lmnr 0.4.12b3__py3-none-any.whl → 0.4.13__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: lmnr
3
- Version: 0.4.12b3
3
+ Version: 0.4.13
4
4
  Summary: Python SDK for Laminar AI
5
5
  License: Apache-2.0
6
6
  Author: lmnr.ai
@@ -14,7 +14,6 @@ Classifier: Programming Language :: Python :: 3.12
14
14
  Requires-Dist: argparse (>=1.0,<2.0)
15
15
  Requires-Dist: asyncio (>=3.0,<4.0)
16
16
  Requires-Dist: backoff (>=2.0,<3.0)
17
- Requires-Dist: colorama (>=0.4,<0.5)
18
17
  Requires-Dist: deprecated (>=1.0,<2.0)
19
18
  Requires-Dist: jinja2 (>=3.0,<4.0)
20
19
  Requires-Dist: opentelemetry-api (>=1.27.0,<2.0.0)
@@ -60,63 +59,37 @@ Description-Content-Type: text/markdown
60
59
 
61
60
  # Laminar Python
62
61
 
63
- OpenTelemetry log sender for [Laminar](https://github.com/lmnr-ai/lmnr) for Python code.
62
+ Python SDK for [Laminar](https://www.lmnr.ai).
63
+
64
+ [Laminar](https://www.lmnr.ai) is an open-source platform for engineering LLM products. Trace, evaluate, annotate, and analyze LLM data. Bring LLM applications to production with confidence.
65
+
66
+ Check our [open-source repo](https://github.com/lmnr-ai/lmnr) and don't forget to star it ⭐
64
67
 
65
68
  <a href="https://pypi.org/project/lmnr/"> ![PyPI - Version](https://img.shields.io/pypi/v/lmnr?label=lmnr&logo=pypi&logoColor=3775A9) </a>
66
69
  ![PyPI - Downloads](https://img.shields.io/pypi/dm/lmnr)
67
70
  ![PyPI - Python Version](https://img.shields.io/pypi/pyversions/lmnr)
68
71
 
69
72
 
70
-
71
73
  ## Quickstart
72
74
 
73
75
  First, install the package:
74
76
 
75
77
  ```sh
76
- python3 -m venv .myenv
77
- source .myenv/bin/activate # or use your favorite env management tool
78
-
79
78
  pip install lmnr
80
79
  ```
81
80
 
82
- Then, you can initialize Laminar in your main file and instrument your code.
81
+ And then in the code
83
82
 
84
83
  ```python
85
- import os
86
- from openai import OpenAI
87
84
  from lmnr import Laminar as L
88
85
 
89
- L.initialize(
90
- project_api_key=os.environ["LMNR_PROJECT_API_KEY"],
91
- )
92
-
93
- client = OpenAI(api_key=os.environ["OPENAI_API_KEY"])
94
-
95
- def poem_writer(topic: str):
96
- prompt = f"write a poem about {topic}"
97
-
98
- # OpenAI calls are automatically instrumented
99
- response = client.chat.completions.create(
100
- model="gpt-4o",
101
- messages=[
102
- {"role": "system", "content": "You are a helpful assistant."},
103
- {"role": "user", "content": prompt},
104
- ],
105
- )
106
- poem = response.choices[0].message.content
107
- return poem
108
-
109
- if __name__ == "__main__":
110
- print(poem_writer("laminar flow"))
111
-
86
+ L.initialize(project_api_key="<PROJECT_API_KEY>")
112
87
  ```
113
88
 
114
- Note that you need to only initialize Laminar once in your application.
89
+ This will automatically instrument most of the LLM, Vector DB, and related
90
+ calls with OpenTelemetry-compatible instrumentation.
115
91
 
116
- ### Project API key
117
-
118
- Get the key from the settings page of your Laminar project ([Learn more](https://docs.lmnr.ai/api-reference/introduction#authentication)).
119
- You can either pass it to `.initialize()` or set it to `.env` at the root of your package with the key `LMNR_PROJECT_API_KEY`.
92
+ Note that you need to only initialize Laminar once in your application.
120
93
 
