llm-ie 0.1.6__py3-none-any.whl → 0.1.7__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
llm_ie/extractors.py CHANGED
@@ -397,7 +397,7 @@ class SentenceFrameExtractor(FrameExtractor):
397
397
 
398
398
 
399
399
  def extract(self, text_content:Union[str, Dict[str,str]], max_new_tokens:int=512,
400
- document_key:str=None, temperature:float=0.0, stream:bool=False, **kwrs) -> List[Dict[str,str]]:
400
+ document_key:str=None, multi_turn:bool=True, temperature:float=0.0, stream:bool=False, **kwrs) -> List[Dict[str,str]]:
401
401
  """
402
402
  This method inputs a text and outputs a list of outputs per sentence.
403
403
 
@@ -412,6 +412,12 @@ class SentenceFrameExtractor(FrameExtractor):
412
412
  document_key : str, Optional
413
413
  specify the key in text_content where document text is.
414
414
  If text_content is str, this parameter will be ignored.
415
+ multi_turn : bool, Optional
416
+ multi-turn conversation prompting.
417
+ If True, sentences and LLM outputs will be appended to the input message and carry-over.
418
+ If False, only the current sentence is prompted.
419
+ For LLM inference engines that supports prompt cache (e.g., Llama.Cpp, Ollama), use multi-turn conversation prompting
420
+ can better utilize the KV caching.
415
421
  temperature : float, Optional
416
422
  the temperature for token sampling.
417
423
  stream : bool, Optional
@@ -449,9 +455,14 @@ class SentenceFrameExtractor(FrameExtractor):
449
455
  stream=stream,
450
456
  **kwrs
451
457
  )
452
-
453
- # update chat messages
454
- messages.append({'role': 'assistant', 'content': gen_text})
458
+
459
+ if multi_turn:
460
+ # update chat messages with LLM outputs
461
+ messages.append({'role': 'assistant', 'content': gen_text})
462
+ else:
463
+ # delete sentence so that message is reset
464
+ del messages[-1]
465
+
455
466
  # add to output
456
467
  output.append({'sentence_start': sent['start'],
457
468
  'sentence_end': sent['end'],
@@ -460,8 +471,8 @@ class SentenceFrameExtractor(FrameExtractor):
460
471
  return output
461
472
 
462
473
 
463
- def extract_frames(self, text_content:Union[str, Dict[str,str]], entity_key:str,
464
- max_new_tokens:int=512, document_key:str=None, **kwrs) -> List[LLMInformationExtractionFrame]:
474
+ def extract_frames(self, text_content:Union[str, Dict[str,str]], entity_key:str, max_new_tokens:int=512,
475
+ document_key:str=None, multi_turn:bool=True, temperature:float=0.0, stream:bool=False, **kwrs) -> List[LLMInformationExtractionFrame]:
465
476
  """
466
477
  This method inputs a text and outputs a list of LLMInformationExtractionFrame
467
478
  It use the extract() method and post-process outputs into frames.
@@ -479,12 +490,27 @@ class SentenceFrameExtractor(FrameExtractor):
479
490
  document_key : str, Optional
480
491
  specify the key in text_content where document text is.
481
492
  If text_content is str, this parameter will be ignored.
493
+ multi_turn : bool, Optional
494
+ multi-turn conversation prompting.
495
+ If True, sentences and LLM outputs will be appended to the input message and carry-over.
496
+ If False, only the current sentence is prompted.
497
+ For LLM inference engines that supports prompt cache (e.g., Llama.Cpp, Ollama), use multi-turn conversation prompting
498
+ can better utilize the KV caching.
499
+ temperature : float, Optional
500
+ the temperature for token sampling.
501
+ stream : bool, Optional
502
+ if True, LLM generated text will be printed in terminal in real-time.
482
503
 
483
504
  Return : str
484
505
  a list of frames.
485
506
  """
486
507
  llm_output_sentence = self.extract(text_content=text_content,
487
- max_new_tokens=max_new_tokens, document_key=document_key, **kwrs)
508
+ max_new_tokens=max_new_tokens,
509
+ document_key=document_key,
510
+ multi_turn=multi_turn,
511
+ temperature=temperature,
512
+ stream=stream,
513
+ **kwrs)
488
514
  frame_list = []
489
515
  for sent in llm_output_sentence:
490
516
  entity_json = self._extract_json(gen_text=sent['gen_text'])
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: llm-ie
3
- Version: 0.1.6
3
+ Version: 0.1.7
4
4
  Summary: An LLM-powered tool that transforms everyday language into robust information extraction pipelines.
5
5
  License: MIT
6
6
  Author: Enshuo (David) Hsu
@@ -6,8 +6,8 @@ llm_ie/asset/prompt_guide/ReviewFrameExtractor_prompt_guide.txt,sha256=XbnU8byLG
6
6
  llm_ie/asset/prompt_guide/SentenceFrameExtractor_prompt_guide.txt,sha256=8nj9OLPJMtr9Soi5JU3Xk-HC7pKNoI54xA_A4u7I5j4,2620
7
7
  llm_ie/data_types.py,sha256=MnpyXFviFWhxeC5mqbaPdAxGx6vV_PhnUIFfUamq3D8,6687
8
8
  llm_ie/engines.py,sha256=m9ytGUX61jEy9SmVHbb90mrfGMAwC6dV-v7Jke1U7Ho,9296
9
- llm_ie/extractors.py,sha256=rpHJhlV3A9-9nldIutxd8rtgf7903Ke6QkwbCIVdUdY,22546
9
+ llm_ie/extractors.py,sha256=PfcUhmU_LfVFIfI5v3C7DzGAFF0xEPDdLUnwKHYnUyg,24125
10
10
  llm_ie/prompt_editor.py,sha256=dbu7A3O7O7Iw2v-xCgrTFH1-wTLAGf4SHDqdeS-He2Q,1869
11
- llm_ie-0.1.6.dist-info/METADATA,sha256=xD_BHcUAirE7BZJ2wQEaTQUlmzDRo4Yz8Ztr-Gpfivk,29712
12
- llm_ie-0.1.6.dist-info/WHEEL,sha256=sP946D7jFCHeNz5Iq4fL4Lu-PrWrFsgfLXbbkciIZwg,88
13
- llm_ie-0.1.6.dist-info/RECORD,,
11
+ llm_ie-0.1.7.dist-info/METADATA,sha256=wMAToHKL1K3hZP-xONBdEw3sy56stKYThfn3NqbfZ34,29712
12
+ llm_ie-0.1.7.dist-info/WHEEL,sha256=sP946D7jFCHeNz5Iq4fL4Lu-PrWrFsgfLXbbkciIZwg,88
13
+ llm_ie-0.1.7.dist-info/RECORD,,
File without changes