lmnr 0.4.12b4__py3-none-any.whl → 0.4.13__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- lmnr/sdk/evaluations.py +8 -9
- lmnr/sdk/laminar.py +14 -33
- lmnr/sdk/types.py +6 -2
- lmnr/traceloop_sdk/decorators/base.py +14 -4
- lmnr/traceloop_sdk/tracing/attributes.py +1 -0
- lmnr/traceloop_sdk/tracing/tracing.py +15 -1
- {lmnr-0.4.12b4.dist-info → lmnr-0.4.13.dist-info}/METADATA +72 -105
- {lmnr-0.4.12b4.dist-info → lmnr-0.4.13.dist-info}/RECORD +11 -11
- {lmnr-0.4.12b4.dist-info → lmnr-0.4.13.dist-info}/LICENSE +0 -0
- {lmnr-0.4.12b4.dist-info → lmnr-0.4.13.dist-info}/WHEEL +0 -0
- {lmnr-0.4.12b4.dist-info → lmnr-0.4.13.dist-info}/entry_points.txt +0 -0
lmnr/sdk/evaluations.py
CHANGED
@@ -12,7 +12,6 @@ from ..traceloop_sdk.tracing.attributes import SPAN_TYPE
|
|
12
12
|
|
13
13
|
from .laminar import Laminar as L
|
14
14
|
from .types import (
|
15
|
-
CreateEvaluationResponse,
|
16
15
|
Datapoint,
|
17
16
|
EvaluationResultDatapoint,
|
18
17
|
EvaluatorFunction,
|
@@ -196,28 +195,28 @@ class Evaluation:
|
|
196
195
|
)
|
197
196
|
|
198
197
|
try:
|
199
|
-
await self.evaluate_in_batches(evaluation)
|
198
|
+
await self.evaluate_in_batches(evaluation.id)
|
200
199
|
except Exception as e:
|
201
200
|
L.update_evaluation_status(evaluation.id, "Error")
|
202
201
|
self.reporter.stopWithError(e)
|
203
202
|
self.is_finished = True
|
204
203
|
return
|
205
204
|
|
206
|
-
|
207
|
-
|
208
|
-
self.reporter.stop(
|
205
|
+
update_evaluation_response = L.update_evaluation_status(evaluation.id, "Finished")
|
206
|
+
average_scores = update_evaluation_response.stats.averageScores
|
207
|
+
self.reporter.stop(average_scores)
|
209
208
|
self.is_finished = True
|
210
209
|
|
211
|
-
async def evaluate_in_batches(self,
|
210
|
+
async def evaluate_in_batches(self, evaluation_id: uuid.UUID):
|
212
211
|
for i in range(0, len(self.data), self.batch_size):
|
213
212
|
batch = (
|
214
|
-
self.data[i
|
213
|
+
self.data[i: i + self.batch_size]
|
215
214
|
if isinstance(self.data, list)
|
216
215
|
else self.data.slice(i, i + self.batch_size)
|
217
216
|
)
|
218
217
|
try:
|
219
218
|
results = await self._evaluate_batch(batch)
|
220
|
-
L.post_evaluation_results(
|
219
|
+
L.post_evaluation_results(evaluation_id, results)
|
221
220
|
except Exception as e:
|
222
221
|
print(f"Error evaluating batch: {e}")
|
223
222
|
finally:
|
@@ -252,7 +251,7 @@ class Evaluation:
|
|
252
251
|
scores: dict[str, Numeric] = {}
|
253
252
|
for evaluator_name, evaluator in self.evaluators.items():
|
254
253
|
with L.start_as_current_span(
|
255
|
-
|
254
|
+
evaluator_name, input={"output": output, "target": target}
|
256
255
|
) as evaluator_span:
|
257
256
|
evaluator_span.set_attribute(SPAN_TYPE, SpanType.EVALUATOR.value)
|
258
257
|
value = (
|
lmnr/sdk/laminar.py
CHANGED
@@ -3,11 +3,9 @@ from opentelemetry import context
|
|
3
3
|
from opentelemetry.trace import (
|
4
4
|
INVALID_SPAN,
|
5
5
|
get_current_span,
|
6
|
-
SpanKind,
|
7
6
|
)
|
8
7
|
from opentelemetry.util.types import AttributeValue
|
9
|
-
from opentelemetry.context
|
10
|
-
from opentelemetry.util import types
|
8
|
+
from opentelemetry.context import set_value, attach, detach
|
11
9
|
from lmnr.traceloop_sdk import Traceloop
|
12
10
|