121
94
  ## Instrumentation
122
95
 
@@ -197,7 +170,7 @@ L.initialize(project_api_key=os.environ["LMNR_PROJECT_API_KEY"], instruments={In
197
170
 
198
171
  If you want to fully disable any kind of autoinstrumentation, pass an empty set as `instruments=set()` to `.initialize()`.
199
172
 
200
- Majority of the autoinstrumentations are provided by Traceloop's [OpenLLMetry](https://github.com/traceloop/openllmetry).
173
+ Autoinstrumentations are provided by Traceloop's [OpenLLMetry](https://github.com/traceloop/openllmetry).
201
174
 
202
175
  ## Sending events
203
176
 
@@ -225,6 +198,67 @@ L.event("topic alignment", topic in poem)
225
198
  L.evaluate_event("excessive_wordiness", "check_wordy", {"text_input": poem})
226
199
  ```
227
200
 
201
+ ## Evaluations
202
+
203
+ ### Quickstart
204
+
205
+ Install the package:
206
+
207
+ ```sh
208
+ pip install lmnr
209
+ ```
210
+
211
+ Create a file named `my_first_eval.py` with the following code:
212
+
213
+ ```python
214
+ from lmnr import evaluate
215
+
216
+ def write_poem(data):
217
+ return f"This is a good poem about {data['topic']}"
218
+
219
+ def contains_poem(output, target):
220
+ return 1 if output in target['poem'] else 0
221
+
222
+ # Evaluation data
223
+ data = [
224
+ {"data": {"topic": "flowers"}, "target": {"poem": "This is a good poem about flowers"}},
225
+ {"data": {"topic": "cars"}, "target": {"poem": "I like cars"}},
226
+ ]
227
+
228
+ evaluate(
229
+ data=data,
230
+ executor=write_poem,
231
+ evaluators={
232
+ "containsPoem": contains_poem
233
+ }
234
+ )
235
+ ```
236
+
237
+ Run the following commands:
238
+
239
+ ```sh
240
+ export LMNR_PROJECT_API_KEY=<YOUR_PROJECT_API_KEY> # get from Laminar project settings
241
+ lmnr eval my_first_eval.py # run in the virtual environment where lmnr is installed
242
+ ```
243
+
244
+ Visit the URL printed in the console to see the results.
245
+
246
+ ### Overview
247
+
248
+ Bring rigor to the development of your LLM applications with evaluations.
249
+
250
+ You can run evaluations locally by providing executor (part of the logic used in your application) and evaluators (numeric scoring functions) to `evaluate` function.
251
+
252
+ `evaluate` takes in the following parameters:
253
+ - `data` – an array of `EvaluationDatapoint` objects, where each `EvaluationDatapoint` has two keys: `target` and `data`, each containing a key-value object. Alternatively, you can pass in dictionaries, and we will instantiate `EvaluationDatapoint`s with pydantic if possible
254
+ - `executor` – the logic you want to evaluate. This function must take `data` as the first argument, and produce any output. It can be both a function or an `async` function.
255
+ - `evaluators` – Dictionary which maps evaluator names to evaluators. Functions that take output of executor as the first argument, `target` as the second argument and produce a numeric scores. Each function can produce either a single number or `dict[str, int|float]` of scores. Each evaluator can be both a function or an `async` function.
256
+ - `name` – optional name for the evaluation. Automatically generated if not provided.
257
+
258
+ \* If you already have the outputs of executors you want to evaluate, you can specify the executor as an identity function, that takes in `data` and returns only needed value(s) from it.
259
+
260
+ [Read docs](https://docs.lmnr.ai/evaluations/introduction) to learn more about evaluations.
261
+
228
262
  ## Laminar pipelines as prompt chain managers
229
263
 
230
264
  You can create Laminar pipelines in the UI and manage chains of LLM calls there.
@@ -259,65 +293,3 @@ PipelineRunResponse(
259
293
  )
260
294
  ```
261
295
 
