lm-deluge 0.0.67__py3-none-any.whl → 0.0.88__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of lm-deluge might be problematic. Click here for more details.

Files changed (92) hide show
  1. lm_deluge/__init__.py +25 -2
  2. lm_deluge/api_requests/anthropic.py +92 -17
  3. lm_deluge/api_requests/base.py +47 -11
  4. lm_deluge/api_requests/bedrock.py +7 -4
  5. lm_deluge/api_requests/chat_reasoning.py +4 -0
  6. lm_deluge/api_requests/gemini.py +138 -18
  7. lm_deluge/api_requests/openai.py +114 -21
  8. lm_deluge/client.py +282 -49
  9. lm_deluge/config.py +15 -3
  10. lm_deluge/mock_openai.py +643 -0
  11. lm_deluge/models/__init__.py +12 -1
  12. lm_deluge/models/anthropic.py +17 -2
  13. lm_deluge/models/arcee.py +16 -0
  14. lm_deluge/models/deepseek.py +36 -4
  15. lm_deluge/models/google.py +29 -0
  16. lm_deluge/models/grok.py +24 -0
  17. lm_deluge/models/kimi.py +36 -0
  18. lm_deluge/models/minimax.py +10 -0
  19. lm_deluge/models/openai.py +100 -0
  20. lm_deluge/models/openrouter.py +86 -8
  21. lm_deluge/models/together.py +11 -0
  22. lm_deluge/models/zai.py +1 -0
  23. lm_deluge/pipelines/gepa/__init__.py +95 -0
  24. lm_deluge/pipelines/gepa/core.py +354 -0
  25. lm_deluge/pipelines/gepa/docs/samples.py +696 -0
  26. lm_deluge/pipelines/gepa/examples/01_synthetic_keywords.py +140 -0
  27. lm_deluge/pipelines/gepa/examples/02_gsm8k_math.py +261 -0
  28. lm_deluge/pipelines/gepa/examples/03_hotpotqa_multihop.py +300 -0
  29. lm_deluge/pipelines/gepa/examples/04_batch_classification.py +271 -0
  30. lm_deluge/pipelines/gepa/examples/simple_qa.py +129 -0
  31. lm_deluge/pipelines/gepa/optimizer.py +435 -0
  32. lm_deluge/pipelines/gepa/proposer.py +235 -0
  33. lm_deluge/pipelines/gepa/util.py +165 -0
  34. lm_deluge/{llm_tools → pipelines}/score.py +2 -2
  35. lm_deluge/{llm_tools → pipelines}/translate.py +5 -3
  36. lm_deluge/prompt.py +224 -40
  37. lm_deluge/request_context.py +7 -2
  38. lm_deluge/tool/__init__.py +1118 -0
  39. lm_deluge/tool/builtin/anthropic/__init__.py +300 -0
  40. lm_deluge/tool/builtin/gemini.py +59 -0
  41. lm_deluge/tool/builtin/openai.py +74 -0
  42. lm_deluge/tool/cua/__init__.py +173 -0
  43. lm_deluge/tool/cua/actions.py +148 -0
  44. lm_deluge/tool/cua/base.py +27 -0
  45. lm_deluge/tool/cua/batch.py +215 -0
  46. lm_deluge/tool/cua/converters.py +466 -0
  47. lm_deluge/tool/cua/kernel.py +702 -0
  48. lm_deluge/tool/cua/trycua.py +989 -0
  49. lm_deluge/tool/prefab/__init__.py +45 -0
  50. lm_deluge/tool/prefab/batch_tool.py +156 -0
  51. lm_deluge/tool/prefab/docs.py +1119 -0
  52. lm_deluge/tool/prefab/email.py +294 -0
  53. lm_deluge/tool/prefab/filesystem.py +1711 -0
  54. lm_deluge/tool/prefab/full_text_search/__init__.py +285 -0
  55. lm_deluge/tool/prefab/full_text_search/tantivy_index.py +396 -0
  56. lm_deluge/tool/prefab/memory.py +458 -0
  57. lm_deluge/tool/prefab/otc/__init__.py +165 -0