from lmnr.traceloop_sdk.tracing import get_tracer
|
13
11
|
from contextlib import contextmanager
|
@@ -29,10 +27,12 @@ from lmnr.traceloop_sdk.tracing.attributes import (
|
|
29
27
|
SESSION_ID,
|
30
28
|
SPAN_INPUT,
|
31
29
|
SPAN_OUTPUT,
|
30
|
+
SPAN_PATH,
|
32
31
|
TRACE_TYPE,
|
33
32
|
USER_ID,
|
34
33
|
)
|
35
34
|
from lmnr.traceloop_sdk.tracing.tracing import (
|
35
|
+
get_span_path,
|
36
36
|
set_association_properties,
|
37
37
|
update_association_properties,
|
38
38
|
)
|
@@ -315,14 +315,6 @@ class Laminar:
|
|
315
315
|
cls,
|
316
316
|
name: str,
|
317
317
|
input: Any = None,
|
318
|
-
context: Optional[Context] = None,
|
319
|
-
kind: SpanKind = SpanKind.INTERNAL,
|
320
|
-
attributes: types.Attributes = None,
|
321
|
-
links=None,
|
322
|
-
start_time: Optional[int] = None,
|
323
|
-
record_exception: bool = True,
|
324
|
-
set_status_on_exception: bool = True,
|
325
|
-
end_on_exit: bool = True,
|
326
318
|
):
|
327
319
|
"""Start a new span as the current span. Useful for manual instrumentation.
|
328
320
|
This is the preferred and more stable way to use manual instrumentation.
|
@@ -337,32 +329,15 @@ class Laminar:
|
|
337
329
|
name (str): name of the span
|
338
330
|
input (Any, optional): input to the span. Will be sent as an
|
339
331
|
attribute, so must be json serializable. Defaults to None.
|
340
|
-
context (Optional[Context], optional): context to start the span in.
|
341
|
-
Defaults to None.
|
342
|
-
kind (SpanKind, optional): kind of the span. Defaults to SpanKind.INTERNAL.
|
343
|
-
attributes (types.Attributes, optional): attributes to set on the span.
|
344
|
-
Defaults to None.
|
345
|
-
links ([type], optional): links to set on the span. Defaults to None.
|
346
|
-
start_time (Optional[int], optional): start time of the span.
|
347
|
-
Defaults to None.
|
348
|
-
record_exception (bool, optional): whether to record exceptions.
|
349
|
-
Defaults to True.
|
350
|
-
set_status_on_exception (bool, optional): whether to set status on exception.
|
351
|
-
Defaults to True.
|
352
|
-
end_on_exit (bool, optional): whether to end the span on exit.
|
353
|
-
Defaults to True.
|
354
332
|
"""
|
355
333
|
with get_tracer() as tracer:
|
334
|
+
span_path = get_span_path(name)
|
335
|
+
ctx = set_value("span_path", span_path)
|
336
|
+
ctx_token = attach(set_value("span_path", span_path))
|
356
337
|
with tracer.start_as_current_span(
|
357
338
|
name,
|
358
|
-
context=
|
359
|
-
|
360
|
-
attributes=attributes,
|
361
|
-
links=links,
|
362
|
-
start_time=start_time,
|
363
|
-
record_exception=record_exception,
|
364
|
-
set_status_on_exception=set_status_on_exception,
|
365
|
-
end_on_exit=end_on_exit,
|
339
|
+
context=ctx,
|
340
|
+
attributes={SPAN_PATH: span_path},
|
366
341
|
) as span:
|
367
342
|
if input is not None:
|
368
343
|
span.set_attribute(
|
@@ -371,6 +346,12 @@ class Laminar:
|
|
371
346
|
)
|
372
347
|
yield span
|
373
348
|
|
349
|
+
# TODO: Figure out if this is necessary
|
350
|
+
try:
|
351
|
+
detach(ctx_token)
|
352
|
+
except Exception:
|
353
|
+
pass
|
354
|
+
|
374
355
|
@classmethod
|
375
356
|
def set_span_output(cls, output: Any = None):
|
376
357
|
"""Set the output of the current span. Useful for manual instrumentation.
