lmnr 0.6.7__py3-none-any.whl → 0.6.9__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
lmnr/cli.py CHANGED
@@ -1,6 +1,8 @@
1
1
  from argparse import ArgumentParser
2
2
  import asyncio
3
+ import glob
3
4
  import importlib.util
5
+ import json
4
6
  import os
5
7
  import re
6
8
  import sys
@@ -23,27 +25,27 @@ def add_cursor_rules():
23
25
  """Download laminar.mdc file from a hardcoded public URL and save it to .cursor/rules/laminar.mdc"""
24
26
  # Hardcoded URL for the laminar.mdc file
25
27
  url = "https://raw.githubusercontent.com/lmnr-ai/lmnr/dev/rules/laminar.mdc"
26
-
28
+
27
29
  # Create .cursor/rules directory if it doesn't exist
28
30
  rules_dir = Path(".cursor/rules")
29
31
  rules_dir.mkdir(parents=True, exist_ok=True)
30
-
32
+
31
33
  # Define the target file path
32
34
  target_file = rules_dir / "laminar.mdc"
33
-
35
+
34
36
  try:
35
37
  LOG.info(f"Downloading laminar.mdc from {url}")
36
-
38
+
37
39
  # Download the file
38
40
  with urllib.request.urlopen(url) as response:
39
41
  content = response.read()
40
-
42
+
41
43
  # Write the content to the target file (this will overwrite if it exists)
42
- with open(target_file, 'wb') as f:
44
+ with open(target_file, "wb") as f:
43
45
  f.write(content)
44
-
46
+
45
47
  LOG.info(f"Successfully downloaded laminar.mdc to {target_file}")
46
-
48
+
47
49
  except urllib.error.URLError as e:
48
50
  LOG.error(f"Failed to download file from {url}: {e}")
49
51
  sys.exit(1)
@@ -55,7 +57,7 @@ def add_cursor_rules():
55
57
  async def run_evaluation(args):
56
58
  sys.path.append(os.getcwd())
57
59
 
58
- if args.file is None:
60
+ if len(args.file) == 0:
59
61
  files = [
60
62
  os.path.join(EVAL_DIR, f)
61
63
  for f in os.listdir(EVAL_DIR)
@@ -71,9 +73,17 @@ async def run_evaluation(args):
71
73
  LOG.info(f"Located {len(files)} evaluation files in {EVAL_DIR}")
72
74
 
73
75
  else:
74
- files = [args.file]
76
+ files = []
77
+ for pattern in args.file:
78
+ matches = glob.glob(pattern)
79
+ if matches:
80
+ files.extend(matches)
81
+ else:
82
+ # If no matches found, treat as literal filename
83
+ files.append(pattern)
75
84
 
76
85
  prep_token = PREPARE_ONLY.set(True)
86
+ scores = []
77
87
  try:
78
88
  for file in files:
79
89
  LOG.info(f"Running evaluation from {file}")
@@ -83,9 +93,9 @@ async def run_evaluation(args):
83
93
  spec = importlib.util.spec_from_file_location(name, file)
84
94
  if spec is None or spec.loader is None:
85
95
  LOG.error(f"Could not load module specification from {file}")
86
- if args.fail_on_error:
87
- return
88
- continue
96
+ if args.continue_on_error:
97
+ continue
98
+ return
89
99
  mod = importlib.util.module_from_spec(spec)
90
100
  sys.modules[name] = mod
91
101
 
@@ -93,19 +103,29 @@ async def run_evaluation(args):
93
103
  evaluations: list[Evaluation] | None = EVALUATION_INSTANCES.get()
94
104
  if evaluations is None:
95
105
  LOG.warning("Evaluation instance not found")
96
- if args.fail_on_error:
97
- return
98
- continue
106
+ if args.continue_on_error:
107
+ continue
108
+ return
99
109
 