  58. lm_deluge/tool/prefab/otc/executor.py +281 -0
  59. lm_deluge/tool/prefab/otc/parse.py +188 -0
  60. lm_deluge/tool/prefab/random.py +212 -0
  61. lm_deluge/tool/prefab/rlm/__init__.py +296 -0
  62. lm_deluge/tool/prefab/rlm/executor.py +349 -0
  63. lm_deluge/tool/prefab/rlm/parse.py +144 -0
  64. lm_deluge/tool/prefab/sandbox.py +1621 -0
  65. lm_deluge/tool/prefab/sheets.py +385 -0
  66. lm_deluge/tool/prefab/subagents.py +233 -0
  67. lm_deluge/tool/prefab/todos.py +342 -0
  68. lm_deluge/tool/prefab/tool_search.py +169 -0
  69. lm_deluge/tool/prefab/web_search.py +199 -0
  70. lm_deluge/tracker.py +16 -13
  71. lm_deluge/util/schema.py +412 -0
  72. lm_deluge/warnings.py +8 -0
  73. {lm_deluge-0.0.67.dist-info → lm_deluge-0.0.88.dist-info}/METADATA +22 -9
  74. lm_deluge-0.0.88.dist-info/RECORD +117 -0
  75. lm_deluge/built_in_tools/anthropic/__init__.py +0 -128
  76. lm_deluge/built_in_tools/openai.py +0 -28
  77. lm_deluge/presets/cerebras.py +0 -17
  78. lm_deluge/presets/meta.py +0 -13
  79. lm_deluge/tool.py +0 -849
  80. lm_deluge-0.0.67.dist-info/RECORD +0 -72
  81. lm_deluge/{llm_tools → pipelines}/__init__.py +1 -1
  82. /lm_deluge/{llm_tools → pipelines}/classify.py +0 -0
  83. /lm_deluge/{llm_tools → pipelines}/extract.py +0 -0
  84. /lm_deluge/{llm_tools → pipelines}/locate.py +0 -0
  85. /lm_deluge/{llm_tools → pipelines}/ocr.py +0 -0
  86. /lm_deluge/{built_in_tools → tool/builtin}/anthropic/bash.py +0 -0
  87. /lm_deluge/{built_in_tools → tool/builtin}/anthropic/computer_use.py +0 -0
  88. /lm_deluge/{built_in_tools → tool/builtin}/anthropic/editor.py +0 -0
  89. /lm_deluge/{built_in_tools → tool/builtin}/base.py +0 -0
  90. {lm_deluge-0.0.67.dist-info → lm_deluge-0.0.88.dist-info}/WHEEL +0 -0
  91. {lm_deluge-0.0.67.dist-info → lm_deluge-0.0.88.dist-info}/licenses/LICENSE +0 -0
  92. {lm_deluge-0.0.67.dist-info → lm_deluge-0.0.88.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,199 @@
1
+ """Web search prefab tool using Exa API."""
2
+
3
+ import abc
4
+ import json
5
+ import os
6
+ from typing import Literal
7
+
8
+ from aiohttp import ClientSession, ClientTimeout
9
+
10
+ from .. import Tool
11
+
12
+
13
+ class AbstractWebSearchManager(abc.ABC):
14
+ def __init__(
15
+ self,
16
+ search_tool_name: str = "web_search",
17
+ fetch_tool_name: str = "web_fetch",
18
+ timeout: int = 30,
19
+ ):
20
+ self.search_tool_name = search_tool_name
21
+ self.fetch_tool_name = fetch_tool_name
22
+ self.timeout = ClientTimeout(total=timeout)
23
+ self._tools: list[Tool] | None = None
24
+
25
+ @abc.abstractmethod
26
+ async def _search(self, query: str, limit: int) -> list[dict]:
27
+ """Search the web and get results with content."""
28
+ pass
29
+
30
+ @abc.abstractmethod
31
+ async def _fetch(self, url: str) -> str:
32
+ """Get the contents of a specific URL as markdown."""
33
+ pass
34
+
35
+ def get_tools(self) -> list[Tool]:
36
+ """Return the web search tools."""