|
lmnr/sdk/types.py
CHANGED
@@ -117,10 +117,14 @@ class CreateEvaluationResponse(pydantic.BaseModel):
|
|
117
117
|
status: EvaluationStatus
|
118
118
|
projectId: uuid.UUID
|
119
119
|
metadata: Optional[dict[str, Any]] = None
|
120
|
-
averageScores: Optional[dict[str, Numeric]] = None
|
121
120
|
|
122
121
|
|
123
|
-
|
122
|
+
class EvaluationStats(pydantic.BaseModel):
|
123
|
+
averageScores: dict[str, Numeric]
|
124
|
+
|
125
|
+
|
126
|
+
class UpdateEvaluationResponse(pydantic.BaseModel):
|
127
|
+
stats: EvaluationStats
|
124
128
|
|
125
129
|
|
126
130
|
class EvaluationResultDatapoint(pydantic.BaseModel):
|
@@ -10,8 +10,8 @@ from opentelemetry import context as context_api
|
|
10
10
|
|
11
11
|
from lmnr.sdk.utils import get_input_from_func_args, is_method
|
12
12
|
from lmnr.traceloop_sdk.tracing import get_tracer
|
13
|
-
from lmnr.traceloop_sdk.tracing.attributes import SPAN_INPUT, SPAN_OUTPUT
|
14
|
-
from lmnr.traceloop_sdk.tracing.tracing import TracerWrapper
|
13
|
+
from lmnr.traceloop_sdk.tracing.attributes import SPAN_INPUT, SPAN_OUTPUT, SPAN_PATH
|
14
|
+
from lmnr.traceloop_sdk.tracing.tracing import TracerWrapper, get_span_path
|
15
15
|
from lmnr.traceloop_sdk.utils.json_encoder import JSONEncoder
|
16
16
|
|
17
17
|
|
@@ -47,7 +47,12 @@ def entity_method(
|
|
47
47
|
|
48
48
|
with get_tracer() as tracer:
|
49
49
|
span = tracer.start_span(span_name)
|
50
|
-
|
50
|
+
|
51
|
+
span_path = get_span_path(span_name)
|
52
|
+
span.set_attribute(SPAN_PATH, span_path)
|
53
|
+
ctx = context_api.set_value("span_path", span_path)
|
54
|
+
|
55
|
+
ctx = trace.set_span_in_context(span, ctx)
|
51
56
|
ctx_token = context_api.attach(ctx)
|
52
57
|
|
53
58
|
try:
|
@@ -104,7 +109,12 @@ def aentity_method(
|
|
104
109
|
|
105
110
|
with get_tracer() as tracer:
|
106
111
|
span = tracer.start_span(span_name)
|
107
|
-
|
112
|
+
|
113
|
+
span_path = get_span_path(span_name)
|
114
|
+
span.set_attribute(SPAN_PATH, span_path)
|
115
|
+
ctx = context_api.set_value("span_path", span_path)
|
116
|
+
|
117
|
+
ctx = trace.set_span_in_context(span, ctx)
|
108
118
|
ctx_token = context_api.attach(ctx)
|
109
119
|
|
110
120
|
try:
|
@@ -25,7 +25,7 @@ from opentelemetry.instrumentation.threading import ThreadingInstrumentor
|
|
25
25
|
|
26
26
|
# from lmnr.traceloop_sdk import Telemetry
|
27
27
|
from lmnr.traceloop_sdk.instruments import Instruments
|
28
|
-
from lmnr.traceloop_sdk.tracing.attributes import ASSOCIATION_PROPERTIES
|
28
|
+
from lmnr.traceloop_sdk.tracing.attributes import ASSOCIATION_PROPERTIES, SPAN_PATH
|
29
29
|
from lmnr.traceloop_sdk.tracing.content_allow_list import ContentAllowList
|
30
30
|
from lmnr.traceloop_sdk.utils import is_notebook
|
31
31
|
from lmnr.traceloop_sdk.utils.package_check import is_package_installed
|
@@ -245,6 +245,14 @@ class TracerWrapper(object):
|
|
245
245
|
self.flush()
|
246
246
|
|
247
247
|
def _span_processor_on_start(self, span, parent_context):
|
248
|
+
span_path = get_value("span_path")
|
249
|
+
if span_path is not None:
