llm-gemini 0.13a0__py3-none-any.whl → 0.14__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {llm_gemini-0.13a0.dist-info → llm_gemini-0.14.dist-info}/METADATA +15 -4
- llm_gemini-0.14.dist-info/RECORD +7 -0
- llm_gemini.py +60 -28
- llm_gemini-0.13a0.dist-info/RECORD +0 -7
- {llm_gemini-0.13a0.dist-info → llm_gemini-0.14.dist-info}/LICENSE +0 -0
- {llm_gemini-0.13a0.dist-info → llm_gemini-0.14.dist-info}/WHEEL +0 -0
- {llm_gemini-0.13a0.dist-info → llm_gemini-0.14.dist-info}/entry_points.txt +0 -0
- {llm_gemini-0.13a0.dist-info → llm_gemini-0.14.dist-info}/top_level.txt +0 -0
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.2
|
2
2
|
Name: llm-gemini
|
3
|
-
Version: 0.
|
3
|
+
Version: 0.14
|
4
4
|
Summary: LLM plugin to access Google's Gemini family of models
|
5
5
|
Author: Simon Willison
|
6
6
|
License: Apache-2.0
|
@@ -11,12 +11,13 @@ Project-URL: CI, https://github.com/simonw/llm-gemini/actions
|
|
11
11
|
Classifier: License :: OSI Approved :: Apache Software License
|
12
12
|
Description-Content-Type: text/markdown
|
13
13
|
License-File: LICENSE
|
14
|
-
Requires-Dist: llm>=0.
|
14
|
+
Requires-Dist: llm>=0.23
|
15
15
|
Requires-Dist: httpx
|
16
16
|
Requires-Dist: ijson
|
17
17
|
Provides-Extra: test
|
18
18
|
Requires-Dist: pytest; extra == "test"
|
19
19
|
Requires-Dist: pytest-recording; extra == "test"
|
20
|
+
Requires-Dist: pytest-asyncio; extra == "test"
|
20
21
|
Requires-Dist: nest-asyncio; extra == "test"
|
21
22
|
|
22
23
|
# llm-gemini
|
@@ -145,7 +146,7 @@ llm chat -m gemini-1.5-pro-latest
|
|
145
146
|
|
146
147
|
## Embeddings
|
147
148
|
|
148
|
-
The plugin also adds support for the `text-embedding-004` embedding
|
149
|
+
The plugin also adds support for the `gemini-embedding-exp-03-07` and `text-embedding-004` embedding models.
|
149
150
|
|
150
151
|
Run that against a single string like this:
|
151
152
|
```bash
|
@@ -153,10 +154,20 @@ llm embed -m text-embedding-004 -c 'hello world'
|
|
153
154
|
```
|
154
155
|
This returns a JSON array of 768 numbers.
|
155
156
|
|
157
|
+
The `gemini-embedding-exp-03-07` model is larger, returning 3072 numbers. You can also use variants of it that are truncated down to smaller sizes:
|
158
|
+
|
159
|
+
- `gemini-embedding-exp-03-07` - 3072 numbers
|
160
|
+
- `gemini-embedding-exp-03-07-2048` - 2048 numbers
|
161
|
+
- `gemini-embedding-exp-03-07-1024` - 1024 numbers
|
162
|
+
- `gemini-embedding-exp-03-07-512` - 512 numbers
|
163
|
+
- `gemini-embedding-exp-03-07-256` - 256 numbers
|
164
|
+
- `gemini-embedding-exp-03-07-128` - 128 numbers
|
165
|
+
|
156
166
|
This command will embed every `README.md` file in child directories of the current directory and store the results in a SQLite database called `embed.db` in a collection called `readmes`:
|
157
167
|
|
158
168
|
```bash
|
159
|
-
llm embed-multi readmes
|
169
|
+
llm embed-multi readmes -d embed.db -m gemini-embedding-exp-03-07-128 \
|
170
|
+
--files . '*/README.md'
|
160
171
|
```
|
161
172
|
You can then run similarity searches against that collection like this:
|
162
173
|
```bash
|
@@ -0,0 +1,7 @@
|
|
1
|
+
llm_gemini.py,sha256=KgiKMPY6q-GkAMzH0gfQWp0cjBBKizNhlnZ3nX5pXWY,14917
|
2
|
+
llm_gemini-0.14.dist-info/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
|
3
|
+