37
+ if self._tools is not None:
38
+ return self._tools
39
+
40
+ self._tools = [
41
+ Tool.from_function(self._search, name=self.search_tool_name),
42
+ Tool.from_function(self._fetch, name=self.fetch_tool_name),
43
+ ]
44
+
45
+ return self._tools
46
+
47
+
48
+ class ExaWebSearchManager(AbstractWebSearchManager):
49
+ """
50
+ Simple web search tools using the Exa API.
51
+
52
+ Provides two tools:
53
+ - search: Search the web and get results with content
54
+ - fetch: Get the contents of a specific URL as markdown
55
+
56
+ Args:
57
+ search_tool_name: Name for the search tool (default: "web_search")
58
+ fetch_tool_name: Name for the fetch tool (default: "web_fetch")
59
+ timeout: Request timeout in seconds (default: 30)
60
+
61
+ Environment variables:
62
+ EXA_API_KEY: Your Exa API key (required)
63
+
64
+ Example:
65
+ ```python
66
+ manager = ExaWebSearchManager()
67
+ tools = manager.get_tools()
68
+ ```
69
+ """
70
+
71
+ BASE_URL = "https://api.exa.ai"
72
+
73
+ def __init__(
74
+ self,
75
+ *,
76
+ search_tool_name: str = "web_search",
77
+ fetch_tool_name: str = "web_fetch",
78
+ timeout: int = 30,
79
+ max_contents_chars: int = 20_000,
80
+ ):
81
+ super().__init__(
82
+ search_tool_name=search_tool_name,
83
+ fetch_tool_name=fetch_tool_name,
84
+ timeout=timeout,
85
+ )
86
+ self.max_contents_chars = max_contents_chars
87
+
88
+ async def _search( # type: ignore
89
+ self,
90
+ query: str,
91
+ limit: int = 5,
92
+ search_type: Literal["auto", "deep"] = "auto",
93
+ ) -> str:
94
+ """Search the web and return results with content."""
95
+ try:
96
+ key = os.getenv("EXA_API_KEY")
97
+ if not key:
98
+ raise ValueError("EXA_API_KEY environment variable not set")
99
+ data = {
100
+ "query": query,
101
+ "numResults": limit,
102
+ "type": search_type,
103
+ "contents": {"text": True},
104
+ }
105
+
106
+ headers = {
107
+ "Content-Type": "application/json",
108
+ "x-api-key": key,
109
+ }
110
+
111
+ async with ClientSession() as session:
112
+ async with session.post(
113
+ f"{self.BASE_URL}/search",
114
+ headers=headers,
115
+ json=data,
116
+ timeout=self.timeout,
117
+ ) as response:
118
+ if response.status != 200:
119
+ error_text = await response.text()
120
+ return json.dumps(
121
+ {
122
+ "status": "error",
123
+ "error": f"API error: {response.status} - {error_text}",
124
+ }
125
+ )
126
+ result = await response.json()
127
+
128
+ results = []
129
+ for item in result.get("results", []):
130
+ results.append(
131
+ {
132
+ "title": item.get("title", ""),
133
+ "url": item.get("url", ""),
134
+ "text": item.get("text", ""),
135
+ }
136
+ )
137
+
138
+ return json.dumps({"status": "success", "results": results}, indent=2)
139
+
140
+ except Exception as e:
141
+ return json.dumps({"status": "error", "error": str(e)})
142
+
143
+ async def _fetch(self, url: str) -> str:
144
+ """Fetch the contents of a URL as markdown."""