262
- ## Running offline evaluations on your data
263
-
264
- You can evaluate your code with your own data and send it to Laminar using the `Evaluation` class.
265
-
266
- Evaluation takes in the following parameters:
267
- - `name` – the name of your evaluation. If no such evaluation exists in the project, it will be created. Otherwise, data will be pushed to the existing evaluation
268
- - `data` – an array of `EvaluationDatapoint` objects, where each `EvaluationDatapoint` has two keys: `target` and `data`, each containing a key-value object. Alternatively, you can pass in dictionaries, and we will instantiate `EvaluationDatapoint`s with pydantic if possible
269
- - `executor` – the logic you want to evaluate. This function must take `data` as the first argument, and produce any output. *
270
- - `evaluators` – evaluaton logic. List of functions that take output of executor as the first argument, `target` as the second argument and produce a numeric scores. Each function can produce either a single number or `dict[str, int|float]` of scores.
271
-
272
- \* If you already have the outputs of executors you want to evaluate, you can specify the executor as an identity function, that takes in `data` and returns only needed value(s) from it.
273
-
274
- ### Example
275
-
276
- ```python
277
- from openai import AsyncOpenAI
278
- import asyncio
279
- import os
280
-
281
- openai_client = AsyncOpenAI(api_key=os.environ["OPENAI_API_KEY"])
282
-
283
- async def get_capital(data):
284
- country = data["country"]
285
- response = await openai_client.chat.completions.create(
286
- model="gpt-4o-mini",
287
- messages=[
288
- {"role": "system", "content": "You are a helpful assistant."},
289
- {
290
- "role": "user",
291
- "content": f"What is the capital of {country}? Just name the "
292
- "city and nothing else",
293
- },
294
- ],
295
- )
296
- return response.choices[0].message.content.strip()
297
-
298
-
299
- # Evaluation data
300
- data = [
301
- {"data": {"country": "Canada"}, "target": {"capital": "Ottawa"}},
302
- {"data": {"country": "Germany"}, "target": {"capital": "Berlin"}},
303
- {"data": {"country": "Tanzania"}, "target": {"capital": "Dodoma"}},
304
- ]
305
-
306
-
307
- def evaluator_A(output, target):
308
- return 1 if output == target["capital"] else 0
309
-
310
-
311
- # Create an Evaluation instance
312
- e = Evaluation(
313
- name="py-evaluation-async",
314
- data=data,
315
- executor=get_capital,
316
- evaluators=[evaluator_A],
317
- project_api_key=os.environ["LMNR_PROJECT_API_KEY"],
318
- )
319
-
320
- # Run the evaluation
321
- asyncio.run(e.run())
322
- ```
323
-
@@ -1,21 +1,19 @@
1
1
  lmnr/__init__.py,sha256=5Ks8UIicCzCBgwSz0MOX3I7jVruPMUO3SmxIwUoODzQ,231