llm_gemini-0.14.dist-info/METADATA,sha256=J8oA7hZmNrFsRyH3_s4oesSjWNEaK8pWcT2p-_quPTA,7556
|
4
|
+
llm_gemini-0.14.dist-info/WHEEL,sha256=jB7zZ3N9hIM9adW7qlTAyycLYW9npaWKLRzaoVcLKcM,91
|
5
|
+
llm_gemini-0.14.dist-info/entry_points.txt,sha256=n544bpgUPIBc5l_cnwsTxPc3gMGJHPtAyqBNp-CkMWk,26
|
6
|
+
llm_gemini-0.14.dist-info/top_level.txt,sha256=WUQmG6_2QKbT_8W4HH93qyKl_0SUteL4Ra6_PhyNGKU,11
|
7
|
+
llm_gemini-0.14.dist-info/RECORD,,
|
llm_gemini.py
CHANGED
@@ -65,8 +65,16 @@ def register_models(register):
|
|
65
65
|
]:
|
66
66
|
can_google_search = model_id in GOOGLE_SEARCH_MODELS
|
67
67
|
register(
|
68
|
-
GeminiPro(
|
69
|
-
|
68
|
+
GeminiPro(
|
69
|
+
model_id,
|
70
|
+
can_google_search=can_google_search,
|
71
|
+
can_schema="flash-thinking" not in model_id,
|
72
|
+
),
|
73
|
+
AsyncGeminiPro(
|
74
|
+
model_id,
|
75
|
+
can_google_search=can_google_search,
|
76
|
+
can_schema="flash-thinking" not in model_id,
|
77
|
+
),
|
70
78
|
)
|
71
79
|
|
72
80
|
|
@@ -82,7 +90,7 @@ def resolve_type(attachment):
|
|
82
90
|
|
83
91
|
def cleanup_schema(schema):
|
84
92
|
"Gemini supports only a subset of JSON schema"
|
85
|
-
keys_to_remove = ("$schema", "additionalProperties")
|
93
|
+
keys_to_remove = ("$schema", "additionalProperties", "title")
|
86
94
|
# Recursively remove them
|
87
95
|
if isinstance(schema, dict):
|
88
96
|
for key in keys_to_remove:
|
@@ -186,9 +194,10 @@ class _SharedGemini:
|
|
186
194
|
default=None,
|
187
195
|
)
|
188
196
|
|
189
|
-
def __init__(self, model_id, can_google_search=False):
|
197
|
+
def __init__(self, model_id, can_google_search=False, can_schema=False):
|
190
198
|
self.model_id = model_id
|
191
199
|
self.can_google_search = can_google_search
|
200
|
+
self.supports_schema = can_schema
|
192
201
|
if can_google_search:
|
193
202
|
self.Options = self.OptionsWithGoogleSearch
|
194
203
|
|
@@ -279,9 +288,17 @@ class _SharedGemini:
|
|
279
288
|
return f'```\n{part["codeExecutionResult"]["output"].strip()}\n```\n'
|
280
289
|
return ""
|
281
290
|
|
291
|
+
def process_candidates(self, candidates):
|
292
|
+
# We only use the first candidate
|
293
|
+
for part in candidates[0]["content"]["parts"]:
|
294
|
+
yield self.process_part(part)
|
295
|
+
|
282
296
|
def set_usage(self, response):
|
283
297
|
try:
|
284
|
-
|
298
|
+
# Don't record the "content" key from that last candidate
|
299
|
+
for candidate in response.response_json["candidates"]:
|
300
|
+
candidate.pop("content", None)
|
301
|
+
usage = response.response_json.pop("usageMetadata")
|
285
302
|
input_tokens = usage.pop("promptTokenCount", None)
|
286
303
|
output_tokens = usage.pop("candidatesTokenCount", None)
|
287
304
|
usage.pop("totalTokenCount", None)
|
@@ -311,17 +328,16 @@ class GeminiPro(_SharedGemini, llm.KeyModel):
|
|
311
328
|
for chunk in http_response.iter_bytes():
|
312
329
|
coro.send(chunk)
|
313
330
|
if events:
|
314
|
-
event
|
315
|
-
|
316
|
-
|
317
|
-
|
318
|
-
|
319
|
-
|
320
|
-
|
321
|
-
|
322
|
-
gathered.append(event)
|
331
|
+
for event in events:
|
332
|
+
if isinstance(event, dict) and "error" in event:
|
333
|
+
raise llm.ModelError(event["error"]["message"])
|
334
|
+
try:
|
335
|
+
yield from self.process_candidates(event["candidates"])
|
336
|
+
except KeyError:
|
337
|
+