145
+ try:
146
+ key = os.getenv("EXA_API_KEY")
147
+ if not key:
148
+ raise ValueError("EXA_API_KEY environment variable not set")
149
+ data = {
150
+ "urls": [url],
151
+ "text": {
152
+ "maxCharacters": self.max_contents_chars,
153
+ },
154
+ }
155
+
156
+ headers = {
157
+ "Content-Type": "application/json",
158
+ "x-api-key": key,
159
+ }
160
+
161
+ async with ClientSession() as session:
162
+ async with session.post(
163
+ f"{self.BASE_URL}/contents",
164
+ headers=headers,
165
+ json=data,
166
+ timeout=self.timeout,
167
+ ) as response:
168
+ if response.status != 200:
169
+ error_text = await response.text()
170
+ return json.dumps(
171
+ {
172
+ "status": "error",
173
+ "error": f"API error: {response.status} - {error_text}",
174
+ }
175
+ )
176
+ result = await response.json()
177
+
178
+ results = result.get("results", [])
179
+ if not results:
180
+ return json.dumps(
181
+ {"status": "error", "error": "No content found for URL"}
182
+ )
183
+
184
+ item = results[0]
185
+ return json.dumps(
186
+ {
187
+ "status": "success",
188
+ "title": item.get("title", ""),
189
+ "url": item.get("url", url),
190
+ "text": item.get("text", ""),
191
+ },
192
+ indent=2,
193
+ )
194
+
195
+ except Exception as e:
196
+ return json.dumps({"status": "error", "error": str(e)})
197
+
198
+
199
+ __all__ = ["ExaWebSearchManager", "AbstractWebSearchManager"]
lm_deluge/tracker.py CHANGED
@@ -157,19 +157,7 @@ class StatusTracker:
157
157
  if response.usage.cache_write_tokens:
158
158
  self.total_cache_write_tokens += response.usage.cache_write_tokens
159
159
 
160
- def log_final_status(self):
161
- # Close progress bar before printing final status
162
- self.close_progress_bar()
163
-
164
- if self.num_tasks_failed > 0:
165
- print(
166
- f"{self.num_tasks_failed} / {self.num_tasks_started} requests failed."
167
- )
168
- if self.num_rate_limit_errors > 0:
169
- print(
170
- f"{self.num_rate_limit_errors} rate limit errors received. Consider running at a lower rate."
171
- )
172
-
160
+ def log_usage(self):
173
161
  # Display cumulative usage stats if available
174
162
  if (
175
163
  self.total_cost > 0
@@ -190,6 +178,21 @@ class StatusTracker:
190
178
 
191
179
  print(" ", " • ".join(usage_parts))
192
180
 
181
+ def log_final_status(self):
182
+ # Close progress bar before printing final status
183
+ self.close_progress_bar()
184
+
185
+ if self.num_tasks_failed > 0:
186
+ print(
187
+ f"{self.num_tasks_failed} / {self.num_tasks_started} requests failed."
188
+ )
189
+ if self.num_rate_limit_errors > 0:
190
+ print(
191
+ f"{self.num_rate_limit_errors} rate limit errors received. Consider running at a lower rate."
192
+ )
193
+
194
+ self.log_usage()
195
+
193
196
  @property
194
197
  def pbar(self) -> tqdm | None:
195
198
  """Backward compatibility property to access progress bar."""
@@ -0,0 +1,412 @@
1
+ """Schema transformation utilities for structured outputs.
2
+
3
+ This module provides utilities for transforming Pydantic models and JSON schemas
4
+ to be compatible with provider-specific structured output requirements (OpenAI, Anthropic).
5
+
6
+ Key functions:
7
+ - to_strict_json_schema: Convert Pydantic model to strict JSON schema
8
+ - transform_schema_for_openai: Apply OpenAI-specific transformations
9
+ - transform_schema_for_anthropic: Apply Anthropic-specific transformations
10
+ """
11
+
12
+ from __future__ import annotations
13
+
14
+ import copy
15
+ import inspect
16
+ from typing import Any, TypeGuard, TYPE_CHECKING, Type
17
+
18
+ if TYPE_CHECKING:
19
+ from pydantic import BaseModel
20
+
21
+ try:
22
+ import pydantic
23
+ from pydantic import BaseModel as _BaseModel
24
+ except ImportError:
25
+ pydantic = None
26
+ _BaseModel = None # type: ignore
27
+
28
+
29
+ def is_pydantic_model(obj: Any) -> bool:
30
+ """Check if an object is a Pydantic model class."""