100
110
  LOG.info(f"Loaded {len(evaluations)} evaluations from {file}")
101
111
 
102
112
  for evaluation in evaluations:
103
113
  try:
104
- await evaluation.run()
114
+ eval_scores = await evaluation.run()
115
+ scores.append(
116
+ {
117
+ "file": file,
118
+ "scores": eval_scores,
119
+ }
120
+ )
105
121
  except Exception as e:
106
122
  LOG.error(f"Error running evaluation: {e}")
107
- if args.fail_on_error:
123
+ if not args.continue_on_error:
108
124
  raise
125
+
126
+ if args.output_file:
127
+ with open(args.output_file, "w") as f:
128
+ json.dump(scores, f, indent=2)
109
129
  finally:
110
130
  PREPARE_ONLY.reset(prep_token)
111
131
 
@@ -125,21 +145,27 @@ def cli():
125
145
  )
126
146
  parser_eval.add_argument(
127
147
  "file",
128
- nargs="?",
129
- help="A file containing the evaluation to run."
148
+ nargs="*",
149
+ help="Files or a file containing the evaluation to run."
130
150
  + "If no file name is provided, all evaluation files in the `evals` directory are run as long"
131
151
  + "as they match *_eval.py or eval_*.py",
132
- default=None,
152
+ default=[],
133
153
  )
134
154
 
135
155
  parser_eval.add_argument(
136
- "--fail-on-error",
156
+ "--continue-on-error",
137
157
  action="store_true",
138
158
  default=False,
139
- help="Fail on error",
159
+ help="Continue execution upon errors",
160
+ )
161
+
162
+ parser_eval.add_argument(
163
+ "--output-file",
164
+ help="Output file to write the results to. Outputs are written in JSON format.",
165
+ nargs="?",
140
166
  )
141
167
 
142
- parser_download = subparsers.add_parser(
168
+ subparsers.add_parser(
143
169
  "add-cursor-rules",
144
170
  description="Download laminar.mdc file and add it to .cursor/rules",
145
171
  help="Download laminar.mdc file and add it to .cursor/rules",
@@ -9,14 +9,15 @@ from opentelemetry import trace
9
9
  from opentelemetry import context as context_api
10
10
  from opentelemetry.trace import Span
11
11
 
12
- from lmnr.opentelemetry_lib.tracing.context_properties import (
13
- remove_association_properties,
14
- update_association_properties,
15
- )
16
12
  from lmnr.sdk.utils import get_input_from_func_args, is_method
17
13
  from lmnr.opentelemetry_lib import MAX_MANUAL_SPAN_PAYLOAD_SIZE
18
14
  from lmnr.opentelemetry_lib.tracing.tracer import get_tracer
19
- from lmnr.opentelemetry_lib.tracing.attributes import SPAN_INPUT, SPAN_OUTPUT, SPAN_TYPE
15
+ from lmnr.opentelemetry_lib.tracing.attributes import (
16
+ ASSOCIATION_PROPERTIES,
17
+ SPAN_INPUT,
18
+ SPAN_OUTPUT,
19
+ SPAN_TYPE,
20
+ )
20
21
  from lmnr.opentelemetry_lib.tracing import TracerWrapper
21
22
  from lmnr.opentelemetry_lib.utils.json_encoder import JSONEncoder
22
23
 
@@ -56,11 +57,11 @@ def entity_method(
56
57
 
57
58
  span_name = name or fn.__name__
58
59
 
59
- if association_properties is not None:
60
- update_association_properties(association_properties)
61
-
62
60
  with get_tracer() as tracer:
63
61
  span = tracer.start_span(span_name, attributes={SPAN_TYPE: span_type})
62
+ if association_properties is not None:
63
+ for key, value in association_properties.items():
64
+ span.set_attribute(f"{ASSOCIATION_PROPERTIES}.{key}", value)
64
65
 
65
66
  ctx = trace.set_span_in_context(span, context_api.get_current())
66
67
  ctx_token = context_api.attach(ctx)
@@ -119,8 +120,6 @@ def entity_method(
119
120
 
120
121
  span.end()
121
122
  context_api.detach(ctx_token)
122
- if association_properties is not None:
123
- remove_association_properties(association_properties)
124
123
  return res
125
124
 
