lmnr 0.3.6__py3-none-any.whl → 0.4.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- lmnr/__init__.py +2 -6
- lmnr/sdk/decorators.py +55 -264
- lmnr/sdk/laminar.py +380 -0
- lmnr/sdk/log.py +39 -0
- lmnr/sdk/utils.py +10 -11
- lmnr-0.4.0.dist-info/METADATA +151 -0
- lmnr-0.4.0.dist-info/RECORD +12 -0
- lmnr/sdk/client.py +0 -161
- lmnr/sdk/collector.py +0 -177
- lmnr/sdk/constants.py +0 -1
- lmnr/sdk/context.py +0 -464
- lmnr/sdk/interface.py +0 -308
- lmnr/sdk/providers/__init__.py +0 -2
- lmnr/sdk/providers/base.py +0 -28
- lmnr/sdk/providers/fallback.py +0 -154
- lmnr/sdk/providers/openai.py +0 -159
- lmnr/sdk/providers/utils.py +0 -33
- lmnr/sdk/tracing_types.py +0 -194
- lmnr/semantic_conventions/__init__.py +0 -0
- lmnr/semantic_conventions/gen_ai_spans.py +0 -48
- lmnr-0.3.6.dist-info/METADATA +0 -257
- lmnr-0.3.6.dist-info/RECORD +0 -23
- {lmnr-0.3.6.dist-info → lmnr-0.4.0.dist-info}/LICENSE +0 -0
- {lmnr-0.3.6.dist-info → lmnr-0.4.0.dist-info}/WHEEL +0 -0
- {lmnr-0.3.6.dist-info → lmnr-0.4.0.dist-info}/entry_points.txt +0 -0
lmnr/__init__.py
CHANGED
@@ -1,7 +1,3 @@
|
|
1
|
-
from .sdk.
|
2
|
-
from .sdk.decorators import observe, lmnr_context, wrap_llm_call
|
3
|
-
from .sdk.interface import trace, TraceContext, SpanContext
|
4
|
-
from .sdk.tracing_types import EvaluateEvent
|
1
|
+
from .sdk.laminar import Laminar
|
5
2
|
from .sdk.types import ChatMessage, PipelineRunError, PipelineRunResponse, NodeInput
|
6
|
-
|
7
|
-
from .semantic_conventions import *
|
3
|
+
from .sdk.decorators import observe
|
lmnr/sdk/decorators.py
CHANGED
@@ -1,281 +1,72 @@
|
|
1
|
-
import
|
2
|
-
|
3
|
-
|
4
|
-
|
5
|
-
|
6
|
-
from .context import LaminarSingleton
|
7
|
-
from .providers.fallback import FallbackProvider
|
8
|
-
from ..semantic_conventions.gen_ai_spans import PROVIDER
|
9
|
-
from .types import NodeInput, PipelineRunResponse
|
10
|
-
from .utils import (
|
11
|
-
PROVIDER_NAME_TO_OBJECT,
|
12
|
-
get_input_from_func_args,
|
13
|
-
is_async,
|
14
|
-
is_method,
|
1
|
+
from traceloop.sdk.decorators.base import (
|
2
|
+
entity_method,
|
3
|
+
aentity_method,
|
15
4
|
)
|
5
|
+
from opentelemetry.trace import INVALID_SPAN, get_current_span
|
6
|
+
from traceloop.sdk import Traceloop
|
16
7
|
|
8
|
+
from typing import Callable, Optional, ParamSpec, TypeVar, cast
|
17
9
|
|
18
|
-
|
19
|
-
|
20
|
-
self,
|
21
|
-
*,
|
22
|
-
name: Optional[str] = None,
|
23
|
-
span_type: Optional[Literal["DEFAULT", "LLM"]] = "DEFAULT",
|
24
|
-
capture_input: bool = True,
|
25
|
-
capture_output: bool = True,
|
26
|
-
release: Optional[str] = None,
|
27
|
-
user_id: Optional[str] = None,
|
28
|
-
session_id: Optional[str] = None,
|
29
|
-
):
|
30
|
-
"""The main decorator entrypoint for Laminar. This is used to wrap functions and methods to create spans.
|
31
|
-
|
32
|
-
Args:
|
33
|
-
name (Optional[str], optional): Name of the span. Function name is used if not specified. Defaults to None.
|
34
|
-
span_type (Literal["DEFAULT", "LLM"], optional): Type of this span. Prefer `wrap_llm_call` instead of specifying
|
35
|
-
this as "LLM" . Defaults to "DEFAULT".
|
36
|
-
capture_input (bool, optional): Whether to capture input parameters to the function. Defaults to True.
|
37
|
-
capture_output (bool, optional): Whether to capture returned type from the function. Defaults to True.