31
+ if pydantic is None or _BaseModel is None:
32
+ return False
33
+ return inspect.isclass(obj) and issubclass(obj, _BaseModel)
34
+
35
+
36
+ def is_dict(obj: object) -> TypeGuard[dict[str, object]]:
37
+ """Type guard for dictionaries."""
38
+ return isinstance(obj, dict)
39
+
40
+
41
+ def has_more_than_n_keys(obj: dict[str, object], n: int) -> bool:
42
+ """Check if a dictionary has more than n keys."""
43
+ i = 0
44
+ for _ in obj.keys():
45
+ i += 1
46
+ if i > n:
47
+ return True
48
+ return False
49
+
50
+
51
+ def resolve_ref(*, root: dict[str, object], ref: str) -> object:
52
+ """Resolve a JSON Schema $ref pointer.
53
+
54
+ Args:
55
+ root: The root schema object
56
+ ref: The $ref string (e.g., "#/$defs/MyType")
57
+
58
+ Returns:
59
+ The resolved schema object
60
+
61
+ Raises:
62
+ ValueError: If the $ref format is invalid or cannot be resolved
63
+ """
64
+ if not ref.startswith("#/"):
65
+ raise ValueError(f"Unexpected $ref format {ref!r}; Does not start with #/")
66
+
67
+ path = ref[2:].split("/")
68
+ resolved = root
69
+ for key in path:
70
+ value = resolved[key]
71
+ if not is_dict(value):
72
+ raise ValueError(
73
+ f"Encountered non-dictionary entry while resolving {ref} - {resolved}"
74
+ )
75
+ resolved = value
76
+
77
+ return resolved
78
+
79
+
80
+ def to_strict_json_schema(model: Type["BaseModel"]) -> dict[str, Any]:
81
+ """Convert a Pydantic model to a strict JSON schema.
82
+
83
+ This function extracts the JSON schema from a Pydantic model and ensures
84
+ it conforms to the strict mode requirements for structured outputs.
85
+
86
+ Args:
87
+ model: A Pydantic BaseModel class
88
+
89
+ Returns:
90
+ A JSON schema dict that conforms to strict mode requirements
91
+
92
+ Raises:
93
+ TypeError: If the model is not a Pydantic BaseModel
94
+ ImportError: If pydantic is not installed
95
+ """
96
+ if pydantic is None or _BaseModel is None:
97
+ raise ImportError(
98
+ "pydantic is required for Pydantic model support. "
99
+ "Install it with: pip install pydantic"
100
+ )
101
+
102
+ if not is_pydantic_model(model):
103
+ raise TypeError(
104
+ f"Expected a Pydantic BaseModel class, got {type(model).__name__}"
105
+ )
106
+
107
+ schema = model.model_json_schema()
108
+ return _ensure_strict_json_schema(schema, path=(), root=schema)
109
+
110
+
111
+ def prepare_output_schema(
112
+ schema_obj: Type["BaseModel"] | dict[str, Any],
113
+ ) -> dict[str, Any]:
114
+ """Normalize a user-provided schema into strict JSON schema form.
115
+
116
+ Args:
117
+ schema_obj: Either a Pydantic BaseModel subclass or a JSON schema dict.
118
+
119
+ Returns:
120
+ A strict JSON schema suitable for provider-specific transformation.
121
+
122
+ Notes:
123
+ Dict schemas are deep-copied before normalization so the caller's
124
+ original object is left untouched.
125
+ """
126
+
127
+ if is_pydantic_model(schema_obj):
128
+ return to_strict_json_schema(schema_obj) # type: ignore[arg-type]
129
+
130
+ if is_dict(schema_obj):
131
+ schema_copy = copy.deepcopy(schema_obj)
132
+ return _ensure_strict_json_schema(
133
+ schema_copy,
134
+ path=(),
135
+ root=schema_copy,
136
+ )
137
+
138
+ raise TypeError(
139
+ "output_schema must be a Pydantic BaseModel subclass or a JSON schema dict"
140
+ )
141
+
142
+
143
+ def _ensure_strict_json_schema(
144
+ json_schema: object,
145
+ *,
146
+ path: tuple[str, ...],
147
+ root: dict[str, object],
148
+ ) -> dict[str, Any]:
149
+ """Recursively ensure a JSON schema conforms to strict mode requirements.
