llm_batch_helper 0.1.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,15 @@
1
+ from .cache import LLMCache
2
+ from .config import LLMConfig
3
+ from .input_handlers import get_prompts, read_prompt_files, read_prompt_list
4
+ from .providers import process_prompts_batch
5
+
6
+ __version__ = "0.1.1"
7
+
8
+ __all__ = [
9
+ "LLMCache",
10
+ "LLMConfig",
11
+ "get_prompts",
12
+ "process_prompts_batch",
13
+ "read_prompt_files",
14
+ "read_prompt_list",
15
+ ]
@@ -0,0 +1,34 @@
1
+ import json
2
+ from pathlib import Path
3
+ from typing import Any, Dict, Optional
4
+
5
+
6
+ class LLMCache:
7
+ def __init__(self, cache_dir: str = "llm_cache"):
8
+ self.cache_dir = Path(cache_dir)
9
+ self.cache_dir.mkdir(parents=True, exist_ok=True)
10
+
11
+ def _get_cache_path(self, prompt_id: str) -> Path:
12
+ """Generate cache file path based on prompt_id."""
13
+ return self.cache_dir / f"{prompt_id}.json"
14
+
15
+ def get_cached_response(self, prompt_id: str) -> Optional[Dict[str, Any]]:
16
+ """Retrieve cached response if it exists."""
17
+ cache_path = self._get_cache_path(prompt_id)
18
+ if cache_path.exists():
19
+ with open(cache_path, "r") as f:
20
+ return json.load(f)
21
+ return None
22
+
23
+ def save_response(self, prompt_id: str, prompt: str, response: Dict[str, Any]) -> None:
24
+ """Save response to cache."""
25
+ cache_path = self._get_cache_path(prompt_id)
26
+ cache_data = {"prompt_input": prompt, "llm_response": response}
27
+ with open(cache_path, "w") as f:
28
+ json.dump(cache_data, f, indent=2)
29
+
30
+ def clear_cache(self) -> None:
31
+ """Clear all cached responses."""
32
+ if self.cache_dir.exists():
33
+ for file in self.cache_dir.glob("*.json"):
34
+ file.unlink()
@@ -0,0 +1,32 @@
1
+ from typing import Callable, Dict, Optional
2
+
3
+ # System instruction for Gemini
4
+ SYSTEM_INSTRUCTION = """You are a helpful AI assistant. """
5
+
6
+
7
+ class LLMConfig:
8
+ def __init__(
9
+ self,
10
+ model_name: str,
11
+ temperature: float = 0.7,
12
+ max_tokens: Optional[int] = None,
13
+ system_instruction: Optional[str] = None,
14
+ max_retries: int = 10, # Max retries for the combined LLM call + Verification
15
+ max_concurrent_requests: int = 5,
16
+ verification_callback: Optional[Callable[..., bool]] = None,
17
+ verification_callback_args: Optional[Dict] = None,
18
+ max_completion_tokens: Optional[int] = None,
19
+ ):
20
+ self.model_name = model_name
21
+ self.temperature = temperature
22
+ self.max_tokens = max_tokens
23
+ self.max_completion_tokens = max_completion_tokens
24
+ if self.max_tokens and not self.max_completion_tokens:
25
+ self.max_completion_tokens = self.max_tokens
26
+ self.system_instruction = system_instruction or SYSTEM_INSTRUCTION
27
+ self.max_retries = max_retries
28
+ self.max_concurrent_requests = max_concurrent_requests
29
+ self.verification_callback = verification_callback
30
+ self.verification_callback_args = (
31
+ verification_callback_args if verification_callback_args is not None else {}
32
+ )
@@ -0,0 +1,7 @@
1
+ class VerificationFailedError(Exception):
2
+ """Custom exception for when verification callback fails."""
3
+
4
+ def __init__(self, message, prompt_id, llm_response_data=None):
5
+ super().__init__(message)
6
+ self.prompt_id = prompt_id
7
+ self.llm_response_data = llm_response_data
@@ -0,0 +1,84 @@
1
+ import hashlib
2
+ from pathlib import Path
3
+ from typing import Any, Dict, List, Tuple, Union
4
+
5
+
6
+ def read_prompt_files(input_dir: str) -> List[Tuple[str, str]]:
7
+ """Read all text files from input directory and return as (filename, content) pairs.
