llama-stack 0.4.4__py3-none-any.whl → 0.5.0rc1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- llama_stack/cli/stack/_list_deps.py +11 -7
- llama_stack/cli/stack/run.py +3 -25
- llama_stack/core/access_control/datatypes.py +78 -0
- llama_stack/core/configure.py +2 -2
- llama_stack/{distributions/meta-reference-gpu → core/connectors}/__init__.py +3 -1
- llama_stack/core/connectors/connectors.py +162 -0
- llama_stack/core/conversations/conversations.py +61 -58
- llama_stack/core/datatypes.py +54 -8
- llama_stack/core/library_client.py +60 -13
- llama_stack/core/prompts/prompts.py +43 -42
- llama_stack/core/routers/datasets.py +20 -17
- llama_stack/core/routers/eval_scoring.py +143 -53
- llama_stack/core/routers/inference.py +20 -9
- llama_stack/core/routers/safety.py +30 -42
- llama_stack/core/routers/vector_io.py +15 -7
- llama_stack/core/routing_tables/models.py +42 -3
- llama_stack/core/routing_tables/scoring_functions.py +19 -19
- llama_stack/core/routing_tables/shields.py +20 -17
- llama_stack/core/routing_tables/vector_stores.py +8 -5
- llama_stack/core/server/auth.py +192 -17
- llama_stack/core/server/fastapi_router_registry.py +40 -5
- llama_stack/core/server/server.py +24 -5
- llama_stack/core/stack.py +54 -10
- llama_stack/core/storage/datatypes.py +9 -0
- llama_stack/core/store/registry.py +1 -1
- llama_stack/core/utils/exec.py +2 -2
- llama_stack/core/utils/type_inspection.py +16 -2
- llama_stack/distributions/dell/config.yaml +4 -1
- llama_stack/distributions/dell/run-with-safety.yaml +4 -1
- llama_stack/distributions/nvidia/config.yaml +4 -1
- llama_stack/distributions/nvidia/run-with-safety.yaml +4 -1
- llama_stack/distributions/oci/config.yaml +4 -1
- llama_stack/distributions/open-benchmark/config.yaml +9 -1
- llama_stack/distributions/postgres-demo/config.yaml +1 -1
- llama_stack/distributions/starter/build.yaml +62 -0
- llama_stack/distributions/starter/config.yaml +22 -3
- llama_stack/distributions/starter/run-with-postgres-store.yaml +22 -3
- llama_stack/distributions/starter/starter.py +13 -1
- llama_stack/distributions/starter-gpu/build.yaml +62 -0
- llama_stack/distributions/starter-gpu/config.yaml +22 -3
- llama_stack/distributions/starter-gpu/run-with-postgres-store.yaml +22 -3
- llama_stack/distributions/template.py +10 -2
- llama_stack/distributions/watsonx/config.yaml +4 -1
- llama_stack/log.py +1 -0
- llama_stack/providers/inline/agents/meta_reference/__init__.py +1 -0
- llama_stack/providers/inline/agents/meta_reference/agents.py +57 -61
- llama_stack/providers/inline/agents/meta_reference/responses/openai_responses.py +49 -51
- llama_stack/providers/inline/agents/meta_reference/responses/streaming.py +94 -22
- llama_stack/providers/inline/agents/meta_reference/responses/types.py +2 -1
- llama_stack/providers/inline/agents/meta_reference/responses/utils.py +4 -1
- llama_stack/providers/inline/agents/meta_reference/safety.py +2 -2
- llama_stack/providers/inline/batches/reference/batches.py +2 -1
- llama_stack/providers/inline/eval/meta_reference/eval.py +40 -32
- llama_stack/providers/inline/post_training/huggingface/post_training.py +33 -38
- llama_stack/providers/inline/post_training/huggingface/utils.py +2 -5
- llama_stack/providers/inline/post_training/torchtune/post_training.py +28 -33