150
+
151
+ This function:
152
+ - Adds additionalProperties: false to all objects
153
+ - Makes all properties required
154
+ - Removes unsupported constraints and adds them to descriptions
155
+ - Expands $refs that are mixed with other properties
156
+ - Processes $defs, anyOf, allOf, etc.
157
+
158
+ Args:
159
+ json_schema: The schema to transform
160
+ path: Current path in the schema (for error messages)
161
+ root: The root schema (for resolving $refs)
162
+
163
+ Returns:
164
+ The transformed schema
165
+ """
166
+ if not is_dict(json_schema):
167
+ raise TypeError(f"Expected {json_schema} to be a dictionary; path={path}")
168
+
169
+ # Process $defs recursively
170
+ defs = json_schema.get("$defs")
171
+ if is_dict(defs):
172
+ for def_name, def_schema in defs.items():
173
+ _ensure_strict_json_schema(
174
+ def_schema, path=(*path, "$defs", def_name), root=root
175
+ )
176
+
177
+ # Process definitions recursively
178
+ definitions = json_schema.get("definitions")
179
+ if is_dict(definitions):
180
+ for definition_name, definition_schema in definitions.items():
181
+ _ensure_strict_json_schema(
182
+ definition_schema,
183
+ path=(*path, "definitions", definition_name),
184
+ root=root,
185
+ )
186
+
187
+ typ = json_schema.get("type")
188
+
189
+ # Object types - add additionalProperties: false and make all fields required
190
+ if typ == "object" and "additionalProperties" not in json_schema:
191
+ json_schema["additionalProperties"] = False
192
+
193
+ properties = json_schema.get("properties")
194
+ if is_dict(properties):
195
+ # Make all properties required
196
+ json_schema["required"] = list(properties.keys())
197
+
198
+ # Process each property recursively
199
+ json_schema["properties"] = {
200
+ key: _ensure_strict_json_schema(
201
+ prop_schema, path=(*path, "properties", key), root=root
202
+ )
203
+ for key, prop_schema in properties.items()
204
+ }
205
+
206
+ # Arrays - process items schema
207
+ items = json_schema.get("items")
208
+ if is_dict(items):
209
+ json_schema["items"] = _ensure_strict_json_schema(
210
+ items, path=(*path, "items"), root=root
211
+ )
212
+
213
+ # Unions - process each variant
214
+ any_of = json_schema.get("anyOf")
215
+ if isinstance(any_of, list):
216
+ json_schema["anyOf"] = [
217
+ _ensure_strict_json_schema(
218
+ variant, path=(*path, "anyOf", str(i)), root=root
219
+ )
220
+ for i, variant in enumerate(any_of)
221
+ ]
222
+
223
+ # Intersections - process each entry
224
+ all_of = json_schema.get("allOf")
225
+ if isinstance(all_of, list):
226
+ if len(all_of) == 1:
227
+ # Flatten single-element allOf
228
+ json_schema.update(
229
+ _ensure_strict_json_schema(
230
+ all_of[0], path=(*path, "allOf", "0"), root=root
231
+ )
232
+ )
233
+ json_schema.pop("allOf")
234
+ else:
235
+ json_schema["allOf"] = [
236
+ _ensure_strict_json_schema(
237
+ entry, path=(*path, "allOf", str(i)), root=root
238
+ )
239
+ for i, entry in enumerate(all_of)
240
+ ]
241
+
242
+ # Remove None defaults (redundant with nullable)
243
+ if "default" in json_schema and json_schema["default"] is None:
244
+ json_schema.pop("default")
245
+
246
+ # Expand $refs that are mixed with other properties
247
+ ref = json_schema.get("$ref")
248
+ if ref and has_more_than_n_keys(json_schema, 1):
249
+ if not isinstance(ref, str):
250
+ raise ValueError(f"Received non-string $ref - {ref}")
251
+
252
+ resolved = resolve_ref(root=root, ref=ref)
253
+ if not is_dict(resolved):
254
+ raise ValueError(
255
+ f"Expected `$ref: {ref}` to resolve to a dictionary but got {resolved}"
256
+ )
257
+
258
+ # Properties from json_schema take priority over $ref
259
+ json_schema.update({**resolved, **json_schema})
260
+ json_schema.pop("$ref")
261
+
262
+ # Re-process the expanded schema
263
+ return _ensure_strict_json_schema(json_schema, path=path, root=root)
264
+
265
+ return json_schema
266
+
267
+
268
+ def _move_constraints_to_description(
269
+ json_schema: dict[str, Any],
270
+ constraint_keys: list[str],
271
+ ) -> dict[str, Any]:
272
+ """Move unsupported constraints to the description field.