8
+
9
+ Args:
10
+ input_dir: Path to directory containing prompt files
11
+
12
+ Returns:
13
+ List of (prompt_id, prompt_text) tuples where prompt_id is the filename without extension
14
+ """
15
+ input_path = Path(input_dir)
16
+ if not input_path.exists():
17
+ raise ValueError(f"Input directory {input_dir} does not exist")
18
+
19
+ prompts = []
20
+ for file_path in input_path.glob("*.txt"):
21
+ with open(file_path, "r") as f:
22
+ content = f.read().strip()
23
+ # Use filename without extension as prompt_id
24
+ prompt_id = file_path.stem
25
+ prompts.append((prompt_id, content))
26
+
27
+ if not prompts:
28
+ raise ValueError(f"No .txt files found in {input_dir}")
29
+
30
+ return prompts
31
+
32
+
33
+ def read_prompt_list(
34
+ input_source: List[Union[str, Tuple[str, str], Dict[str, Any]]],
35
+ ) -> List[Tuple[str, str]]:
36
+ """Read prompts from a list of various formats.
37
+
38
+ Args:
39
+ input_source: List of prompts in any of these formats:
40
+ - str: The prompt text (will use hash as ID)
41
+ - tuple: (prompt_id, prompt_text)
42
+ - dict: {"id": prompt_id, "text": prompt_text}
43
+
44
+ Returns:
45
+ List of (prompt_id, prompt_text) tuples
46
+ """
47
+ prompts = []
48
+ for item in input_source:
49
+ if isinstance(item, str):
50
+ # String format: use hash as ID
51
+ prompt_id = hashlib.sha256(item.encode()).hexdigest()[:32]
52
+ prompt_text = item
53
+ elif isinstance(item, tuple) and len(item) == 2:
54
+ # Tuple format: (prompt_id, prompt_text)
55
+ prompt_id, prompt_text = item
56
+ elif isinstance(item, dict) and "id" in item and "text" in item:
57
+ # Dict format: {"id": prompt_id, "text": prompt_text}
58
+ prompt_id = item["id"]
59
+ prompt_text = item["text"]
60
+ else:
61
+ raise ValueError(f"Invalid prompt format: {item}")
62
+ prompts.append((prompt_id, prompt_text))
63
+ return prompts
64
+
65
+
66
+ def get_prompts(
67
+ input_source: Union[str, List[Union[str, Tuple[str, str], Dict[str, Any]]]],
68
+ ) -> List[Tuple[str, str]]:
69
+ """Get prompts from either a directory or a list.
70
+
71
+ Args:
72
+ input_source: Either:
73
+ - str: Path to directory containing prompt files
74
+ - List: List of prompts in various formats (string, tuple, or dict)
75
+
76
+ Returns:
77
+ List of (prompt_id, prompt_text) tuples
78
+ """
79
+ if isinstance(input_source, str):
80
+ return read_prompt_files(input_source)
81
+ elif isinstance(input_source, list):
82
+ return read_prompt_list(input_source)
83
+ else:
84
+ raise ValueError(f"Invalid input source type: {type(input_source)}")
@@ -0,0 +1,232 @@
1
+ import asyncio
2
+ import os
3
+ from typing import Any, Dict, List, Optional, Tuple, Union
4
+
5
+ import httpx
6
+ import openai
7
+ from dotenv import load_dotenv
8
+ from tenacity import retry, retry_if_exception_type, stop_after_attempt, wait_exponential
9
+ from tqdm.asyncio import tqdm_asyncio
10
+
11
+ from .cache import LLMCache
12
+ from .config import LLMConfig
13
+ from .input_handlers import get_prompts
14
+
15
+ load_dotenv()
16
+
17
+
18
+ @retry(
19
+ stop=stop_after_attempt(5),
20
+ wait=wait_exponential(multiplier=1, min=4, max=60),
21
+ retry=retry_if_exception_type(
22
+ (
23
+ ConnectionError,
24
+ TimeoutError,
25
+ openai.APITimeoutError,
26
+ openai.APIConnectionError,
27
+ openai.RateLimitError,
28
+ openai.APIError,
29
+ )
30
+ ),
31
+ reraise=True,
32
+ )
33
+ async def _get_openai_response_direct(
34
+ prompt: str, config: LLMConfig
35
+ ) -> Dict[str, Union[str, Dict]]:
36
+ api_key = os.environ.get("OPENAI_API_KEY")
37
+ if not api_key:
38
+ raise ValueError("OPENAI_API_KEY environment variable not set")
39
+
40
+ async with httpx.AsyncClient(timeout=1000.0) as client:
41
+ aclient = openai.AsyncOpenAI(api_key=api_key, http_client=client)
42
+ messages = [
43
+ {"role": "system", "content": config.system_instruction},
44
+ {"role": "user", "content": prompt},
45
+ ]
46
+
47