|
38
|
-
release (Optional[str], optional): Release version of your app. Useful for further grouping and analytics. Defaults to None.
|
39
|
-
user_id (Optional[str], optional): Custom user_id of your user. Useful for grouping and further analytics. Defaults to None.
|
40
|
-
session_id (Optional[str], optional): Custom session_id for your session. Random UUID is generated on Laminar side, if not specified.
|
41
|
-
Defaults to None.
|
42
|
-
|
43
|
-
Raises:
|
44
|
-
Exception: re-raises the exception if the wrapped function raises an exception
|
45
|
-
|
46
|
-
Returns:
|
47
|
-
Any: Returns the result of the wrapped function
|
48
|
-
"""
|
49
|
-
context_manager = LaminarSingleton().get()
|
50
|
-
|
51
|
-
def decorator(func: Callable):
|
52
|
-
@functools.wraps(func)
|
53
|
-
def wrapper(*args, **kwargs):
|
54
|
-
span = context_manager.observe_start(
|
55
|
-
name=name or func.__name__,
|
56
|
-
span_type=span_type,
|
57
|
-
input=(
|
58
|
-
get_input_from_func_args(func, is_method(func), args, kwargs)
|
59
|
-
if capture_input
|
60
|
-
else None
|
61
|
-
),
|
62
|
-
user_id=user_id,
|
63
|
-
session_id=session_id,
|
64
|
-
release=release,
|
65
|
-
)
|
66
|
-
try:
|
67
|
-
result = func(*args, **kwargs)
|
68
|
-
except Exception as e:
|
69
|
-
context_manager.observe_end(result=None, span=span, error=e)
|
70
|
-
raise e
|
71
|
-
context_manager.observe_end(
|
72
|
-
result=result if capture_output else None, span=span
|
73
|
-
)
|
74
|
-
return result
|
75
|
-
|
76
|
-
@functools.wraps(func)
|
77
|
-
async def async_wrapper(*args, **kwargs):
|
78
|
-
span = context_manager.observe_start(
|
79
|
-
name=name or func.__name__,
|
80
|
-
span_type=span_type,
|
81
|
-
input=(
|
82
|
-
get_input_from_func_args(func, is_method(func), args, kwargs)
|
83
|
-
if capture_input
|
84
|
-
else None
|
85
|
-
),
|
86
|
-
user_id=user_id,
|
87
|
-
session_id=session_id,
|
88
|
-
release=release,
|
89
|
-
)
|
90
|
-
try:
|
91
|
-
result = await func(*args, **kwargs)
|
92
|
-
except Exception as e:
|
93
|
-
context_manager.observe_end(result=None, span=span, error=e)
|
94
|
-
raise e
|
95
|
-
context_manager.observe_end(
|
96
|
-
result=result if capture_output else None, span=span
|
97
|
-
)
|
98
|
-
return result
|
99
|
-
|
100
|
-
return async_wrapper if is_async(func) else wrapper
|
101
|
-
|
102
|
-
return decorator
|
103
|
-
|
104
|
-
def update_current_span(
|
105
|
-
self,
|
106
|
-
metadata: Optional[dict[str, Any]] = None,
|
107
|
-
attributes: Optional[dict[str, Any]] = None,
|
108
|
-
override: bool = False,
|
109
|
-
):
|
110
|
-
"""Update the current span with any optional metadata.
|
111
|
-
|
112
|
-
Args:
|
113
|
-
metadata (Optional[dict[str, Any]], optional): metadata to the span. Defaults to None.
|
114
|
-
override (bool, optional): Whether to override the existing metadata. If False, metadata is merged with the existing metadata. Defaults to False.
|
115
|
-
"""
|
116
|
-
laminar = LaminarSingleton().get()
|
117
|
-
laminar.update_current_span(
|
118
|
-
metadata=metadata, attributes=attributes, override=override
|
119
|
-
)
|
120
|
-
|
121
|
-
def update_current_trace(
|
122
|
-
self,
|
123
|
-
user_id: Optional[str] = None,
|
124
|
-
session_id: Optional[str] = None,
|
125
|
-
release: Optional[str] = None,
|
126
|
-
metadata: Optional[dict[str, Any]] = None,
|
127
|
-
):
|
128
|
-
"""Update the current trace with any optional metadata.
|
129
|
-
|
130
|
-
Args:
|
131
|
-
user_id (Optional[str], optional): Custom user_id of your user. Useful for grouping and further analytics. Defaults to None.
|
132
|
-
session_id (Optional[str], optional): Custom session_id for your session. Random UUID is generated on Laminar side, if not specified.
|
133
|
-
Defaults to None.
