|
|
290
|
+
if not return_kv_cache:
|
|
291
|
+
return embed
|
|
292
|
+
|
|
293
|
+
return embed, stack(next_kv_caches)
|
|
294
|
+
|
|
295
|
+
# class
|
|
296
|
+
|
|
297
|
+
class Locoformer(Module):
|
|
298
|
+
def __init__(
|
|
299
|
+
self,
|
|
300
|
+
embedder: Module,
|
|
301
|
+
unembedder: Module,
|
|
302
|
+
transformer: dict | TransformerXL,
|
|
303
|
+
value_network: Module | None = None
|
|
304
|
+
):
|
|
305
|
+
super().__init__()
|
|
306
|
+
|
|
307
|
+
if isinstance(transformer, dict):
|
|
308
|
+
transformer = TransformerXL(**transformer)
|
|
309
|
+
|
|
310
|
+
self.transformer = transformer
|
|
311
|
+
|
|
312
|
+
self.embedder = embedder
|
|
313
|
+
self.unembedder = unembedder
|
|
314
|
+
|
|
315
|
+
self.value_network = value_network
|
|
316
|
+
|
|
317
|
+
@property
|
|
318
|
+
def device(self):
|
|
319
|
+
return next(self.parameters()).device
|
|
320
|
+
|
|
321
|
+
def get_stateful_forward(
|
|
322
|
+
self,
|
|
323
|
+
segment_size,
|
|
324
|
+
initial_states: Tensor | None = None,
|
|
325
|
+
inference_mode = False,
|
|
326
|
+
has_batch_dim = False,
|
|
327
|
+
**kwargs
|
|
328
|
+
):
|
|
329
|
+
cache = None
|
|
330
|
+
|
|
331
|
+
def stateful_forward(state: Tensor, override_kwargs: dict = dict()):
|
|
332
|
+
nonlocal cache
|
|
333
|
+
|
|
334
|
+
# handle no batch, for easier time rolling out against envs
|
|
335
|
+
|
|
336
|
+
if not has_batch_dim:
|
|
337
|
+
state = rearrange(state, '... -> 1 ...')
|
|
338
|
+
|
|
339
|
+
# forwards
|
|
340
|
+
|
|
341
|
+
out, cache = self.forward(state, cache = cache, **{**kwargs, **override_kwargs})
|
|
342
|
+
|
|
343
|
+
# handle cache
|
|
344
|
+
|
|
345
|
+
cache_len = cache.shape[-2]
|
|
346
|
+
|
|
347
|
+
if divisible_by(cache_len, segment_size * 2):
|
|
348
|
+
cache = cache[..., -segment_size:, :]
|
|
349
|
+
|
|
350
|
+
# maybe remove batch
|
|
351
|
+
|
|
352
|
+
if not has_batch_dim:
|
|
353
|
+
out = tree_map_tensor(out, lambda t: rearrange(t, '1 ... -> ...'))
|
|
354
|
+
|
|
355
|
+
return out
|
|
356
|
+
|
|
357
|
+
if inference_mode:
|
|
358
|
+
stateful_forward = torch.inference_mode()(stateful_forward)
|
|
359
|
+
|
|
360
|
+
# handle prompt
|
|
361
|
+
|
|
362
|
+
if not exists(initial_states):
|
|
363
|
+
return stateful_forward
|
|
364
|
+
|
|
365
|
+
initial_logits = []
|
|
366
|
+
|
|
367
|
+
for state_segments in initial_states.split(segment_size, dim = -1):
|
|
368
|
+
|
|
369
|
+
logits = stateful_forward(state_segments, return_values = False)
|
|
370
|
+
initial_logits.append(logits)
|
|
371
|
+
|
|
372
|
+
initial_logits = cat(initial_logits, dim = -2)
|
|
373
|
+
|
|
374
|
+
return stateful_forward, initial_logits
|
|
375
|
+
|
|
376
|
+
def forward(
|
|
377
|
+
self,
|
|
378
|
+
state: Tensor,
|
|
379
|
+
cache: Tensor | None = None,
|
|
380
|
+
detach_cache = False,
|
|
381
|
+
return_values = False
|
|
382
|
+
):
|
|
383
|
+
|
|
384
|
+
tokens = self.embedder(state)
|
|
385
|
+
|
|
386
|
+
embed, kv_cache = self.transformer(tokens, cache = cache, return_kv_cache = True)
|
|
387
|
+
|
|
388
|
+
# unembed to actions - in language models this would be the next state
|
|
389
|
+
|
|
390
|
+
action_logits = self.unembedder(embed)
|
|
391
|
+
|
|
392
|
+
out = action_logits
|
|
393
|
+
|
|
394
|
+
# maybe detach cache
|
|
395
|
+
|
|
396
|
+
if detach_cache:
|
|
397
|
+
kv_cache = detach_all(kv_cache)
|
|
398
|
+
|
|
399
|
+
# handle returning of values
|
|
400
|
+
|
|
401
|
+
if return_values:
|
|
402
|
+
assert exists(self.value_network)
|
|
403
|
+
|
|
404
|
+
values = self.value_network(embed)
|
|
405
|
+
|
|
406
|
+
if values.ndim == 3:
|
|
407
|
+
assert values.shape[-1] == 1
|
|
408
|
+
values = rearrange(values, '... 1 -> ...')