+ response = await aclient.chat.completions.create(
48
+ model=config.model_name,
49
+ messages=messages,
50
+ temperature=config.temperature,
51
+ max_completion_tokens=config.max_completion_tokens,
52
+ )
53
+ usage_details = {
54
+ "prompt_token_count": response.usage.prompt_tokens,
55
+ "completion_token_count": response.usage.completion_tokens,
56
+ "total_token_count": response.usage.total_tokens,
57
+ }
58
+ return {
59
+ "response_text": response.choices[0].message.content,
60
+ "usage_details": usage_details,
61
+ }
62
+
63
+ async def get_llm_response_with_internal_retry(
64
+ prompt_id: str,
65
+ prompt: str,
66
+ config: LLMConfig,
67
+ provider: str,
68
+ cache: Optional[LLMCache] = None,
69
+ force: bool = False,
70
+ ) -> Dict[str, Union[str, Dict]]:
71
+ # Check cache first if available and not forcing regeneration
72
+ if cache and not force:
73
+ cached_response = cache.get_cached_response(prompt_id)
74
+ if cached_response:
75
+ return cached_response["llm_response"]
76
+
77
+ try:
78
+ if provider.lower() == "openai":
79
+ response = await _get_openai_response_direct(prompt, config)
80
+ else:
81
+ raise ValueError(f"Unsupported provider: {provider}")
82
+
83
+ # Cache the response if cache is available
84
+ if cache and "error" not in response:
85
+ cache.save_response(prompt_id, prompt, response)
86
+
87
+ return response
88
+ except Exception as e:
89
+ return {
90
+ "error": f"LLM API call failed after internal retries: {e!s}",
91
+ "provider": provider,
92
+ }
93
+
94
+
95
+ async def process_prompts_batch(
96
+ prompts: Optional[List[Union[str, Tuple[str, str], Dict[str, Any]]]] = None,
97
+ input_dir: Optional[str] = None,
98
+ config: LLMConfig = None,
99
+ provider: str = "openai",
100
+ desc: str = "Processing prompts",
101
+ cache_dir: Optional[str] = None,
102
+ force: bool = False,
103
+ ) -> Dict[str, Dict[str, Union[str, Dict]]]:
104
+ """Process a batch of prompts through the LLM.
105
+
106
+ Args:
107
+ prompts: Optional list of prompts in any supported format (string, tuple, or dict)
108
+ input_dir: Optional path to directory containing prompt files
109
+ config: LLM configuration
110
+ provider: LLM provider to use ("openai" or "gemini")
111
+ desc: Description for progress bar
112
+ cache_dir: Optional directory for caching responses
113
+ force: If True, force regeneration even if cached response exists
114
+
115
+ Returns:
116
+ Dict mapping prompt IDs to their responses
117
+
118
+ Note:
119
+ Either prompts or input_dir must be provided, but not both.
120
+ """
121
+ if prompts is None and input_dir is None:
122
+ raise ValueError("Either prompts or input_dir must be provided")
123
+ if prompts is not None and input_dir is not None:
124
+ raise ValueError("Cannot specify both prompts and input_dir")
125
+
126
+ # Get prompts from either source
127
+ if input_dir is not None:
128
+ prompts = get_prompts(input_dir)
129
+ else:
130
+ prompts = get_prompts(prompts)
131
+
132
+ # Create semaphore for concurrent requests
133
+ semaphore = asyncio.Semaphore(config.max_concurrent_requests)
134
+
135
+ # Process prompts
136
+ results = {}
137
+ tasks = [
138
+ _process_single_prompt_attempt_with_verification(
139
+ prompt_id, prompt_text, config, provider, semaphore, cache_dir, force
140
+ )
141
+ for prompt_id, prompt_text in prompts
142
+ ]
143
+
144
+ for future in tqdm_asyncio(asyncio.as_completed(tasks), total=len(tasks), desc=desc):
145
+ prompt_id, response_data = await future
146
+ results[prompt_id] = response_data
147
+
148
+ return results
149
+
150
+
151
+ async def _process_single_prompt_attempt_with_verification(
152
+ prompt_id: str,
153
+ prompt_text: str,
154
+ config: LLMConfig,
155
+ provider: str,
156
+ semaphore: asyncio.Semaphore,
157
+ cache_dir: Optional[str] = None,
158
+ force: bool = False,
159
+ ):
160
+ """Process a single prompt with verification and caching."""