126
125
  return wrap
@@ -145,11 +144,11 @@ def aentity_method(
145
144
 
146
145
  span_name = name or fn.__name__
147
146
 
148
- if association_properties is not None:
149
- update_association_properties(association_properties)
150
-
151
147
  with get_tracer() as tracer:
152
148
  span = tracer.start_span(span_name, attributes={SPAN_TYPE: span_type})
149
+ if association_properties is not None:
150
+ for key, value in association_properties.items():
151
+ span.set_attribute(f"{ASSOCIATION_PROPERTIES}.{key}", value)
153
152
 
154
153
  ctx = trace.set_span_in_context(span, context_api.get_current())
155
154
  ctx_token = context_api.attach(ctx)
@@ -200,8 +199,6 @@ def aentity_method(
200
199
  pass
201
200
 
202
201
  span.end()
203
- if association_properties is not None:
204
- remove_association_properties(association_properties)
205
202
  context_api.detach(ctx_token)
206
203
 
207
204
  return res
@@ -1,6 +1,7 @@
1
1
  """OpenTelemetry Google Generative AI API instrumentation"""
2
2
 
3
3
  from collections import defaultdict
4
+ import json
4
5
  import logging
5
6
  import os
6
7
  from typing import AsyncGenerator, Callable, Collection, Generator
@@ -11,7 +12,9 @@ from .config import (
11
12
  Config,
12
13
  )
13
14
  from .utils import (
15
+ ProcessedContentPart,
14
16
  dont_throw,
17
+ get_content,
15
18
  role_from_content_union,
16
19
  set_span_attribute,
17
20
  process_content_union,
@@ -159,7 +162,7 @@ def _set_request_attributes(span, args, kwargs):
159
162
  set_span_attribute(
160
163
  span,
161
164
  f"{gen_ai_attributes.GEN_AI_PROMPT}.{i}.content",
162
- process_content_union(system_instruction),
165
+ (get_content(process_content_union(system_instruction)) or {}).get("text", ""),
163
166
  )
164
167
  set_span_attribute(
165
168
  span, f"{gen_ai_attributes.GEN_AI_PROMPT}.{i}.role", "system"
@@ -169,11 +172,42 @@ def _set_request_attributes(span, args, kwargs):
169
172
  if not isinstance(contents, list):
170
173
  contents = [contents]
171
174
  for content in contents:
175
+ processed_content = process_content_union(content)
176
+ content_str = get_content(processed_content)
172
177
  set_span_attribute(
173
178
  span,
174
179
  f"{gen_ai_attributes.GEN_AI_PROMPT}.{i}.content",
175
- process_content_union(content),
180
+ (
181
+ content_str
182
+ if isinstance(content_str, str)
183
+ else json.dumps(content_str)
184
+ ),
176
185
  )
186
+ blocks = (
187
+ processed_content
188
+ if isinstance(processed_content, list)
189
+ else [processed_content]
190
+ )
191
+ for j, block in enumerate(blocks):
192
+ block_dict = to_dict(block)
193
+ if not block_dict.get("function_call"):
194
+ continue
195
+ function_call = to_dict(block_dict.get("function_call", {}))
196
+ set_span_attribute(
197
+ span,
198
+ f"{gen_ai_attributes.GEN_AI_PROMPT}.{i}.tool_calls.{j}.name",
199
+ function_call.get("name"),
200
+ )
201
+ set_span_attribute(
202
+ span,
203
+ f"{gen_ai_attributes.GEN_AI_PROMPT}.{i}.tool_calls.{j}.id",
204
+ function_call.get("id"),
205
+ )
206
+ set_span_attribute(
207
+ span,
208
+ f"{gen_ai_attributes.GEN_AI_PROMPT}.{i}.tool_calls.{j}.arguments",
209
+ json.dumps(function_call.get("arguments")),
210
+ )
177
211
  set_span_attribute(
178
212
  span,
179
213
  f"{gen_ai_attributes.GEN_AI_PROMPT}.{i}.role",
@@ -218,23 +252,64 @@ def _set_response_attributes(span, response: types.GenerateContentResponse):
218
252
  )
219
253
 