2
2
  lmnr/cli.py,sha256=Ptvm5dsNLKUY5lwnN8XkT5GtCYjzpRNi2WvefknB3OQ,1079
3
3
  lmnr/sdk/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
4
- lmnr/sdk/decorators.py,sha256=O8S4PI6LUfdWPkbroigl5khtnkyhp24J8qzSdlvCs44,2227
5
- lmnr/sdk/evaluations.py,sha256=Ip0XJsdNEPcq4LhPaYF7DOS0y1sDXpPuDf7Vf2YUkJc,11940
6
- lmnr/sdk/laminar.py,sha256=vG9JkaonK8XBLSFVf4sKV50silbg7UVVLTbWFB3SANw,19011
4
+ lmnr/sdk/decorators.py,sha256=ii7Bqp6flaanIFSK6M1_ZZV-izp4o3hkR1MmY7wnFQQ,2227
5
+ lmnr/sdk/evaluations.py,sha256=4VEfhL8DsrQLX96jHrGmBKHxCnbfM-4-6MFOR-XQozM,13525
6
+ lmnr/sdk/laminar.py,sha256=jH0-J7S5k8duwivE2giYuh6mx64PswoEWHUdH4GFqoM,18305
7
7
  lmnr/sdk/log.py,sha256=EgAMY77Zn1bv1imCqrmflD3imoAJ2yveOkIcrIP3e98,1170
8
- lmnr/sdk/types.py,sha256=nSN6Z4CDVFJ0o-vjzIT1qzwRiJ70pReGpqdNOcjXKic,4062
9
- lmnr/sdk/utils.py,sha256=ZsGJ86tq8lIbvOhSb1gJWH5K3GylO_lgX68FN6rG2nM,3358
8
+ lmnr/sdk/types.py,sha256=KUCVIdkyr9pN2KKp-H1O-FU8x5_yKeC3cUP3Je3hY6g,5117
9
+ lmnr/sdk/utils.py,sha256=s81p6uJehgJSaLWy3sR5fTpEDH7vzn3i_UujUHChl6M,3346
10
10
  lmnr/traceloop_sdk/.flake8,sha256=bCxuDlGx3YQ55QHKPiGJkncHanh9qGjQJUujcFa3lAU,150
11
11
  lmnr/traceloop_sdk/.python-version,sha256=9OLQBQVbD4zE4cJsPePhnAfV_snrPSoqEQw-PXgPMOs,6
12
- lmnr/traceloop_sdk/__init__.py,sha256=-wa25NtU7BeTgqjT6rpVIEdaVP4aOjLgbYrc3B3-JaM,3932
13
- lmnr/traceloop_sdk/config/__init__.py,sha256=EGN3ixOt_ORbMxqaQdLaC14kmO-gyG4mnGJ2GfN-R-E,364
12
+ lmnr/traceloop_sdk/__init__.py,sha256=hp3q1OsFaGgaQCEanJrL38BJN32hWqCNVCSjYpndEsY,2957
13
+ lmnr/traceloop_sdk/config/__init__.py,sha256=DliMGp2NjYAqRFLKpWQPUKjGMHRO8QsVfazBA1qENQ8,248
14
14
  lmnr/traceloop_sdk/decorators/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
15
- lmnr/traceloop_sdk/decorators/base.py,sha256=wcqXF0iVQgRXMyWTcJ5QvL_6q2y_gttwsX8dllmAtWM,4891
15
+ lmnr/traceloop_sdk/decorators/base.py,sha256=-b8Q738m3StdLTgHARx8zw78m9htynKkZFFTYURQnOA,5524
16
16
  lmnr/traceloop_sdk/instruments.py,sha256=oMvIASueW3GeChpjIdH-DD9aFBVB8OtHZ0HawppTrlI,942
17
- lmnr/traceloop_sdk/metrics/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
18
- lmnr/traceloop_sdk/metrics/metrics.py,sha256=AlQ2a2os1WcZbfBd155u_UzBbPrbuPia6O_HbojV9Wc,5055
19
17
  lmnr/traceloop_sdk/tests/__init__.py,sha256=RYnG0-8zbXL0-2Ste1mEBf5sN4d_rQjGTCgPBuaZC74,20
20
18
  lmnr/traceloop_sdk/tests/cassettes/test_association_properties/test_langchain_and_external_association_properties.yaml,sha256=26g0wRA0juicHg_XrhcE8H4vhs1lawDs0o0aLFn-I7w,3103
21
19
  lmnr/traceloop_sdk/tests/cassettes/test_association_properties/test_langchain_association_properties.yaml,sha256=FNlSWlYCsWc3w7UPZzfGjDnxS3gAOhL-kpsu4BTxsDE,3061
@@ -37,17 +35,17 @@ lmnr/traceloop_sdk/tests/test_sdk_initialization.py,sha256=fRaf6lrxFzJIN94P1Tav_