- llama_stack/providers/inline/post_training/torchtune/recipes/lora_finetuning_single_device.py +2 -4
- llama_stack/providers/inline/safety/code_scanner/code_scanner.py +12 -15
- llama_stack/providers/inline/safety/llama_guard/llama_guard.py +15 -18
- llama_stack/providers/inline/safety/prompt_guard/prompt_guard.py +11 -17
- llama_stack/providers/inline/scoring/basic/scoring.py +13 -17
- llama_stack/providers/inline/scoring/braintrust/braintrust.py +15 -15
- llama_stack/providers/inline/scoring/llm_as_judge/scoring.py +13 -17
- llama_stack/providers/inline/vector_io/sqlite_vec/sqlite_vec.py +1 -1
- llama_stack/providers/registry/agents.py +1 -0
- llama_stack/providers/registry/inference.py +1 -9
- llama_stack/providers/registry/vector_io.py +136 -16
- llama_stack/providers/remote/eval/nvidia/eval.py +22 -21
- llama_stack/providers/remote/files/s3/config.py +5 -3
- llama_stack/providers/remote/files/s3/files.py +2 -2
- llama_stack/providers/remote/inference/gemini/gemini.py +4 -0
- llama_stack/providers/remote/inference/openai/openai.py +2 -0
- llama_stack/providers/remote/inference/together/together.py +4 -0
- llama_stack/providers/remote/inference/vertexai/config.py +3 -3
- llama_stack/providers/remote/inference/vertexai/vertexai.py +5 -2
- llama_stack/providers/remote/inference/vllm/config.py +37 -18
- llama_stack/providers/remote/inference/vllm/vllm.py +0 -3
- llama_stack/providers/remote/inference/watsonx/watsonx.py +4 -0
- llama_stack/providers/remote/post_training/nvidia/post_training.py +31 -33
- llama_stack/providers/remote/safety/bedrock/bedrock.py +10 -27
- llama_stack/providers/remote/safety/nvidia/nvidia.py +9 -25
- llama_stack/providers/remote/safety/sambanova/sambanova.py +13 -11
- llama_stack/providers/remote/vector_io/elasticsearch/__init__.py +17 -0
- llama_stack/providers/remote/vector_io/elasticsearch/config.py +32 -0
- llama_stack/providers/remote/vector_io/elasticsearch/elasticsearch.py +463 -0
- llama_stack/providers/remote/vector_io/oci/__init__.py +22 -0
- llama_stack/providers/remote/vector_io/oci/config.py +41 -0
- llama_stack/providers/remote/vector_io/oci/oci26ai.py +595 -0
- llama_stack/providers/remote/vector_io/pgvector/config.py +69 -2
- llama_stack/providers/remote/vector_io/pgvector/pgvector.py +255 -6
- llama_stack/providers/remote/vector_io/qdrant/qdrant.py +62 -38
- llama_stack/providers/utils/bedrock/client.py +3 -3
- llama_stack/providers/utils/bedrock/config.py +7 -7
- llama_stack/providers/utils/inference/embedding_mixin.py +4 -0
- llama_stack/providers/utils/inference/http_client.py +239 -0
- llama_stack/providers/utils/inference/litellm_openai_mixin.py +5 -0
- llama_stack/providers/utils/inference/model_registry.py +148 -2
- llama_stack/providers/utils/inference/openai_compat.py +2 -1
- llama_stack/providers/utils/inference/openai_mixin.py +41 -2
- llama_stack/providers/utils/memory/openai_vector_store_mixin.py +92 -5
- llama_stack/providers/utils/memory/vector_store.py +46 -19
- llama_stack/providers/utils/responses/responses_store.py +7 -7
- llama_stack/providers/utils/safety.py +114 -0
- llama_stack/providers/utils/tools/mcp.py +44 -3
- llama_stack/testing/api_recorder.py +9 -3
- {llama_stack-0.4.4.dist-info → llama_stack-0.5.0rc1.dist-info}/METADATA +14 -2
- {llama_stack-0.4.4.dist-info → llama_stack-0.5.0rc1.dist-info}/RECORD +111 -144