220
254
  if should_send_prompts():
221
- if len(candidates) > 1:
222
- for i, candidate in enumerate(candidates):
255
+ set_span_attribute(
256
+ span, f"{gen_ai_attributes.GEN_AI_COMPLETION}.0.role", "model"
257
+ )
258
+ candidates_list = candidates if isinstance(candidates, list) else [candidates]
259
+ for i, candidate in enumerate(candidates_list):
260
+ processed_content = process_content_union(candidate.content)
261
+ if isinstance(processed_content, list):
262
+ if all(
263
+ isinstance(item, dict) and item.get("type") == "text"
264
+ for item in processed_content
265
+ ):
266
+ content_str = processed_content[0]["text"]
267
+ elif all(
268
+ isinstance(item, ProcessedContentPart) and item.content
269
+ for item in processed_content
270
+ ):
271
+ content_str = processed_content[0].content
272
+ else:
273
+ content_str = get_content(processed_content)
274
+ else:
275
+ content_str = get_content(processed_content)
276
+ set_span_attribute(
277
+ span, f"{gen_ai_attributes.GEN_AI_COMPLETION}.{i}.role", "model"
278
+ )
279
+ set_span_attribute(
280
+ span,
281
+ f"{gen_ai_attributes.GEN_AI_COMPLETION}.{i}.content",
282
+ (
283
+ content_str
284
+ if isinstance(content_str, str)
285
+ else json.dumps(content_str)
286
+ ),
287
+ )
288
+ blocks = (
289
+ processed_content
290
+ if isinstance(processed_content, list)
291
+ else [processed_content]
292
+ )
293
+ for j, block in enumerate(blocks):
294
+ block_dict = to_dict(block)
295
+ if not block_dict.get("function_call"):
296
+ continue
297
+ function_call = to_dict(block_dict.get("function_call", {}))
223
298
  set_span_attribute(
224
299
  span,
225
- f"{gen_ai_attributes.GEN_AI_COMPLETION}.{i}.content",
226
- process_content_union(candidate.content),
300
+ f"{gen_ai_attributes.GEN_AI_COMPLETION}.{i}.tool_calls.{j}.name",
301
+ function_call.get("name"),
227
302
  )
228
303
  set_span_attribute(
229
- span, f"{gen_ai_attributes.GEN_AI_COMPLETION}.{i}.role", "assistant"
304
+ span,
305
+ f"{gen_ai_attributes.GEN_AI_COMPLETION}.{i}.tool_calls.{j}.id",
306
+ function_call.get("id"),
307
+ )
308
+ set_span_attribute(
309
+ span,
310
+ f"{gen_ai_attributes.GEN_AI_COMPLETION}.{i}.tool_calls.{j}.arguments",
311
+ json.dumps(function_call.get("arguments")),
230
312
  )
231
- else:
232
- set_span_attribute(
233
- span, f"{gen_ai_attributes.GEN_AI_COMPLETION}.0.content", response.text
234
- )
235
- set_span_attribute(
236
- span, f"{gen_ai_attributes.GEN_AI_COMPLETION}.0.role", "assistant"
237
- )
238
313
 
239
314
 
240
315
  @dont_throw
@@ -433,7 +508,7 @@ class GoogleGenAiSdkInstrumentor(BaseInstrumentor):
433
508
 
434
509
  def _instrument(self, **kwargs):
435
510
  tracer_provider = kwargs.get("tracer_provider")
436
- tracer = get_tracer(__name__, "0.0.1a0", tracer_provider)
511
+ tracer = get_tracer(__name__, "0.0.1a1", tracer_provider)
437
512
 
438
513
  for wrapped_method in WRAPPED_METHODS:
439
514
  wrap_function_wrapper(
@@ -1,6 +1,5 @@
1
1
  import logging
2
2
  import traceback
3
- import json
4
3
 