|
134
|
-
release (Optional[str], optional): Release version of your app. Useful for further grouping and analytics. Defaults to None.
|
135
|
-
metadata (Optional[dict[str, Any]], optional): metadata to the trace. Defaults to None.
|
136
|
-
"""
|
137
|
-
laminar = LaminarSingleton().get()
|
138
|
-
laminar.update_current_trace(
|
139
|
-
user_id=user_id, session_id=session_id, release=release, metadata=metadata
|
140
|
-
)
|
10
|
+
from .laminar import Laminar as L
|
11
|
+
from .utils import is_async
|
141
12
|
|
142
|
-
|
143
|
-
|
144
|
-
name: str,
|
145
|
-
value: Optional[Union[str, int, float, bool]] = None,
|
146
|
-
timestamp: Optional[datetime.datetime] = None,
|
147
|
-
):
|
148
|
-
"""Associate an event with the current span
|
13
|
+
P = ParamSpec("P")
|
14
|
+
R = TypeVar("R")
|
149
15
|
|
150
|
-
Args:
|
151
|
-
name (str): name of the event. Must be predefined in the Laminar events page.
|
152
|
-
value (Optional[Union[str, int, float, bool]], optional): value of the event. Must match range definition in Laminar events page. Defaults to None.
|
153
|
-
timestamp (Optional[datetime.datetime], optional): If you need custom timestamp. If not specified, current time is used. Defaults to None.
|
154
|
-
"""
|
155
|
-
laminar = LaminarSingleton().get()
|
156
|
-
laminar.event(name, value=value, timestamp=timestamp)
|
157
16
|
|
158
|
-
|
159
|
-
|
160
|
-
|
161
|
-
|
162
|
-
|
163
|
-
|
164
|
-
|
165
|
-
|
166
|
-
data (str): Data to be evaluated. Typically the output of the LLM generation.
|
167
|
-
"""
|
168
|
-
laminar = LaminarSingleton().get()
|
169
|
-
laminar.evaluate_event(name, data)
|
170
|
-
|
171
|
-
def run(
|
172
|
-
self,
|
173
|
-
pipeline: str,
|
174
|
-
inputs: dict[str, NodeInput],
|
175
|
-
env: dict[str, str] = {},
|
176
|
-
metadata: dict[str, str] = {},
|
177
|
-
) -> PipelineRunResponse:
|
178
|
-
"""Run the laminar pipeline with the given inputs. Pipeline must be defined in the Laminar UI and have a target version.
|
179
|
-
|
180
|
-
Args:
|
181
|
-
pipeline (str): pipeline name
|
182
|
-
inputs (dict[str, NodeInput]): Map from input node name to input value
|
183
|
-
env (dict[str, str], optional): Environment variables for the pipeline executions. Typically contains API keys. Defaults to None.
|
184
|
-
metadata (dict[str, str], optional): Any additional data to associate with the resulting span. Defaults to None.
|
185
|
-
|
186
|
-
Returns:
|
187
|
-
PipelineRunResponse: Response from the pipeline execution
|
188
|
-
"""
|
189
|
-
laminar = LaminarSingleton().get()
|
190
|
-
return laminar.run_pipeline(pipeline, inputs, env, metadata)
|
191
|
-
|
192
|
-
|
193
|
-
def wrap_llm_call(func: Callable, name: str = None, provider: str = None) -> Callable:
|
194
|
-
"""Wrap an LLM call with Laminar observability. This is a convenience function that does the same as `@observe()`, plus
|
195
|
-
a few utilities around LLM-specific things, such as counting tokens and recording model params.
|
196
|
-
|
197
|
-
Example usage:
|
198
|
-
```python
|
199
|
-
wrap_llm_call(client.chat.completions.create)(
|
200
|
-
model="gpt-4o-mini",
|
201
|
-
messages=[
|
202
|
-
{"role": "system", "content": "You are a helpful assistant."},
|
203
|
-
{"role": "user", "content": "Hello"},
|
204
|
-
],
|
205
|
-
stream=True,
|
206
|
-
)
|
207
|
-
```
|
17
|
+
def observe(
|
18
|
+
*,
|
19
|
+
name: Optional[str] = None,
|
20
|
+
user_id: Optional[str] = None,
|
21
|
+
session_id: Optional[str] = None,
|
22
|
+
) -> Callable[[Callable[P, R]], Callable[P, R]]:
|
23
|
+
"""The main decorator entrypoint for Laminar. This is used to wrap
|
24
|
+
functions and methods to create spans.
|
208
25
|
|
209
26
|
Args:
|
210
|
-
|
211
|
-
|
212
|
-
|
213
|
-
|
214
|
-
|
27
|
+
name (Optional[str], optional): Name of the span. Function
|
28
|
+
name is used if not specified.