|
250
|
+
# This is done redundantly here for most decorated functions
|
251
|
+
# However, need to do this for auto-instrumented libraries.
|
252
|
+
# Then, for auto-instrumented ones, they'll attach
|
253
|
+
# the final part of the name to the span on the backend.
|
254
|
+
span.set_attribute(SPAN_PATH, span_path)
|
255
|
+
|
248
256
|
association_properties = get_value("association_properties")
|
249
257
|
if association_properties is not None:
|
250
258
|
_set_association_properties_attributes(span, association_properties)
|
@@ -318,6 +326,12 @@ def _set_association_properties_attributes(span, properties: dict) -> None:
|
|
318
326
|
)
|
319
327
|
|
320
328
|
|
329
|
+
def get_span_path(span_name: str) -> str:
|
330
|
+
current_span_path = get_value("span_path")
|
331
|
+
span_path = f"{current_span_path}.{span_name}" if current_span_path else span_name
|
332
|
+
return span_path
|
333
|
+
|
334
|
+
|
321
335
|
def set_managed_prompt_tracing_context(
|
322
336
|
key: str,
|
323
337
|
version: int,
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: lmnr
|
3
|
-
Version: 0.4.
|
3
|
+
Version: 0.4.13
|
4
4
|
Summary: Python SDK for Laminar AI
|
5
5
|
License: Apache-2.0
|
6
6
|
Author: lmnr.ai
|
@@ -59,63 +59,37 @@ Description-Content-Type: text/markdown
|
|
59
59
|
|
60
60
|
# Laminar Python
|
61
61
|
|
62
|
-
|
62
|
+
Python SDK for [Laminar](https://www.lmnr.ai).
|
63
|
+
|
64
|
+
[Laminar](https://www.lmnr.ai) is an open-source platform for engineering LLM products. Trace, evaluate, annotate, and analyze LLM data. Bring LLM applications to production with confidence.
|
65
|
+
|
66
|
+
Check our [open-source repo](https://github.com/lmnr-ai/lmnr) and don't forget to star it ⭐
|
63
67
|
|
64
68
|
<a href="https://pypi.org/project/lmnr/">  </a>
|
65
69
|

|
66
70
|

|
67
71
|
|
68
72
|
|
69
|
-
|
70
73
|
## Quickstart
|
71
74
|
|
72
75
|
First, install the package:
|
73
76
|
|
74
77
|
```sh
|
75
|
-
python3 -m venv .myenv
|
76
|
-
source .myenv/bin/activate # or use your favorite env management tool
|
77
|
-
|
78
78
|
pip install lmnr
|
79
79
|
```
|
80
80
|
|
81
|
-
|
81
|
+
And then in the code
|
82
82
|
|
83
83
|
```python
|
84
|
-
import os
|
85
|
-
from openai import OpenAI
|
86
84
|
from lmnr import Laminar as L
|
87
85
|
|
88
|
-
L.initialize(
|
89
|
-
project_api_key=os.environ["LMNR_PROJECT_API_KEY"],
|
90
|
-
)
|
91
|
-
|
92
|
-
client = OpenAI(api_key=os.environ["OPENAI_API_KEY"])
|
93
|
-
|
94
|
-
def poem_writer(topic: str):
|
95
|
-
prompt = f"write a poem about {topic}"
|
96
|
-
|
97
|
-
# OpenAI calls are automatically instrumented
|
98
|
-
response = client.chat.completions.create(
|
99
|
-
model="gpt-4o",
|
100
|
-
messages=[
|
101
|
-
{"role": "system", "content": "You are a helpful assistant."},
|
102
|
-
{"role": "user", "content": prompt},
|
103
|
-
],
|
104
|
-
)
|
105
|
-
poem = response.choices[0].message.content
|
106
|
-
return poem
|
107
|
-
|
108
|
-
if __name__ == "__main__":
|
109
|
-
print(poem_writer("laminar flow"))
|
110
|
-
|
86
|
+
L.initialize(project_api_key="<PROJECT_API_KEY>")
|
111
87
|
```
|
112
88
|
|
113
|
-
|
114
|
-
|
115
|
-
### Project API key
|
89
|
+
This will automatically instrument most of the LLM, Vector DB, and related
|
90
|
+
calls with OpenTelemetry-compatible instrumentation.