273
+
274
+ This helps the model follow constraints even when they can't be enforced
275
+ by the grammar.
276
+
277
+ Args:
278
+ json_schema: The schema to modify
279
+ constraint_keys: List of constraint keys to move to description
280
+
281
+ Returns:
282
+ The modified schema
283
+ """
284
+ constraints_found = {}
285
+
286
+ for key in constraint_keys:
287
+ if key in json_schema:
288
+ constraints_found[key] = json_schema.pop(key)
289
+
290
+ if constraints_found:
291
+ description = json_schema.get("description", "")
292
+ constraint_str = ", ".join(
293
+ f"{key}: {value}" for key, value in constraints_found.items()
294
+ )
295
+
296
+ if description:
297
+ json_schema["description"] = f"{description}\n\n{{{constraint_str}}}"
298
+ else:
299
+ json_schema["description"] = f"{{{constraint_str}}}"
300
+
301
+ return json_schema
302
+
303
+
304
+ def transform_schema_for_openai(schema: dict[str, Any]) -> dict[str, Any]:
305
+ """Return a deep copy of the schema for OpenAI requests.
306
+
307
+ OpenAI Structured Outputs currently support the standard constraints we
308
+ rely on (min/max length, numeric bounds, etc.), so we intentionally leave
309
+ the schema untouched apart from copying it to prevent downstream mutation.
310
+ """
311
+
312
+ return copy.deepcopy(schema)
313
+
314
+
315
+ def _transform_schema_recursive_anthropic(
316
+ json_schema: dict[str, Any],
317
+ root: dict[str, Any],
318
+ ) -> dict[str, Any]:
319
+ """Recursively strip unsupported constraints for Anthropic."""
320
+ if not is_dict(json_schema):
321
+ return json_schema
322
+
323
+ # Process $defs
324
+ if "$defs" in json_schema and is_dict(json_schema["$defs"]):
325
+ for def_name, def_schema in json_schema["$defs"].items():
326
+ if is_dict(def_schema):
327
+ _transform_schema_recursive_anthropic(def_schema, root)
328
+
329
+ # Process definitions
330
+ if "definitions" in json_schema and is_dict(json_schema["definitions"]):
331
+ for def_name, def_schema in json_schema["definitions"].items():
332
+ if is_dict(def_schema):
333
+ _transform_schema_recursive_anthropic(def_schema, root)
334
+
335
+ typ = json_schema.get("type")
336
+
337
+ # Handle unsupported constraints based on type
338
+ if typ == "string":
339
+ _move_constraints_to_description(
340
+ json_schema,
341
+ ["minLength", "maxLength", "pattern"],
342
+ )
343
+ elif typ in ("number", "integer"):
344
+ _move_constraints_to_description(
345
+ json_schema,
346
+ [
347
+ "minimum",
348
+ "maximum",
349
+ "exclusiveMinimum",
350
+ "exclusiveMaximum",
351
+ "multipleOf",
352
+ ],
353
+ )
354
+ elif typ == "array":
355
+ _move_constraints_to_description(
356
+ json_schema,
357
+ [
358
+ "minItems",
359
+ "maxItems",
360
+ ],
361
+ )
362
+
363
+ # Recursively process nested schemas
364
+ if "properties" in json_schema and is_dict(json_schema["properties"]):
365
+ for prop_name, prop_schema in json_schema["properties"].items():
366
+ if is_dict(prop_schema):
367
+ _transform_schema_recursive_anthropic(prop_schema, root)
368
+
369
+ if "items" in json_schema and is_dict(json_schema["items"]):
370
+ _transform_schema_recursive_anthropic(json_schema["items"], root)
371
+
372
+ if "anyOf" in json_schema and isinstance(json_schema["anyOf"], list):
373
+ for variant in json_schema["anyOf"]:
374
+ if is_dict(variant):
375
+ _transform_schema_recursive_anthropic(variant, root)
376
+
377
+ if "allOf" in json_schema and isinstance(json_schema["allOf"], list):
378
+ for entry in json_schema["allOf"]:
379
+ if is_dict(entry):
380
+ _transform_schema_recursive_anthropic(entry, root)
381
+
382
+ return json_schema
383
+
384
+
385
+ def transform_schema_for_anthropic(schema: dict[str, Any]) -> dict[str, Any]:
386
+ """Transform a JSON schema for Anthropic's structured output requirements."""