37
35
  lmnr/traceloop_sdk/tests/test_tasks.py,sha256=xlEx8BKp4yG83SCjK5WkPGfyC33JSrx4h8VyjVwGbgw,906
38
36
  lmnr/traceloop_sdk/tests/test_workflows.py,sha256=RVcfY3WAFIDZC15-aSua21aoQyYeWE7KypDyUsm-2EM,9372
39
37
  lmnr/traceloop_sdk/tracing/__init__.py,sha256=Ckq7zCM26VdJVB5tIZv0GTPyMZKyfso_KWD5yPHaqdo,66
38
+ lmnr/traceloop_sdk/tracing/attributes.py,sha256=PXwS1GCZKdjQSypl__BSkQNZhh21RyzwTPnDOh61bnQ,250
40
39
  lmnr/traceloop_sdk/tracing/content_allow_list.py,sha256=3feztm6PBWNelc8pAZUcQyEGyeSpNiVKjOaDk65l2ps,846
41
40
  lmnr/traceloop_sdk/tracing/context_manager.py,sha256=csVlB6kDmbgSPsROHwnddvGGblx55v6lJMRj0wsSMQM,304
42
- lmnr/traceloop_sdk/tracing/manual.py,sha256=RPwEreHHdzmw7g15u4G21GqhHOvRp7d72ylQNLG1jRM,1841
43
- lmnr/traceloop_sdk/tracing/tracing.py,sha256=5e8AsiFKaIO6zqAbMfhw242glVsQUkxbNhTWP7QDqSg,40108
41
+ lmnr/traceloop_sdk/tracing/tracing.py,sha256=pB8vImUZRMaahkHLaQP73cbMtYDyvpvEdWsa49520Yo,36061
44
42
  lmnr/traceloop_sdk/utils/__init__.py,sha256=pNhf0G3vTd5ccoc03i1MXDbricSaiqCbi1DLWhSekK8,604
45
43
  lmnr/traceloop_sdk/utils/in_memory_span_exporter.py,sha256=H_4TRaThMO1H6vUQ0OpQvzJk_fZH0OOsRAM1iZQXsR8,2112
46
44
  lmnr/traceloop_sdk/utils/json_encoder.py,sha256=dK6b_axr70IYL7Vv-bu4wntvDDuyntoqsHaddqX7P58,463
47
45
  lmnr/traceloop_sdk/utils/package_check.py,sha256=TZSngzJOpFhfUZLXIs38cpMxQiZSmp0D-sCrIyhz7BA,251
48
46
  lmnr/traceloop_sdk/version.py,sha256=OlatFEFA4ttqSSIiV8jdE-sq3KG5zu2hnC4B4mzWF3s,23
49
- lmnr-0.4.12b3.dist-info/LICENSE,sha256=67b_wJHVV1CBaWkrKFWU1wyqTPSdzH77Ls-59631COg,10411
50
- lmnr-0.4.12b3.dist-info/METADATA,sha256=VnqchbOU6e4xrMuioUj2uJPWDNWGkcz5nmOM-Fua0UI,11992
51
- lmnr-0.4.12b3.dist-info/WHEEL,sha256=sP946D7jFCHeNz5Iq4fL4Lu-PrWrFsgfLXbbkciIZwg,88
52
- lmnr-0.4.12b3.dist-info/entry_points.txt,sha256=K1jE20ww4jzHNZLnsfWBvU3YKDGBgbOiYG5Y7ivQcq4,37
53
- lmnr-0.4.12b3.dist-info/RECORD,,
47
+ lmnr-0.4.13.dist-info/LICENSE,sha256=67b_wJHVV1CBaWkrKFWU1wyqTPSdzH77Ls-59631COg,10411
48
+ lmnr-0.4.13.dist-info/METADATA,sha256=TgaQ5yPkKErpY9WrLywc84BJyAxsffR1Rf0_N_qeOvA,11233
49
+ lmnr-0.4.13.dist-info/WHEEL,sha256=sP946D7jFCHeNz5Iq4fL4Lu-PrWrFsgfLXbbkciIZwg,88
50
+ lmnr-0.4.13.dist-info/entry_points.txt,sha256=K1jE20ww4jzHNZLnsfWBvU3YKDGBgbOiYG5Y7ivQcq4,37
51
+ lmnr-0.4.13.dist-info/RECORD,,
File without changes
@@ -1,176 +0,0 @@
1
- from collections.abc import Sequence
2
- from typing import Dict
3
-
4
- from opentelemetry.exporter.otlp.proto.grpc.metric_exporter import (
5
- OTLPMetricExporter as GRPCExporter,
6
- )
7
- from opentelemetry.exporter.otlp.proto.http.metric_exporter import (
8
- OTLPMetricExporter as HTTPExporter,
9
- )
10
- from opentelemetry.semconv_ai import Meters
11
- from opentelemetry.sdk.metrics import MeterProvider