|
116
91
|
|
117
|
-
|
118
|
-
You can either pass it to `.initialize()` or set it to `.env` at the root of your package with the key `LMNR_PROJECT_API_KEY`.
|
92
|
+
Note that you need to only initialize Laminar once in your application.
|
119
93
|
|
120
94
|
## Instrumentation
|
121
95
|
|
@@ -224,6 +198,67 @@ L.event("topic alignment", topic in poem)
|
|
224
198
|
L.evaluate_event("excessive_wordiness", "check_wordy", {"text_input": poem})
|
225
199
|
```
|
226
200
|
|
201
|
+
## Evaluations
|
202
|
+
|
203
|
+
### Quickstart
|
204
|
+
|
205
|
+
Install the package:
|
206
|
+
|
207
|
+
```sh
|
208
|
+
pip install lmnr
|
209
|
+
```
|
210
|
+
|
211
|
+
Create a file named `my_first_eval.py` with the following code:
|
212
|
+
|
213
|
+
```python
|
214
|
+
from lmnr import evaluate
|
215
|
+
|
216
|
+
def write_poem(data):
|
217
|
+
return f"This is a good poem about {data['topic']}"
|
218
|
+
|
219
|
+
def contains_poem(output, target):
|
220
|
+
return 1 if output in target['poem'] else 0
|
221
|
+
|
222
|
+
# Evaluation data
|
223
|
+
data = [
|
224
|
+
{"data": {"topic": "flowers"}, "target": {"poem": "This is a good poem about flowers"}},
|
225
|
+
{"data": {"topic": "cars"}, "target": {"poem": "I like cars"}},
|
226
|
+
]
|
227
|
+
|
228
|
+
evaluate(
|
229
|
+
data=data,
|
230
|
+
executor=write_poem,
|
231
|
+
evaluators={
|
232
|
+
"containsPoem": contains_poem
|
233
|
+
}
|
234
|
+
)
|
235
|
+
```
|
236
|
+
|
237
|
+
Run the following commands:
|
238
|
+
|
239
|
+
```sh
|
240
|
+
export LMNR_PROJECT_API_KEY=<YOUR_PROJECT_API_KEY> # get from Laminar project settings
|
241
|
+
lmnr eval my_first_eval.py # run in the virtual environment where lmnr is installed
|
242
|
+
```
|
243
|
+
|
244
|
+
Visit the URL printed in the console to see the results.
|
245
|
+
|
246
|
+
### Overview
|
247
|
+
|
248
|
+
Bring rigor to the development of your LLM applications with evaluations.
|
249
|
+
|
250
|
+
You can run evaluations locally by providing executor (part of the logic used in your application) and evaluators (numeric scoring functions) to `evaluate` function.
|
251
|
+
|
252
|
+
`evaluate` takes in the following parameters:
|
253
|
+
- `data` – an array of `EvaluationDatapoint` objects, where each `EvaluationDatapoint` has two keys: `target` and `data`, each containing a key-value object. Alternatively, you can pass in dictionaries, and we will instantiate `EvaluationDatapoint`s with pydantic if possible
|
254
|
+
- `executor` – the logic you want to evaluate. This function must take `data` as the first argument, and produce any output. It can be both a function or an `async` function.