161
+ async with semaphore:
162
+ # Check cache first if cache_dir is provided
163
+ if cache_dir and not force:
164
+ cache = LLMCache(cache_dir)
165
+ cached_response = cache.get_cached_response(prompt_id)
166
+ if cached_response is not None:
167
+ # Verify response if callback provided
168
+ cached_response_data = cached_response["llm_response"]
169
+ if config.verification_callback:
170
+ verified = await asyncio.to_thread(
171
+ config.verification_callback,
172
+ prompt_id,
173
+ cached_response_data,
174
+ prompt_text,
175
+ **config.verification_callback_args,
176
+ )
177
+ if verified:
178
+ return prompt_id, {**cached_response_data, "from_cache": True}
179
+
180
+ # Process the prompt
181
+ last_exception_details = None
182
+ for attempt in range(config.max_retries):
183
+ try:
184
+ # Get LLM response
185
+ llm_response_data = await get_llm_response_with_internal_retry(
186
+ prompt_id, prompt_text, config, provider
187
+ )
188
+
189
+ if "error" in llm_response_data:
190
+ last_exception_details = llm_response_data
191
+ continue
192
+
193
+ # Verify response if callback provided
194
+ if config.verification_callback:
195
+ verified = await asyncio.to_thread(
196
+ config.verification_callback,
197
+ prompt_id,
198
+ llm_response_data,
199
+ prompt_text,
200
+ **config.verification_callback_args,
201
+ )
202
+ if not verified:
203
+ last_exception_details = {
204
+ "error": f"Verification failed on attempt {attempt + 1}",
205
+ "prompt_id": prompt_id,
206
+ "llm_response_data": llm_response_data,
207
+ }
208
+ if attempt == config.max_retries - 1:
209
+ return prompt_id, last_exception_details
210
+ await asyncio.sleep(min(2 * 2**attempt, 30))
211
+ continue
212
+
213
+ # Save to cache if cache_dir provided
214
+ if cache_dir:
215
+ cache = LLMCache(cache_dir)
216
+ cache.save_response(prompt_id, prompt_text, llm_response_data)
217
+
218
+ return prompt_id, llm_response_data
219
+
220
+ except Exception as e:
221
+ last_exception_details = {
222
+ "error": f"Unexpected error: {e!s}",
223
+ "prompt_id": prompt_id,
224
+ }
225
+ if attempt == config.max_retries - 1:
226
+ return prompt_id, last_exception_details
227
+ await asyncio.sleep(min(2 * 2**attempt, 30))
228
+ continue
229
+
230
+ return prompt_id, last_exception_details or {
231
+ "error": f"Exhausted all {config.max_retries} retries for {prompt_id}"
232
+ }
@@ -0,0 +1,201 @@
1
+ Apache License
2
+ Version 2.0, January 2004
3
+ http://www.apache.org/licenses/
4
+
5
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6
+
7
+ 1. Definitions.
8
+
9
+ "License" shall mean the terms and conditions for use, reproduction,
10
+ and distribution as defined by Sections 1 through 9 of this document.
11
+
12
+ "Licensor" shall mean the copyright owner or entity authorized by
13
+ the copyright owner that is granting the License.
14
+
15
+ "Legal Entity" shall mean the union of the acting entity and all
16
+ other entities that control, are controlled by, or are under common
17
+ control with that entity. For the purposes of this definition,
18
+ "control" means (i) the power, direct or indirect, to cause the
19
+ direction or management of such entity, whether by contract or
20
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
21
+ outstanding shares, or (iii) beneficial ownership of such entity.
22
+
23
+ "You" (or "Your") shall mean an individual or Legal Entity
24
+ exercising permissions granted by this License.
25
+
26
+ "Source" form shall mean the preferred form for making modifications,
27
+ including but not limited to software source code, documentation
28
+ source, and configuration files.
29
+
30
+ "Object" form shall mean any form resulting from mechanical
31
+ transformation or translation of a Source form, including but
32
+ not limited to compiled object code, generated documentation,
33
+ and conversions to other media types.
34
+
35
+ "Work" shall mean the work of authorship, whether in Source or
36
+ Object form, made available under the License, as indicated by a
37
+ copyright notice that is included in or attached to the work
38
+ (an example is provided in the Appendix below).
39
+
40
+ "Derivative Works" shall mean any work, whether in Source or Object
41
+ form, that is based on (or derived from) the Work and for which the
42
+ editorial revisions, annotations, elaborations, or other modifications
43
+ represent, as a whole, an original work of authorship. For the purposes
44
+ of this License, Derivative Works shall not include works that remain
45
+ separable from, or merely link (or bind by name) to the interfaces of,
46
+ the Work and Derivative Works thereof.
47
+
48
+ "Contribution" shall mean any work of authorship, including
49
+ the original version of the Work and any modifications or additions
50
+ to that Work or Derivative Works thereof, that is intentionally
51
+ submitted to Licensor for inclusion in the Work by the copyright owner
52
+ or by an individual or Legal Entity authorized to submit on behalf of
53
+ the copyright owner. For the purposes of this definition, "submitted"
54
+ means any form of electronic, verbal, or written communication sent
55
+ to the Licensor or its representatives, including but not limited to
56
+ communication on electronic mailing lists, source code control systems,
57
+ and issue tracking systems that are managed by, or on behalf of, the
58
+ Licensor for the purpose of discussing and improving the Work, but
59
+ excluding communication that is conspicuously marked or otherwise
60
+ designated in writing by the copyright owner as "Not a Contribution."