12
- from opentelemetry.sdk.metrics.export import (
13
- PeriodicExportingMetricReader,
14
- MetricExporter,
15
- )
16
- from opentelemetry.sdk.metrics.view import View, ExplicitBucketHistogramAggregation
17
- from opentelemetry.sdk.resources import Resource
18
-
19
- from opentelemetry import metrics
20
-
21
-
22
- class MetricsWrapper(object):
23
- resource_attributes: dict = {}
24
- endpoint: str = None
25
- # if it needs headers?
26
- headers: Dict[str, str] = {}
27
- __metrics_exporter: MetricExporter = None
28
- __metrics_provider: MeterProvider = None
29
-
30
- def __new__(cls, exporter: MetricExporter = None) -> "MetricsWrapper":
31
- if not hasattr(cls, "instance"):
32
- obj = cls.instance = super(MetricsWrapper, cls).__new__(cls)
33
- if not MetricsWrapper.endpoint:
34
- return obj
35
-
36
- obj.__metrics_exporter = (
37
- exporter
38
- if exporter
39
- else init_metrics_exporter(
40
- MetricsWrapper.endpoint, MetricsWrapper.headers
41
- )
42
- )
43
-
44
- obj.__metrics_provider = init_metrics_provider(
45
- obj.__metrics_exporter, MetricsWrapper.resource_attributes
46
- )
47
-
48
- return cls.instance
49
-
50
- @staticmethod
51
- def set_static_params(
52
- resource_attributes: dict,
53
- endpoint: str,
54
- headers: Dict[str, str],
55
- ) -> None:
56
- MetricsWrapper.resource_attributes = resource_attributes
57
- MetricsWrapper.endpoint = endpoint
58
- MetricsWrapper.headers = headers
59
-
60
-
61
- def init_metrics_exporter(endpoint: str, headers: Dict[str, str]) -> MetricExporter:
62
- if "http" in endpoint.lower() or "https" in endpoint.lower():
63
- return HTTPExporter(endpoint=f"{endpoint}/v1/metrics", headers=headers)
64
- else:
65
- return GRPCExporter(endpoint=endpoint, headers=headers)
66
-
67
-
68
- def init_metrics_provider(
69
- exporter: MetricExporter, resource_attributes: dict = None
70
- ) -> MeterProvider:
71
- resource = (
72
- Resource.create(resource_attributes)
73
- if resource_attributes
74
- else Resource.create()
75
- )
76
- reader = PeriodicExportingMetricReader(exporter)
77
- provider = MeterProvider(
78
- metric_readers=[reader],
79
- resource=resource,
80
- views=metric_views(),
81
- )
82
-
83
- metrics.set_meter_provider(provider)
84
- return provider
85
-
86
-
87
- def metric_views() -> Sequence[View]:
88
- return [
89
- View(
90
- instrument_name=Meters.LLM_TOKEN_USAGE,
91
- aggregation=ExplicitBucketHistogramAggregation(
92
- [
93
- 0.01,
94
- 0.02,
95
- 0.04,
96
- 0.08,
97
- 0.16,
98
- 0.32,
99
- 0.64,
100
- 1.28,
101
- 2.56,
102
- 5.12,
103
- 10.24,
104
- 20.48,
105
- 40.96,
106
- 81.92,
107
- ]
108
- ),
109
- ),
110
- View(
111
- instrument_name=Meters.LLM_OPERATION_DURATION,
112
- aggregation=ExplicitBucketHistogramAggregation(