|
255
|
+
- `evaluators` – Dictionary which maps evaluator names to evaluators. Functions that take output of executor as the first argument, `target` as the second argument and produce a numeric scores. Each function can produce either a single number or `dict[str, int|float]` of scores. Each evaluator can be both a function or an `async` function.
|
256
|
+
- `name` – optional name for the evaluation. Automatically generated if not provided.
|
257
|
+
|
258
|
+
\* If you already have the outputs of executors you want to evaluate, you can specify the executor as an identity function, that takes in `data` and returns only needed value(s) from it.
|
259
|
+
|
260
|
+
[Read docs](https://docs.lmnr.ai/evaluations/introduction) to learn more about evaluations.
|
261
|
+
|
227
262
|
## Laminar pipelines as prompt chain managers
|
228
263
|
|
229
264
|
You can create Laminar pipelines in the UI and manage chains of LLM calls there.
|
@@ -258,71 +293,3 @@ PipelineRunResponse(
|
|
258
293
|
)
|
259
294
|
```
|
260
295
|
|
261
|
-
## Running offline evaluations on your data
|
262
|
-
|
263
|
-
You can evaluate your code with your own data and send it to Laminar using the `Evaluation` class.
|
264
|
-
|
265
|
-
Evaluation takes in the following parameters:
|
266
|
-
- `name` – the name of your evaluation. If no such evaluation exists in the project, it will be created. Otherwise, data will be pushed to the existing evaluation
|
267
|
-
- `data` – an array of `EvaluationDatapoint` objects, where each `EvaluationDatapoint` has two keys: `target` and `data`, each containing a key-value object. Alternatively, you can pass in dictionaries, and we will instantiate `EvaluationDatapoint`s with pydantic if possible
|
268
|
-
- `executor` – the logic you want to evaluate. This function must take `data` as the first argument, and produce any output. *
|
269
|
-
- `evaluators` – evaluaton logic. Functions that take output of executor as the first argument, `target` as the second argument and produce a numeric scores. Pass a dict from evaluator name to a function. Each function can produce either a single number or `dict[str, int|float]` of scores.
|
270
|
-
|
271
|
-
\* If you already have the outputs of executors you want to evaluate, you can specify the executor as an identity function, that takes in `data` and returns only needed value(s) from it.
|
272
|
-
|
273
|
-
### Example code
|
274
|
-
|
275
|
-
```python
|
276
|
-
from lmnr import evaluate
|
277
|
-
from openai import AsyncOpenAI
|
278
|
-
import asyncio
|
279
|
-
import os
|
280
|
-
|
281
|
-
openai_client = AsyncOpenAI(api_key=os.environ["OPENAI_API_KEY"])
|
282
|
-
|
283
|
-
async def get_capital(data):
|
284
|
-
country = data["country"]
|
285
|
-
response = await openai_client.chat.completions.create(
|
286
|
-
model="gpt-4o-mini",
|
287
|
-
messages=[
|
288
|
-
{"role": "system", "content": "You are a helpful assistant."},
|
289
|
-
{
|
290
|
-
"role": "user",
|
291
|
-
"content": f"What is the capital of {country}? Just name the "
|
292
|
-
"city and nothing else",
|
293
|
-
},
|
294
|
-
],
|
295
|
-
)
|
296
|
-
return response.choices[0].message.content.strip()
|
297
|
-
|
298
|
-
|
299
|
-
# Evaluation data
|
300
|
-
data = [
|
301
|
-
{"data": {"country": "Canada"}, "target": {"capital": "Ottawa"}},
|
302
|
-
{"data": {"country": "Germany"}, "target": {"capital": "Berlin"}},
|
303
|
-
{"data": {"country": "Tanzania"}, "target": {"capital": "Dodoma"}},
|
304
|
-
]
|
305
|
-
|
306
|
-
|
307
|
-
def correctness(output, target):
|
308
|
-
return 1 if output == target["capital"] else 0
|
309
|
-
|
310
|
-
|
311
|
-
# Create an Evaluation instance
|
312
|
-
e = evaluate(
|
313
|
-
name="my-evaluation",
|
314
|
-
data=data,
|
315
|
-
executor=get_capital,
|
316
|
-
evaluators={"correctness": correctness},
|
317
|
-
project_api_key=os.environ["LMNR_PROJECT_API_KEY"],
|
318
|
-
)