- llama_stack/distributions/meta-reference-gpu/config.yaml +0 -140
- llama_stack/distributions/meta-reference-gpu/doc_template.md +0 -119
- llama_stack/distributions/meta-reference-gpu/meta_reference.py +0 -163
- llama_stack/distributions/meta-reference-gpu/run-with-safety.yaml +0 -155
- llama_stack/models/llama/hadamard_utils.py +0 -88
- llama_stack/models/llama/llama3/args.py +0 -74
- llama_stack/models/llama/llama3/dog.jpg +0 -0
- llama_stack/models/llama/llama3/generation.py +0 -378
- llama_stack/models/llama/llama3/model.py +0 -304
- llama_stack/models/llama/llama3/multimodal/__init__.py +0 -12
- llama_stack/models/llama/llama3/multimodal/encoder_utils.py +0 -180
- llama_stack/models/llama/llama3/multimodal/image_transform.py +0 -409
- llama_stack/models/llama/llama3/multimodal/model.py +0 -1430
- llama_stack/models/llama/llama3/multimodal/utils.py +0 -26
- llama_stack/models/llama/llama3/pasta.jpeg +0 -0
- llama_stack/models/llama/llama3/quantization/__init__.py +0 -5
- llama_stack/models/llama/llama3/quantization/loader.py +0 -316
- llama_stack/models/llama/llama3_1/__init__.py +0 -12
- llama_stack/models/llama/llama3_1/prompt_format.md +0 -358
- llama_stack/models/llama/llama3_1/prompts.py +0 -258
- llama_stack/models/llama/llama3_2/__init__.py +0 -5
- llama_stack/models/llama/llama3_2/prompts_text.py +0 -229
- llama_stack/models/llama/llama3_2/prompts_vision.py +0 -126
- llama_stack/models/llama/llama3_2/text_prompt_format.md +0 -286
- llama_stack/models/llama/llama3_2/vision_prompt_format.md +0 -141
- llama_stack/models/llama/llama3_3/__init__.py +0 -5
- llama_stack/models/llama/llama3_3/prompts.py +0 -259
- llama_stack/models/llama/llama4/args.py +0 -107
- llama_stack/models/llama/llama4/ffn.py +0 -58
- llama_stack/models/llama/llama4/moe.py +0 -214
- llama_stack/models/llama/llama4/preprocess.py +0 -435
- llama_stack/models/llama/llama4/quantization/__init__.py +0 -5
- llama_stack/models/llama/llama4/quantization/loader.py +0 -226
- llama_stack/models/llama/llama4/vision/__init__.py +0 -5
- llama_stack/models/llama/llama4/vision/embedding.py +0 -210
- llama_stack/models/llama/llama4/vision/encoder.py +0 -412
- llama_stack/models/llama/quantize_impls.py +0 -316
- llama_stack/providers/inline/inference/meta_reference/__init__.py +0 -20
- llama_stack/providers/inline/inference/meta_reference/common.py +0 -24
- llama_stack/providers/inline/inference/meta_reference/config.py +0 -68
- llama_stack/providers/inline/inference/meta_reference/generators.py +0 -201
- llama_stack/providers/inline/inference/meta_reference/inference.py +0 -542
- llama_stack/providers/inline/inference/meta_reference/model_parallel.py +0 -77
- llama_stack/providers/inline/inference/meta_reference/parallel_utils.py +0 -353
- {llama_stack-0.4.4.dist-info → llama_stack-0.5.0rc1.dist-info}/WHEEL +0 -0
- {llama_stack-0.4.4.dist-info → llama_stack-0.5.0rc1.dist-info}/entry_points.txt +0 -0
- {llama_stack-0.4.4.dist-info → llama_stack-0.5.0rc1.dist-info}/licenses/LICENSE +0 -0
- {llama_stack-0.4.4.dist-info → llama_stack-0.5.0rc1.dist-info}/top_level.txt +0 -0
|
@@ -7,7 +7,6 @@
|
|
|
7
7
|
import re
|
|
8
8
|
import uuid
|
|
9
9
|
from string import Template
|
|
10
|
-
from typing import Any
|
|
11
10
|
|
|
12
11
|