|
|
409
|
+
|
|
410
|
+
out = (out, values)
|
|
411
|
+
|
|
412
|
+
# output and cache
|
|
413
|
+
|
|
414
|
+
return out, kv_cache
|
|
@@ -0,0 +1,71 @@
|
|
|
1
|
+
Metadata-Version: 2.4
|
|
2
|
+
Name: locoformer
|
|
3
|
+
Version: 0.0.5
|
|
4
|
+
Summary: LocoFormer
|
|
5
|
+
Project-URL: Homepage, https://pypi.org/project/locoformer/
|
|
6
|
+
Project-URL: Repository, https://github.com/lucidrains/locoformer
|
|
7
|
+
Author-email: Phil Wang <lucidrains@gmail.com>
|
|
8
|
+
License: MIT License
|
|
9
|
+
|
|
10
|
+
Copyright (c) 2025 Phil Wang
|
|
11
|
+
|
|
12
|
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
13
|
+
of this software and associated documentation files (the "Software"), to deal
|
|
14
|
+
in the Software without restriction, including without limitation the rights
|
|
15
|
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
16
|
+
copies of the Software, and to permit persons to whom the Software is
|
|
17
|
+
furnished to do so, subject to the following conditions:
|
|
18
|
+
|
|
19
|
+
The above copyright notice and this permission notice shall be included in all
|
|
20
|
+
copies or substantial portions of the Software.
|
|
21
|
+
|
|
22
|
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
23
|
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
24
|
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
25
|
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
26
|
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
27
|
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
28
|
+
SOFTWARE.
|
|
29
|
+
License-File: LICENSE
|
|
30
|
+
Keywords: artificial intelligence,attention mechanism,cross-embodiment,deep learning,robotics,transformer
|
|
31
|
+
Classifier: Development Status :: 4 - Beta
|
|
32
|
+
Classifier: Intended Audience :: Developers
|
|
33
|
+
Classifier: License :: OSI Approved :: MIT License
|
|
34
|
+
Classifier: Programming Language :: Python :: 3.9
|
|
35
|
+
Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
|
|
36
|
+
Requires-Python: >=3.9
|
|
37
|
+
Requires-Dist: assoc-scan
|
|
38
|
+
Requires-Dist: einops>=0.8.0
|
|
39
|
+
Requires-Dist: einx>=0.3.0
|
|
40
|
+
Requires-Dist: rotary-embedding-torch
|
|
41
|
+
Requires-Dist: torch>=2.4
|
|
42
|
+
Requires-Dist: x-mlps-pytorch
|
|
43
|
+
Provides-Extra: examples
|
|
44
|
+
Requires-Dist: accelerate; extra == 'examples'
|
|
45
|
+
Requires-Dist: tqdm; extra == 'examples'
|
|
46
|
+
Provides-Extra: test
|
|
47
|
+
Requires-Dist: pytest; extra == 'test'
|
|
48
|
+
Description-Content-Type: text/markdown
|
|
49
|
+
|
|
50
|
+
<img src="./fig3.png" width="400px"></img>
|
|
51
|
+
|
|
52
|
+
## LocoFormer (wip)
|
|
53
|
+
|
|
54
|
+
[LocoFormer - Generalist Locomotion via Long-Context Adaptation](https://generalist-locomotion.github.io/)
|
|
55
|
+
|
|
56
|
+
The gist is they trained a simple Transformer-XL in simulation on robots with many different bodies (cross-embodiment). When transferring to the real-world, they noticed the robot now gains the ability to adapt to insults. The XL memories span across multiple trials, which allowed the robot to learn in-context adaptation.
|
|
57
|
+
|
|
58
|
+
## Sponsors
|
|
59
|
+
|
|
60
|
+
This open sourced work is sponsored by [Safe Sentinel](https://www.safesentinels.com/)
|
|
61
|
+
|
|
62
|
+
## Citations
|
|
63
|
+
|
|
64
|
+
```bibtex
|
|
65
|
+
@article{liu2025locoformer,
|
|
66
|
+
title = {LocoFormer: Generalist Locomotion via Long-Context Adaptation},
|
|
67
|
+
author = {Liu, Min and Pathak, Deepak and Agarwal, Ananye},
|
|
68
|
+
journal = {Conference on Robot Learning ({CoRL})},
|
|
69
|
+
year = {2025}
|
|
70
|
+
}
|
|
71
|
+
```
|
|
@@ -0,0 +1,6 @@
|
|
|
1
|
+
locoformer/__init__.py,sha256=XctsMGEZSR4mVl75fhds_1BtS5qGFiiItTDV7CmCt_I,45
|
|
2
|
+
locoformer/locoformer.py,sha256=Yoh3hrj2E_91YLoYRa73wGzjdIiMdcd5ofNjkiVlogI,10570
|
|
3
|
+
locoformer-0.0.5.dist-info/METADATA,sha256=oe6HfOwWKQvusiJl1ukmNFcrGRhdDZ6NcKZi3upv-SY,3159
|
|
4
|
+
locoformer-0.0.5.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
|
|
5
|
+
locoformer-0.0.5.dist-info/licenses/LICENSE,sha256=1yCiA9b5nhslTavxPjsQAO-wpOnwJR9-l8LTVi7GJuk,1066
|
|
6
|
+
locoformer-0.0.5.dist-info/RECORD,,
|
|
@@ -0,0 +1,21 @@
|
|
|
1
|
+
MIT License
|
|
2
|
+
|
|
3
|
+
Copyright (c) 2025 Phil Wang
|
|
4
|
+
|
|
5
|
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
6
|
+
of this software and associated documentation files (the "Software"), to deal
|
|
7
|
+
in the Software without restriction, including without limitation the rights
|
|
8
|
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
9
|
+
copies of the Software, and to permit persons to whom the Software is
|
|
10
|
+
furnished to do so, subject to the following conditions:
|
|
11
|
+
|
|
12
|
+
The above copyright notice and this permission notice shall be included in all
|
|
13
|
+
copies or substantial portions of the Software.
|
|
14
|
+
|
|
15
|
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
16
|
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
17
|
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
18
|
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
19
|
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
20
|
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
21
|
+
SOFTWARE.
|