61
+
62
+ "Contributor" shall mean Licensor and any individual or Legal Entity
63
+ on behalf of whom a Contribution has been received by Licensor and
64
+ subsequently incorporated within the Work.
65
+
66
+ 2. Grant of Copyright License. Subject to the terms and conditions of
67
+ this License, each Contributor hereby grants to You a perpetual,
68
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
69
+ copyright license to reproduce, prepare Derivative Works of,
70
+ publicly display, publicly perform, sublicense, and distribute the
71
+ Work and such Derivative Works in Source or Object form.
72
+
73
+ 3. Grant of Patent License. Subject to the terms and conditions of
74
+ this License, each Contributor hereby grants to You a perpetual,
75
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76
+ (except as stated in this section) patent license to make, have made,
77
+ use, offer to sell, sell, import, and otherwise transfer the Work,
78
+ where such license applies only to those patent claims licensable
79
+ by such Contributor that are necessarily infringed by their
80
+ Contribution(s) alone or by combination of their Contribution(s)
81
+ with the Work to which such Contribution(s) was submitted. If You
82
+ institute patent litigation against any entity (including a
83
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
84
+ or a Contribution incorporated within the Work constitutes direct
85
+ or contributory patent infringement, then any patent licenses
86
+ granted to You under this License for that Work shall terminate
87
+ as of the date such litigation is filed.
88
+
89
+ 4. Redistribution. You may reproduce and distribute copies of the
90
+ Work or Derivative Works thereof in any medium, with or without
91
+ modifications, and in Source or Object form, provided that You
92
+ meet the following conditions:
93
+
94
+ (a) You must give any other recipients of the Work or
95
+ Derivative Works a copy of this License; and
96
+
97
+ (b) You must cause any modified files to carry prominent notices
98
+ stating that You changed the files; and
99
+
100
+ (c) You must retain, in the Source form of any Derivative Works
101
+ that You distribute, all copyright, patent, trademark, and
102
+ attribution notices from the Source form of the Work,
103
+ excluding those notices that do not pertain to any part of
104
+ the Derivative Works; and
105
+
106
+ (d) If the Work includes a "NOTICE" text file as part of its
107
+ distribution, then any Derivative Works that You distribute must
108
+ include a readable copy of the attribution notices contained
109
+ within such NOTICE file, excluding those notices that do not
110
+ pertain to any part of the Derivative Works, in at least one
111
+ of the following places: within a NOTICE text file distributed
112
+ as part of the Derivative Works; within the Source form or
113
+ documentation, if provided along with the Derivative Works; or,
114
+ within a display generated by the Derivative Works, if and
115
+ wherever such third-party notices normally appear. The contents
116
+ of the NOTICE file are for informational purposes only and
117
+ do not modify the License. You may add Your own attribution
118
+ notices within Derivative Works that You distribute, alongside
119
+ or as an addendum to the NOTICE text from the Work, provided
120
+ that such additional attribution notices cannot be construed
121
+ as modifying the License.
122
+
123
+ You may add Your own copyright statement to Your modifications and
124
+ may provide additional or different license terms and conditions
125
+ for use, reproduction, or distribution of Your modifications, or
126
+ for any such Derivative Works as a whole, provided Your use,
127
+ reproduction, and distribution of the Work otherwise complies with
128
+ the conditions stated in this License.
129
+
130
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
131
+ any Contribution intentionally submitted for inclusion in the Work
132
+ by You to the Licensor shall be under the terms and conditions of
133
+ this License, without any additional terms or conditions.
134
+ Notwithstanding the above, nothing herein shall supersede or modify
135
+ the terms of any separate license agreement you may have executed
136
+ with Licensor regarding such Contributions.
137
+
138
+ 6. Trademarks. This License does not grant permission to use the trade
139
+ names, trademarks, service marks, or product names of the Licensor,
140
+ except as required for reasonable and customary use in describing the
141
+ origin of the Work and reproducing the content of the NOTICE file.
142
+
143
+ 7. Disclaimer of Warranty. Unless required by applicable law or
144
+ agreed to in writing, Licensor provides the Work (and each
145
+ Contributor provides its Contributions) on an "AS IS" BASIS,
146
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
147
+ implied, including, without limitation, any warranties or conditions
148
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
149
+ PARTICULAR PURPOSE. You are solely responsible for determining the
150
+ appropriateness of using or redistributing the Work and assume any
151
+ risks associated with Your exercise of permissions under this License.