|
319
|
-
```
|
320
|
-
|
321
|
-
### Running from CLI.
|
322
|
-
|
323
|
-
1. Make sure `lmnr` is installed in a venv. CLI does not work with a global env
|
324
|
-
1. Run `lmnr path/to/my/eval.py`
|
325
|
-
|
326
|
-
### Running from code
|
327
|
-
|
328
|
-
Simply execute the function, e.g. `python3 path/to/my/eval.py`
|
@@ -2,17 +2,17 @@ lmnr/__init__.py,sha256=5Ks8UIicCzCBgwSz0MOX3I7jVruPMUO3SmxIwUoODzQ,231
|
|
2
2
|
lmnr/cli.py,sha256=Ptvm5dsNLKUY5lwnN8XkT5GtCYjzpRNi2WvefknB3OQ,1079
|
3
3
|
lmnr/sdk/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
4
4
|
lmnr/sdk/decorators.py,sha256=ii7Bqp6flaanIFSK6M1_ZZV-izp4o3hkR1MmY7wnFQQ,2227
|
5
|
-
lmnr/sdk/evaluations.py,sha256=
|
6
|
-
lmnr/sdk/laminar.py,sha256=
|
5
|
+
lmnr/sdk/evaluations.py,sha256=4VEfhL8DsrQLX96jHrGmBKHxCnbfM-4-6MFOR-XQozM,13525
|
6
|
+
lmnr/sdk/laminar.py,sha256=jH0-J7S5k8duwivE2giYuh6mx64PswoEWHUdH4GFqoM,18305
|
7
7
|
lmnr/sdk/log.py,sha256=EgAMY77Zn1bv1imCqrmflD3imoAJ2yveOkIcrIP3e98,1170
|
8
|
-
lmnr/sdk/types.py,sha256=
|
8
|
+
lmnr/sdk/types.py,sha256=KUCVIdkyr9pN2KKp-H1O-FU8x5_yKeC3cUP3Je3hY6g,5117
|
9
9
|
lmnr/sdk/utils.py,sha256=s81p6uJehgJSaLWy3sR5fTpEDH7vzn3i_UujUHChl6M,3346
|
10
10
|
lmnr/traceloop_sdk/.flake8,sha256=bCxuDlGx3YQ55QHKPiGJkncHanh9qGjQJUujcFa3lAU,150
|
11
11
|
lmnr/traceloop_sdk/.python-version,sha256=9OLQBQVbD4zE4cJsPePhnAfV_snrPSoqEQw-PXgPMOs,6
|
12
12
|
lmnr/traceloop_sdk/__init__.py,sha256=hp3q1OsFaGgaQCEanJrL38BJN32hWqCNVCSjYpndEsY,2957
|
13
13
|
lmnr/traceloop_sdk/config/__init__.py,sha256=DliMGp2NjYAqRFLKpWQPUKjGMHRO8QsVfazBA1qENQ8,248
|
14
14
|
lmnr/traceloop_sdk/decorators/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
15
|
-
lmnr/traceloop_sdk/decorators/base.py,sha256
|
15
|
+
lmnr/traceloop_sdk/decorators/base.py,sha256=-b8Q738m3StdLTgHARx8zw78m9htynKkZFFTYURQnOA,5524
|
16
16
|
lmnr/traceloop_sdk/instruments.py,sha256=oMvIASueW3GeChpjIdH-DD9aFBVB8OtHZ0HawppTrlI,942
|
17
17
|
lmnr/traceloop_sdk/tests/__init__.py,sha256=RYnG0-8zbXL0-2Ste1mEBf5sN4d_rQjGTCgPBuaZC74,20
|
18
18
|
lmnr/traceloop_sdk/tests/cassettes/test_association_properties/test_langchain_and_external_association_properties.yaml,sha256=26g0wRA0juicHg_XrhcE8H4vhs1lawDs0o0aLFn-I7w,3103