387
+
388
+ schema_copy = copy.deepcopy(schema)
389
+ return _transform_schema_recursive_anthropic(schema_copy, schema_copy)
390
+
391
+
392
+ def get_json_schema(obj: Type["BaseModel"] | dict[str, Any]) -> dict[str, Any]:
393
+ """Get JSON schema from a Pydantic model or dict.
394
+
395
+ This is a convenience function that handles both Pydantic models
396
+ and raw dictionaries.
397
+
398
+ Args:
399
+ obj: Either a Pydantic BaseModel class or a dict
400
+
401
+ Returns:
402
+ The JSON schema dict
403
+ """
404
+ if is_pydantic_model(obj):
405
+ # Type narrowing: if is_pydantic_model returns True, obj must have model_json_schema
406
+ return obj.model_json_schema() # type: ignore
407
+ elif is_dict(obj):
408
+ return obj # type: ignore
409
+ else:
410
+ raise TypeError(
411
+ f"Expected Pydantic BaseModel or dict, got {type(obj).__name__}"
412
+ )
lm_deluge/warnings.py CHANGED
@@ -7,6 +7,14 @@ WARNINGS: dict[str, str] = {
7
7
  "WARN_REASONING_UNSUPPORTED": "Ignoring reasoning_effort param for non-reasoning model: {model_name}.",
8
8
  "WARN_CACHING_UNSUPPORTED": "Cache parameter '{cache_param}' is not supported, ignoring for {model_name}.",
9
9
  "WARN_LOGPROBS_UNSUPPORTED": "Ignoring logprobs param for non-logprobs model: {model_name}",
10
+ "WARN_MINIMAL_TO_LOW": "'minimal' reasoning effort only allowed for gpt-5 models. Setting to 'low' for {model_name}.",
11
+ "WARN_MINIMAL_TO_NONE": "GPT-5.1 models don't support 'minimal' reasoning effort. Converting to 'none' for {model_name}.",
12
+ "WARN_XHIGH_TO_HIGH": "'xhigh' reasoning effort only supported for gpt-5.2 and gpt-5.1-codex-max. Using 'high' for {model_name}.",
13
+ "WARN_MEDIA_RESOLUTION_UNSUPPORTED": "media_resolution parameter is only supported for Gemini 3 models, ignoring for {model_name}.",
14
+ "WARN_GEMINI3_MISSING_SIGNATURE": "Gemini 3 thought signature missing in {part_type}, injecting dummy signature 'context_engineering_is_the_way_to_go' to avoid API error.",
15
+ "WARN_GEMINI3_NO_REASONING": "Gemini 3 requires reasoning (thinkingConfig). Setting thinkingConfig to low.",
16
+ "WARN_THINKING_BUDGET_AND_REASONING_EFFORT": "`reasoning_effort` and `thinking_budget` both provided. `thinking_budget` will take priority.",
17
+ "WARN_KIMI_THINKING_NO_REASONING": "kimi-k2-thinking works best with thinking enabled. set thinking_budget > 0 or reasoning_effort to anything but none",
10
18
  }
11
19
 
12
20