152
+
153
+ 8. Limitation of Liability. In no event and under no legal theory,
154
+ whether in tort (including negligence), contract, or otherwise,
155
+ unless required by applicable law (such as deliberate and grossly
156
+ negligent acts) or agreed to in writing, shall any Contributor be
157
+ liable to You for damages, including any direct, indirect, special,
158
+ incidental, or consequential damages of any character arising as a
159
+ result of this License or out of the use or inability to use the
160
+ Work (including but not limited to damages for loss of goodwill,
161
+ work stoppage, computer failure or malfunction, or any and all
162
+ other commercial damages or losses), even if such Contributor
163
+ has been advised of the possibility of such damages.
164
+
165
+ 9. Accepting Warranty or Additional Liability. While redistributing
166
+ the Work or Derivative Works thereof, You may choose to offer,
167
+ and charge a fee for, acceptance of support, warranty, indemnity,
168
+ or other liability obligations and/or rights consistent with this
169
+ License. However, in accepting such obligations, You may act only
170
+ on Your own behalf and on Your sole responsibility, not on behalf
171
+ of any other Contributor, and only if You agree to indemnify,
172
+ defend, and hold each Contributor harmless for any liability
173
+ incurred by, or claims asserted against, such Contributor by reason
174
+ of your accepting any such warranty or additional liability.
175
+
176
+ END OF TERMS AND CONDITIONS
177
+
178
+ APPENDIX: How to apply the Apache License to your work.
179
+
180
+ To apply the Apache License to your work, attach the following
181
+ boilerplate notice, with the fields enclosed by brackets "[]"
182
+ replaced with your own identifying information. (Don't include
183
+ the brackets!) The text should be enclosed in the appropriate
184
+ comment syntax for the file format. We also recommend that a
185
+ file or class name and description of purpose be included on the
186
+ same "printed page" as the copyright notice for easier
187
+ identification within third-party archives.
188
+
189
+ Copyright [yyyy] [name of copyright owner]
190
+
191
+ Licensed under the Apache License, Version 2.0 (the "License");
192
+ you may not use this file except in compliance with the License.
193
+ You may obtain a copy of the License at
194
+
195
+ http://www.apache.org/licenses/LICENSE-2.0
196
+
197
+ Unless required by applicable law or agreed to in writing, software
198
+ distributed under the License is distributed on an "AS IS" BASIS,
199
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
200
+ See the License for the specific language governing permissions and
201
+ limitations under the License.
@@ -0,0 +1,282 @@
1
+ Metadata-Version: 2.3
2
+ Name: llm_batch_helper
3
+ Version: 0.1.3
4
+ Summary: A Python package that enables batch submission of prompts to LLM APIs, with built-in async capabilities and response caching.
5
+ License: MIT
6
+ Keywords: llm,openai,batch,async,ai,nlp,api
7
+ Author: Tianyi Peng
8
+ Author-email: tianyipeng95@gmail.com
9
+ Requires-Python: >=3.11,<4.0
10
+ Classifier: Development Status :: 4 - Beta
11
+ Classifier: Intended Audience :: Developers
12
+ Classifier: License :: OSI Approved :: MIT License
13
+ Classifier: Programming Language :: Python :: 3
14
+ Classifier: Programming Language :: Python :: 3.11
15
+ Classifier: Programming Language :: Python :: 3.12
16
+ Classifier: Programming Language :: Python :: 3.13
17
+ Classifier: Programming Language :: Python :: 3.10
18
+ Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
19
+ Classifier: Topic :: Software Development :: Libraries :: Python Modules
20
+ Requires-Dist: httpx (>=0.24.0,<0.25.0)
21
+ Requires-Dist: openai (>=1.0.0,<2.0.0)
22
+ Requires-Dist: python-dotenv (>=1.0.0,<2.0.0)
23
+ Requires-Dist: tenacity (>=8.0.0,<9.0.0)
24
+ Requires-Dist: tqdm (>=4.65.0,<5.0.0)
25
+ Project-URL: Homepage, https://github.com/TianyiPeng/LLM_batch_helper
26
+ Project-URL: Repository, https://github.com/TianyiPeng/LLM_batch_helper
27
+ Description-Content-Type: text/markdown
28
+
29
+ # LLM Batch Helper
30
+
31
+ A Python package that enables batch submission of prompts to LLM APIs, with built-in async capabilities and response caching.