|
29
|
+
Defaults to None.
|
30
|
+
user_id (Optional[str], optional): User ID to associate
|
31
|
+
with the span and the following context.
|
32
|
+
Defaults to None.
|
33
|
+
session_id (Optional[str], optional): Session ID to associate with the
|
34
|
+
span and the following context. Defaults to None.
|
215
35
|
|
216
36
|
Raises:
|
217
|
-
|
37
|
+
Exception: re-raises the exception if the wrapped function raises
|
38
|
+
an exception
|
218
39
|
|
219
40
|
Returns:
|
220
|
-
|
41
|
+
R: Returns the result of the wrapped function
|
221
42
|
"""
|
222
|
-
laminar = LaminarSingleton().get()
|
223
|
-
# Simple heuristic to determine the package from where the LLM call is imported.
|
224
|
-
# This works for major providers, but will likely make no sense for custom providers.
|
225
|
-
provider_name = (
|
226
|
-
provider.lower().strip() if provider else func.__module__.split(".")[0]
|
227
|
-
)
|
228
|
-
provider_module = PROVIDER_NAME_TO_OBJECT.get(provider_name, FallbackProvider())
|
229
|
-
name = name or f"{provider_module.display_name()} completion"
|
230
|
-
|
231
|
-
@functools.wraps(func)
|
232
|
-
def wrapper(*args, **kwargs):
|
233
|
-
inp = kwargs.get("messages")
|
234
|
-
attributes = (
|
235
|
-
provider_module.extract_llm_attributes_from_args(args, kwargs)
|
236
|
-
if provider_module
|
237
|
-
else {}
|
238
|
-
)
|
239
|
-
attributes[PROVIDER] = provider_name
|
240
|
-
span = laminar.observe_start(
|
241
|
-
name=name, span_type="LLM", input=inp, attributes=attributes
|
242
|
-
)
|
243
|
-
try:
|
244
|
-
result = func(*args, **kwargs)
|
245
|
-
except Exception as e:
|
246
|
-
laminar.observe_end(
|
247
|
-
result=None, span=span, error=e, provider_name=provider_name
|
248
|
-
)
|
249
|
-
raise e
|
250
|
-
return laminar.observe_end(
|
251
|
-
result=result, span=span, provider_name=provider_name
|
252
|
-
)
|
253
43
|
|
254
|
-
|
255
|
-
|
256
|
-
|
257
|
-
|
258
|
-
|
259
|
-
if provider_module
|
260
|
-
else {}
|
261
|
-
)
|
262
|
-
attributes[PROVIDER] = provider_name
|
263
|
-
span = laminar.observe_start(
|
264
|
-
name=name, span_type="LLM", input=inp, attributes=attributes
|
265
|
-
)
|
266
|
-
try:
|
267
|
-
result = await func(*args, **kwargs)
|
268
|
-
except Exception as e:
|
269
|
-
laminar.observe_end(
|
270
|
-
result=None, span=span, error=e, provider_name=provider_name
|
44
|
+
def decorator(func: Callable[P, R]) -> Callable[P, R]:
|
45
|
+
if not L.is_initialized():
|
46
|
+
raise Exception(
|
47
|
+
"Laminar is not initialized. Please "
|
48
|
+
+ "call Laminar.initialize() first."
|
271
49
|
)
|
272
|
-
|
273
|
-
|
274
|
-
|
50
|
+
current_span = get_current_span()
|
51
|
+
if current_span != INVALID_SPAN:
|
52
|
+
if session_id is not None:
|
53
|
+
current_span.set_attribute(
|
54
|
+
"traceloop.association.properties.session_id", session_id
|
55
|
+
)
|
56
|
+
if user_id is not None:
|
57
|
+
current_span.set_attribute(
|
58
|
+
"traceloop.association.properties.user_id", user_id
|
59
|
+
)
|
60
|
+
association_properties = {}
|
61
|
+
if session_id is not None:
|
62
|
+
association_properties["session_id"] = session_id
|
63
|
+
if user_id is not None:
|
64
|
+
association_properties["user_id"] = user_id
|
65
|
+
Traceloop.set_association_properties(association_properties)
|
66
|
+
return (
|
67
|
+
aentity_method(name=name)(func)
|
68
|
+
if is_async(func)
|
69
|
+
else entity_method(name=name)(func)
|
275
70
|
)
|
276
71
|
|
277
|
-
return
|
278
|
-
|
279
|
-
|
280
|
-
lmnr_context = LaminarDecorator()
|
281
|
-
observe = lmnr_context.observe
|
72
|
+
return cast(Callable[P, R], decorator)
|