|
@@ -35,17 +35,17 @@ lmnr/traceloop_sdk/tests/test_sdk_initialization.py,sha256=fRaf6lrxFzJIN94P1Tav_
|
|
35
35
|
lmnr/traceloop_sdk/tests/test_tasks.py,sha256=xlEx8BKp4yG83SCjK5WkPGfyC33JSrx4h8VyjVwGbgw,906
|
36
36
|
lmnr/traceloop_sdk/tests/test_workflows.py,sha256=RVcfY3WAFIDZC15-aSua21aoQyYeWE7KypDyUsm-2EM,9372
|
37
37
|
lmnr/traceloop_sdk/tracing/__init__.py,sha256=Ckq7zCM26VdJVB5tIZv0GTPyMZKyfso_KWD5yPHaqdo,66
|
38
|
-
lmnr/traceloop_sdk/tracing/attributes.py,sha256=
|
38
|
+
lmnr/traceloop_sdk/tracing/attributes.py,sha256=PXwS1GCZKdjQSypl__BSkQNZhh21RyzwTPnDOh61bnQ,250
|
39
39
|
lmnr/traceloop_sdk/tracing/content_allow_list.py,sha256=3feztm6PBWNelc8pAZUcQyEGyeSpNiVKjOaDk65l2ps,846
|
40
40
|
lmnr/traceloop_sdk/tracing/context_manager.py,sha256=csVlB6kDmbgSPsROHwnddvGGblx55v6lJMRj0wsSMQM,304
|
41
|
-
lmnr/traceloop_sdk/tracing/tracing.py,sha256=
|
41
|
+
lmnr/traceloop_sdk/tracing/tracing.py,sha256=pB8vImUZRMaahkHLaQP73cbMtYDyvpvEdWsa49520Yo,36061
|
42
42
|
lmnr/traceloop_sdk/utils/__init__.py,sha256=pNhf0G3vTd5ccoc03i1MXDbricSaiqCbi1DLWhSekK8,604
|
43
43
|
lmnr/traceloop_sdk/utils/in_memory_span_exporter.py,sha256=H_4TRaThMO1H6vUQ0OpQvzJk_fZH0OOsRAM1iZQXsR8,2112
|
44
44
|
lmnr/traceloop_sdk/utils/json_encoder.py,sha256=dK6b_axr70IYL7Vv-bu4wntvDDuyntoqsHaddqX7P58,463
|
45
45
|
lmnr/traceloop_sdk/utils/package_check.py,sha256=TZSngzJOpFhfUZLXIs38cpMxQiZSmp0D-sCrIyhz7BA,251
|
46
46
|
lmnr/traceloop_sdk/version.py,sha256=OlatFEFA4ttqSSIiV8jdE-sq3KG5zu2hnC4B4mzWF3s,23
|
47
|
-
lmnr-0.4.
|
48
|
-
lmnr-0.4.
|
49
|
-
lmnr-0.4.
|
50
|
-
lmnr-0.4.
|
51
|
-
lmnr-0.4.
|
47
|
+
lmnr-0.4.13.dist-info/LICENSE,sha256=67b_wJHVV1CBaWkrKFWU1wyqTPSdzH77Ls-59631COg,10411
|
48
|
+
lmnr-0.4.13.dist-info/METADATA,sha256=TgaQ5yPkKErpY9WrLywc84BJyAxsffR1Rf0_N_qeOvA,11233
|
49
|
+
lmnr-0.4.13.dist-info/WHEEL,sha256=sP946D7jFCHeNz5Iq4fL4Lu-PrWrFsgfLXbbkciIZwg,88
|
50
|
+
lmnr-0.4.13.dist-info/entry_points.txt,sha256=K1jE20ww4jzHNZLnsfWBvU3YKDGBgbOiYG5Y7ivQcq4,37
|
51
|
+
lmnr-0.4.13.dist-info/RECORD,,
|
File without changes
|
File without changes
|
File without changes
|