5
4
  from .config import (
6
5
  Config,
@@ -9,7 +8,28 @@ from google.genai import types
9
8
  from google.genai._common import BaseModel
10
9
  import pydantic
11
10
  from opentelemetry.trace import Span
12
- from typing import Any
11
+ from typing import Any, Literal
12
+
13
+
14
+ class ToolCall(pydantic.BaseModel):
15
+ name: str | None = pydantic.Field(default=None)
16
+ id: str | None = pydantic.Field(default=None)
17
+ arguments: dict[str, Any] = pydantic.Field(default={})
18
+
19
+
20
+ class ImageUrlInner(pydantic.BaseModel):
21
+ url: str = pydantic.Field(default="")
22
+
23
+
24
+ class ImageUrl(pydantic.BaseModel):
25
+ type: Literal["image_url"] = pydantic.Field(default="image_url")
26
+ image_url: ImageUrlInner = pydantic.Field(default=ImageUrlInner())
27
+
28
+
29
+ class ProcessedContentPart(pydantic.BaseModel):
30
+ content: str | None = pydantic.Field(default=None)
31
+ function_call: ToolCall | None = pydantic.Field(default=None)
32
+ image_url: ImageUrl | None = pydantic.Field(default=None)
13
33
 
14
34
 
15
35
  def set_span_attribute(span: Span, name: str, value: str):
@@ -58,36 +78,40 @@ def to_dict(obj: BaseModel | pydantic.BaseModel | dict) -> dict[str, Any]:
58
78
  return dict(obj)
59
79
 
60
80
 
61
- def process_content_union(
62
- content: types.ContentUnion | types.ContentUnionDict,
63
- trace_id: str | None = None,
64
- span_id: str | None = None,
65
- message_index: int = 0,
66
- ) -> str | None:
67
- parts = _process_content_union(content, trace_id, span_id, message_index)
68
- if parts is None:
69
- return None
70
- if isinstance(parts, str):
71
- return parts
72
- elif isinstance(parts, list):
73
- if len(parts) == 1 and isinstance(parts[0], str):
74
- return parts[0]
75
- return json.dumps(
76
- [
77
- {"type": "text", "text": part} if isinstance(part, str) else part
78
- for part in parts
79
- ]
80
- )
81
+ def get_content(
82
+ content: (
83
+ ProcessedContentPart | dict | list[ProcessedContentPart | dict] | str | None
84
+ ),
85
+ ) -> list[Any] | None:
86
+ if isinstance(content, dict):
87
+ return content.get("content") or content.get("image_url")
88
+ if isinstance(content, ProcessedContentPart):
89
+ if content.content and isinstance(content.content, str):
90
+ return {
91
+ "type": "text",
92
+ "text": content.content,
93
+ }
94
+ elif content.image_url:
95
+ return content.image_url.model_dump()
96
+ else:
97
+ return None
98
+ elif isinstance(content, list):
99
+ return [get_content(item) or "" for item in content if item is not None]
100
+ elif isinstance(content, str):
101
+ return {
102
+ "type": "text",
103
+ "text": content,
104
+ }
81
105
  else:
82
106
  return None
83
107
 