32
+
33
+ ## Features
34
+
35
+ - **Async Processing**: Submit multiple prompts concurrently for faster processing
36
+ - **Response Caching**: Automatically cache responses to avoid redundant API calls
37
+ - **Multiple Input Formats**: Support for both file-based and list-based prompts
38
+ - **Provider Support**: Works with OpenAI API
39
+ - **Retry Logic**: Built-in retry mechanism with exponential backoff
40
+ - **Verification Callbacks**: Custom verification for response quality
41
+ - **Progress Tracking**: Real-time progress bars for batch operations
42
+
43
+ ## Installation
44
+
45
+ ### For Users (Recommended)
46
+
47
+ ```bash
48
+ # Install from PyPI
49
+ pip install llm_batch_helper
50
+ ```
51
+
52
+ ### For Development
53
+
54
+ ```bash
55
+ # Clone the repository
56
+ git clone https://github.com/TianyiPeng/LLM_batch_helper.git
57
+ cd llm_batch_helper
58
+
59
+ # Install with Poetry
60
+ poetry install
61
+
62
+ # Activate the virtual environment
63
+ poetry shell
64
+ ```
65
+
66
+ ## Quick Start
67
+
68
+ ### 1. Set up environment variables
69
+
70
+ ```bash
71
+ # For OpenAI
72
+ export OPENAI_API_KEY="your-openai-api-key"
73
+ ```
74
+
75
+ ### 2. Interactive Tutorial (Recommended)
76
+
77
+ Check out the comprehensive Jupyter notebook [tutorial](https://github.com/TianyiPeng/LLM_batch_helper/blob/main/tutorials/llm_batch_helper_tutorial.ipynb).
78
+
79
+ The tutorial covers all features with interactive examples!
80
+
81
+ ### 3. Basic usage
82
+
83
+ ```python
84
+ import asyncio
85
+ from llm_batch_helper import LLMConfig, process_prompts_batch
86
+
87
+ async def main():
88
+ # Create configuration
89
+ config = LLMConfig(
90
+ model_name="gpt-4o-mini",
91
+ temperature=0.7,
92
+ max_tokens=100,
93
+ max_concurrent_requests=30 # number of concurrent requests with asyncIO
94
+ )
95
+
96
+ # Process prompts
97
+ prompts = [
98
+ "What is the capital of France?",
99
+ "What is 2+2?",
100
+ "Who wrote 'Hamlet'?"
101
+ ]
102
+
103
+ results = await process_prompts_batch(
104
+ config=config,
105
+ provider="openai",
106
+ prompts=prompts,
107
+ cache_dir="cache"
108
+ )
109
+
110
+ # Print results
111
+ for prompt_id, response in results.items():
112
+ print(f"{prompt_id}: {response['response_text']}")
113
+
114
+ if __name__ == "__main__":
115
+ asyncio.run(main())
116
+ ```
117
+
118
+ ## Usage Examples
119
+
120
+ ### File-based Prompts
121
+
122
+ ```python
123
+ import asyncio
124
+ from llm_batch_helper import LLMConfig, process_prompts_batch
125
+
126
+ async def process_files():
127
+ config = LLMConfig(
128
+ model_name="gpt-4o-mini",
129
+ temperature=0.7,
130
+ max_tokens=200
131
+ )
132
+
133
+ # Process all .txt files in a directory
134
+ results = await process_prompts_batch(
135
+ config=config,
136
+ provider="openai",
137
+ input_dir="prompts", # Directory containing .txt files
138
+ cache_dir="cache",
139
+ force=False # Use cached responses if available
140
+ )
141
+
142
+ return results
143
+
144
+ asyncio.run(process_files())
145
+ ```
146
+
147
+ ### Custom Verification
148
+
149
+ ```python
150
+ from llm_batch_helper import LLMConfig
151
+
152
+ def verify_response(prompt_id, llm_response_data, original_prompt_text, **kwargs):
153
+ """Custom verification callback"""
154
+ response_text = llm_response_data.get("response_text", "")
155
+
156
+ # Check minimum length
157
+ if len(response_text) < kwargs.get("min_length", 10):
158
+ return False
159
+
160
+ # Check for specific keywords
161
+ if "error" in response_text.lower():
162
+ return False
163
+
164
+ return True
165
+
166
+ config = LLMConfig(
167
+ model_name="gpt-4o-mini",
168
+ temperature=0.7,
169
+ verification_callback=verify_response,
170
+ verification_callback_args={"min_length": 20}
171
+ )
172
+ ```
173
+
174
+
175
+
176
+ ## API Reference
177
+
178
+ ### LLMConfig
179
+
180
+ Configuration class for LLM requests.
181
+
182
+ ```python
183
+ LLMConfig(
184
+ model_name: str,
185
+ temperature: float = 0.7,
186
+ max_tokens: Optional[int] = None,
187
+ system_instruction: Optional[str] = None,
188
+ max_retries: int = 10,
189
+ max_concurrent_requests: int = 5,
190
+ verification_callback: Optional[Callable] = None,
191
+ verification_callback_args: Optional[Dict] = None
192
+ )
193
+ ```
194
+
195
+ ### process_prompts_batch
196
+
197
+ Main function for batch processing of prompts.