yield ""
|
338
|
+
gathered.append(event)
|
323
339
|
events.clear()
|
324
|
-
response.response_json = gathered
|
340
|
+
response.response_json = gathered[-1]
|
325
341
|
self.set_usage(response)
|
326
342
|
|
327
343
|
|
@@ -344,25 +360,37 @@ class AsyncGeminiPro(_SharedGemini, llm.AsyncKeyModel):
|
|
344
360
|
async for chunk in http_response.aiter_bytes():
|
345
361
|
coro.send(chunk)
|
346
362
|
if events:
|
347
|
-
event
|
348
|
-
|
349
|
-
|
350
|
-
|
351
|
-
|
352
|
-
|
353
|
-
|
354
|
-
|
355
|
-
|
363
|
+
for event in events:
|
364
|
+
if isinstance(event, dict) and "error" in event:
|
365
|
+
raise llm.ModelError(event["error"]["message"])
|
366
|
+
try:
|
367
|
+
for chunk in self.process_candidates(
|
368
|
+
event["candidates"]
|
369
|
+
):
|
370
|
+
yield chunk
|
371
|
+
except KeyError:
|
372
|
+
yield ""
|
373
|
+
gathered.append(event)
|
356
374
|
events.clear()
|
357
|
-
response.response_json = gathered
|
375
|
+
response.response_json = gathered[-1]
|
358
376
|
self.set_usage(response)
|
359
377
|
|
360
378
|
|
361
379
|
@llm.hookimpl
|
362
380
|
def register_embedding_models(register):
|
381
|
+
register(GeminiEmbeddingModel("text-embedding-004", "text-embedding-004"))
|
382
|
+
# gemini-embedding-exp-03-07 in different truncation sizes
|
363
383
|
register(
|
364
|
-
GeminiEmbeddingModel(
|
384
|
+
GeminiEmbeddingModel(
|
385
|
+
"gemini-embedding-exp-03-07", "gemini-embedding-exp-03-07"
|
386
|
+
),
|
365
387
|
)
|
388
|
+
for i in (128, 256, 512, 1024, 2048):
|
389
|
+
register(
|
390
|
+
GeminiEmbeddingModel(
|
391
|
+
f"gemini-embedding-exp-03-07-{i}", f"gemini-embedding-exp-03-07", i
|
392
|
+
),
|
393
|
+
)
|
366
394
|
|
367
395
|
|
368
396
|
class GeminiEmbeddingModel(llm.EmbeddingModel):
|
@@ -370,9 +398,10 @@ class GeminiEmbeddingModel(llm.EmbeddingModel):
|
|
370
398
|
key_env_var = "LLM_GEMINI_KEY"
|
371
399
|
batch_size = 20
|
372
400
|
|
373
|
-
def __init__(self, model_id, gemini_model_id):
|
401
|
+
def __init__(self, model_id, gemini_model_id, truncate=None):
|
374
402
|
self.model_id = model_id
|
375
403
|
self.gemini_model_id = gemini_model_id
|
404
|
+
self.truncate = truncate
|
376
405
|
|
377
406
|
def embed_batch(self, items):
|
378
407
|
headers = {
|
@@ -398,4 +427,7 @@ class GeminiEmbeddingModel(llm.EmbeddingModel):
|
|
398
427
|
)
|
399
428
|
|
400
429
|
response.raise_for_status()
|
401
|
-
|
430
|
+
values = [item["values"] for item in response.json()["embeddings"]]
|
431
|
+
if self.truncate:
|
432
|
+
values = [value[: self.truncate] for value in values]
|
433
|
+
return values
|
@@ -1,7 +0,0 @@
|
|
1
|
-
llm_gemini.py,sha256=M4_OIzaF3ytfrCdQ_md9sS6ViDN38JlP9aaykY5Ct0E,13634
|
2
|
-
llm_gemini-0.13a0.dist-info/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
|
3
|
-
llm_gemini-0.13a0.dist-info/METADATA,sha256=_SbfjPGKz4M4Wfvd6p8zyx37qOF99R-aTBxGQ0lnGHY,7018
|
4
|
-
llm_gemini-0.13a0.dist-info/WHEEL,sha256=jB7zZ3N9hIM9adW7qlTAyycLYW9npaWKLRzaoVcLKcM,91
|
5
|
-
llm_gemini-0.13a0.dist-info/entry_points.txt,sha256=n544bpgUPIBc5l_cnwsTxPc3gMGJHPtAyqBNp-CkMWk,26
|
6
|
-
llm_gemini-0.13a0.dist-info/top_level.txt,sha256=WUQmG6_2QKbT_8W4HH93qyKl_0SUteL4Ra6_PhyNGKU,11
|
7
|
-
llm_gemini-0.13a0.dist-info/RECORD,,
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|