84
108
 
85
- def _process_content_union(
109
+ def process_content_union(
86
110
  content: types.ContentUnion | types.ContentUnionDict,
87
111
  trace_id: str | None = None,
88
112
  span_id: str | None = None,
89
113
  message_index: int = 0,
90
- ) -> str | list[str] | None:
114
+ ) -> ProcessedContentPart | dict | list[ProcessedContentPart | dict] | None:
91
115
  if isinstance(content, types.Content):
92
116
  parts = to_dict(content).get("parts", [])
93
117
  return [_process_part(part) for part in parts]
@@ -116,9 +140,9 @@ def _process_part_union(
116
140
  span_id: str | None = None,
117
141
  message_index: int = 0,
118
142
  content_index: int = 0,
119
- ) -> str | None:
143
+ ) -> ProcessedContentPart | dict | None:
120
144
  if isinstance(content, str):
121
- return content
145
+ return ProcessedContentPart(content=content)
122
146
  elif isinstance(content, types.File):
123
147
  content_dict = to_dict(content)
124
148
  name = (
@@ -126,7 +150,7 @@ def _process_part_union(
126
150
  or content_dict.get("display_name")
127
151
  or content_dict.get("uri")
128
152
  )
129
- return f"files/{name}"
153
+ return ProcessedContentPart(content=f"files/{name}")
130
154
  elif isinstance(content, (types.Part, dict)):
131
155
  return _process_part(content, trace_id, span_id, message_index, content_index)
132
156
  else:
@@ -139,11 +163,9 @@ def _process_part(
139
163
  span_id: str | None = None,
140
164
  message_index: int = 0,
141
165
  content_index: int = 0,
142
- ) -> str | None:
166
+ ) -> ProcessedContentPart | dict | None:
143
167
  part_dict = to_dict(content)
144
- if part_dict.get("text") is not None:
145
- return part_dict.get("text")
146
- elif part_dict.get("inline_data"):
168
+ if part_dict.get("inline_data"):
147
169
  blob = to_dict(part_dict.get("inline_data"))
148
170
  if blob.get("mime_type").startswith("image/"):
149
171
  return _process_image_item(
@@ -151,7 +173,19 @@ def _process_part(
151
173
  )
152
174
  else:
153
175
  # currently, only images are supported
154
- return blob.get("mime_type") or "unknown_media"
176
+ return ProcessedContentPart(
177
+ content=blob.get("mime_type") or "unknown_media"
178
+ )
179
+ elif part_dict.get("function_call"):
180
+ return ProcessedContentPart(
181
+ function_call=ToolCall(
182
+ name=part_dict.get("function_call").get("name"),
183
+ id=part_dict.get("function_call").get("id"),
184
+ arguments=part_dict.get("function_call").get("args", {}),
185
+ )
186
+ )
187
+ elif part_dict.get("text") is not None:
188
+ return ProcessedContentPart(content=part_dict.get("text"))
155
189
  else:
156
190
  return None
157
191
 
@@ -159,12 +193,17 @@ def _process_part(
159
193
  def role_from_content_union(
160
194
  content: types.ContentUnion | types.ContentUnionDict,
161
195
  ) -> str | None:
196
+ role = None
162
197
  if isinstance(content, types.Content):
163
- return to_dict(content).get("role")
198
+ role = to_dict(content).get("role")
164
199
  elif isinstance(content, list) and len(content) > 0:
165
- return role_from_content_union(content[0])
200
+ role = role_from_content_union(content[0])
201
+ elif isinstance(content, dict):
202
+ role = content.get("role")
166
203
  else:
167
204
  return None
205
+ return role
206
+ # return "assistant" if role == "model" else role
168
207
 
169
208
 
170
209
  def with_tracer_wrapper(func):
@@ -179,38 +218,22 @@ def with_tracer_wrapper(func):
179
218
  return _with_tracer
180
219
 
181
220
 
182
- def _run_async(method):
183
- import asyncio
184
- import threading
185
-
186
- try:
187
- loop = asyncio.get_running_loop()
188
- except RuntimeError:
189
- loop = None
190
-
191
- if loop and loop.is_running():
192
- thread = threading.Thread(target=lambda: asyncio.run(method))
193
- thread.start()
194
- thread.join()
195
- else:
196
- asyncio.run(method)
197
-
198
-
199
221
  def _process_image_item(
200
222
  blob: dict[str, Any],
201
223
  trace_id: str,
202
224
  span_id: str,
203
225
  message_index: int,
204
226
  content_index: int,
205
- ):
227
+ ) -> ProcessedContentPart | dict | None:
206
228
  # Convert to openai format, so backends can handle it
207
229
  return (
208
- {
209
- "type": "image_url",
210
- "image_url": {
211
- "url": f"data:image/{blob.get('mime_type').split('/')[1]};base64,{blob.get('data')}",
212
- },
213
- }
230
+ ProcessedContentPart(
231
+ image_url=ImageUrl(
232
+ image_url=ImageUrlInner(
233
+ url=f"data:image/{blob.get('mime_type').split('/')[1]};base64,{blob.get('data')}",
234
+ )
235
+ )
236
+ )
214
237
  if Config.convert_image_to_openai_format
215
238
  else blob
216
239
  )