198
+
199
+ ```python
200
+ async def process_prompts_batch(
201
+ config: LLMConfig,
202
+ provider: str, # "openai"
203
+ prompts: Optional[List[str]] = None,
204
+ input_dir: Optional[str] = None,
205
+ cache_dir: str = "llm_cache",
206
+ force: bool = False,
207
+ desc: str = "Processing prompts"
208
+ ) -> Dict[str, Dict[str, Any]]
209
+ ```
210
+
211
+ ### LLMCache
212
+
213
+ Caching functionality for responses.
214
+
215
+ ```python
216
+ cache = LLMCache(cache_dir="my_cache")
217
+
218
+ # Check for cached response
219
+ cached = cache.get_cached_response(prompt_id)
220
+
221
+ # Save response to cache
222
+ cache.save_response(prompt_id, prompt_text, response_data)
223
+
224
+ # Clear all cached responses
225
+ cache.clear_cache()
226
+ ```
227
+
228
+ ## Project Structure
229
+
230
+ ```
231
+ llm_batch_helper/
232
+ ├── pyproject.toml # Poetry configuration
233
+ ├── poetry.lock # Locked dependencies
234
+ ├── README.md # This file
235
+ ├── LICENSE # License file
236
+ ├── llm_batch_helper/ # Main package
237
+ │ ├── __init__.py # Package exports
238
+ │ ├── cache.py # Response caching
239
+ │ ├── config.py # Configuration classes
240
+ │ ├── providers.py # LLM provider implementations
241
+ │ ├── input_handlers.py # Input processing utilities
242
+ │ └── exceptions.py # Custom exceptions
243
+ ├── examples/ # Usage examples
244
+ │ ├── example.py # Basic usage example
245
+ │ ├── prompts/ # Sample prompt files
246
+ │ └── llm_cache/ # Example cache directory
247
+ └── tutorials/ # Interactive tutorials
248
+ └── llm_batch_helper_tutorial.ipynb # Comprehensive Jupyter notebook tutorial
249
+ ```
250
+
251
+ ## Supported Models
252
+
253
+ ### OpenAI
254
+ - gpt-4o-mini
255
+ - gpt-4o
256
+ - gpt-4
257
+ - gpt-3.5-turbo
258
+
259
+ ## Contributing
260
+
261
+ 1. Fork the repository
262
+ 2. Create a feature branch
263
+ 3. Make your changes
264
+ 4. Add tests if applicable
265
+ 5. Run the test suite
266
+ 6. Submit a pull request
267
+
268
+ ## License
269
+
270
+ This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.
271
+
272
+ ## Changelog
273
+
274
+ ### v0.1.0
275
+ - Initial release
276
+ - Support for OpenAI API
277
+ - Async batch processing
278
+ - Response caching
279
+ - File and list-based input support
280
+ - Custom verification callbacks
281
+ - Poetry package management
282
+
@@ -0,0 +1,10 @@
1
+ llm_batch_helper/__init__.py,sha256=WuZSgItWxi-uoND-X-tOmYaxJaxPXAUa9AXZM58bNuc,348
2
+ llm_batch_helper/cache.py,sha256=QUODQ1tPCvFThO3yvVOTcorcOrmN2dP5HLF1Y2O1bTQ,1276
3
+ llm_batch_helper/config.py,sha256=WcZKTD-Mtocsx1plS9x3hh6MstVmyxD-tyidGUatkPY,1327
4
+ llm_batch_helper/exceptions.py,sha256=59_f3jINUhKFble6HTp8pmtLSFE2MYLHWGclwaQKs28,296
5
+ llm_batch_helper/input_handlers.py,sha256=IadA732F1Rw0zcBok5hjZr32RUm8eTUOpvLsRuMvaE4,2877
6
+ llm_batch_helper/providers.py,sha256=ccvDqn136fMWPWaqfSFUToeOJFFhSI86YatLoH1wrQs,8332
7
+ llm_batch_helper-0.1.3.dist-info/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
8
+ llm_batch_helper-0.1.3.dist-info/METADATA,sha256=oJgWbwZQpPicAv63GX83kF1I6kNxXqPKQBIgCBqHgoc,7525
9
+ llm_batch_helper-0.1.3.dist-info/WHEEL,sha256=b4K_helf-jlQoXBBETfwnf4B04YC67LOev0jo4fX5m8,88
10
+ llm_batch_helper-0.1.3.dist-info/RECORD,,
@@ -0,0 +1,4 @@
1
+ Wheel-Version: 1.0
2
+ Generator: poetry-core 2.1.3
3
+ Root-Is-Purelib: true
4
+ Tag: py3-none-any