113
- [
114
- 1,
115
- 4,
116
- 16,
117
- 64,
118
- 256,
119
- 1024,
120
- 4096,
121
- 16384,
122
- 65536,
123
- 262144,
124
- 1048576,
125
- 4194304,
126
- 16777216,
127
- 67108864,
128
- ]
129
- ),
130
- ),
131
- View(
132
- instrument_name=Meters.PINECONE_DB_QUERY_DURATION,
133
- aggregation=ExplicitBucketHistogramAggregation(
134
- [
135
- 0.01,
136
- 0.02,
137
- 0.04,
138
- 0.08,
139
- 0.16,
140
- 0.32,
141
- 0.64,
142
- 1.28,
143
- 2.56,
144
- 5.12,
145
- 10.24,
146
- 20.48,
147
- 40.96,
148
- 81.92,
149
- ]
150
- ),
151
- ),
152
- View(
153
- instrument_name=Meters.PINECONE_DB_QUERY_SCORES,
154
- aggregation=ExplicitBucketHistogramAggregation(
155
- [
156
- -1,
157
- -0.875,
158
- -0.75,
159
- -0.625,
160
- -0.5,
161
- -0.375,
162
- -0.25,
163
- -0.125,
164
- 0,
165
- 0.125,
166
- 0.25,
167
- 0.375,
168
- 0.5,
169
- 0.625,
170
- 0.75,
171
- 0.875,
172
- 1,
173
- ]
174
- ),
175
- ),
176
- ]
@@ -1,57 +0,0 @@
1
- from contextlib import contextmanager
2
- from opentelemetry.semconv_ai import SpanAttributes
3
- from opentelemetry.trace import Span
4
- from pydantic import BaseModel
5
- from lmnr.traceloop_sdk.tracing.context_manager import get_tracer
6
-
7
-
8
- class LLMMessage(BaseModel):
9
- role: str
10
- content: str
11
-
12
-
13
- class LLMUsage(BaseModel):
14
- prompt_tokens: int
15
- completion_tokens: int
16
- total_tokens: int
17
-
18
-
19
- class LLMSpan:
20
- _span: Span = None
21
-
22
- def __init__(self, span: Span):
23
- self._span = span
24
- pass
25
-
26
- def report_request(self, model: str, messages: list[LLMMessage]):
27
- self._span.set_attribute(SpanAttributes.LLM_REQUEST_MODEL, model)
28
- for idx, message in enumerate(messages):
29
- self._span.set_attribute(
30
- f"{SpanAttributes.LLM_PROMPTS}.{idx}.role", message.role
31
- )
32
- self._span.set_attribute(
33
- f"{SpanAttributes.LLM_PROMPTS}.{idx}.content", message.content
34
- )
35
-
36
- def report_response(self, model: str, completions: list[str]):
37
- self._span.set_attribute(SpanAttributes.LLM_RESPONSE_MODEL, model)
38
- for idx, completion in enumerate(completions):
39
- self._span.set_attribute(
40
- f"{SpanAttributes.LLM_COMPLETIONS}.{idx}.role", "assistant"
41
- )
42
- self._span.set_attribute(
43
- f"{SpanAttributes.LLM_COMPLETIONS}.{idx}", completion
44
- )
45
-
46
-
47
- @contextmanager
48
- def track_llm_call(vendor: str, type: str):
49
- with get_tracer() as tracer:
50
- with tracer.start_as_current_span(name=f"{vendor}.{type}") as span:
51
- span.set_attribute(SpanAttributes.LLM_SYSTEM, vendor)
52
- span.set_attribute(SpanAttributes.LLM_REQUEST_TYPE, type)
53
- llm_span = LLMSpan(span)
54
- try:
55
- yield llm_span
56
- finally:
57
- span.end()
File without changes