from llama_stack.core.datatypes import Api
|
|
13
12
|
from llama_stack.log import get_logger
|
|
@@ -17,6 +16,7 @@ from llama_stack.providers.utils.inference.prompt_adapter import (
|
|
|
17
16
|
interleaved_content_as_str,
|
|
18
17
|
)
|
|
19
18
|
from llama_stack_api import (
|
|
19
|
+
GetShieldRequest,
|
|
20
20
|
ImageContentItem,
|
|
21
21
|
Inference,
|
|
22
22
|
ModerationObject,
|
|
@@ -24,6 +24,8 @@ from llama_stack_api import (
|
|
|
24
24
|
OpenAIChatCompletionRequestWithExtraBody,
|
|
25
25
|
OpenAIMessageParam,
|
|
26
26
|
OpenAIUserMessageParam,
|
|
27
|
+
RunModerationRequest,
|
|
28
|
+
RunShieldRequest,
|
|
27
29
|
RunShieldResponse,
|
|
28
30
|
Safety,
|
|
29
31
|
SafetyViolation,
|
|
@@ -161,17 +163,12 @@ class LlamaGuardSafetyImpl(Safety, ShieldsProtocolPrivate):
|
|
|
161
163
|
# The routing table handles the removal from the registry
|
|
162
164
|
pass
|
|
163
165
|
|
|
164
|
-
async def run_shield(
|
|
165
|
-
self
|
|
166
|
-
shield_id: str,
|
|
167
|
-
messages: list[OpenAIMessageParam],
|
|
168
|
-
params: dict[str, Any] = None,
|
|
169
|
-
) -> RunShieldResponse:
|
|
170
|
-
shield = await self.shield_store.get_shield(shield_id)
|
|
166
|
+
async def run_shield(self, request: RunShieldRequest) -> RunShieldResponse:
|
|
167
|
+
shield = await self.shield_store.get_shield(GetShieldRequest(identifier=request.shield_id))
|
|
171
168
|
if not shield:
|
|
172
|
-
raise ValueError(f"Unknown shield {shield_id}")
|
|
169
|
+
raise ValueError(f"Unknown shield {request.shield_id}")
|
|
173
170
|
|
|
174
|
-
messages = messages.copy()
|
|
171
|
+
messages = request.messages.copy()
|
|
175
172
|
# some shields like llama-guard require the first message to be a user message
|
|
176
173
|
# since this might be a tool call, first role might not be user
|
|
177
174
|
if len(messages) > 0 and messages[0].role != "user":
|
|
@@ -200,30 +197,30 @@ class LlamaGuardSafetyImpl(Safety, ShieldsProtocolPrivate):
|
|
|
200
197
|
|
|
201
198
|
return await impl.run(messages)
|
|
202
199
|
|
|
203
|
-
async def run_moderation(self,
|
|
204
|
-
if model is None:
|
|
200
|
+
async def run_moderation(self, request: RunModerationRequest) -> ModerationObject:
|
|
201
|
+
if request.model is None:
|
|
205
202
|
raise ValueError("Llama Guard moderation requires a model identifier.")
|
|
206
203
|
|
|
207
|
-
if isinstance(input, list):
|
|
208
|
-
messages = input.copy()
|
|
204
|
+
if isinstance(request.input, list):
|
|
205
|
+
messages = request.input.copy()
|
|
209
206
|
else:
|
|
210
|
-
messages = [input]
|
|
207
|
+
messages = [request.input]
|
|
211
208
|
|
|
212
209
|
# convert to user messages format with role
|
|
213
210
|
messages = [OpenAIUserMessageParam(content=m) for m in messages]
|
|
214
211
|
|
|
215
212
|
# Determine safety categories based on the model type
|
|
216
213
|
# For known Llama Guard models, use specific categories
|
|
217
|
-
if model in LLAMA_GUARD_MODEL_IDS:
|
|
214
|
+
if request.model in LLAMA_GUARD_MODEL_IDS:
|
|
218
215
|
# Use the mapped model for categories but the original model_id for inference
|
|
219
|
-
mapped_model = LLAMA_GUARD_MODEL_IDS[model]
|
|
216
|
+
mapped_model = LLAMA_GUARD_MODEL_IDS[request.model]
|
|
220
217
|
safety_categories = MODEL_TO_SAFETY_CATEGORIES_MAP.get(mapped_model, DEFAULT_LG_V3_SAFETY_CATEGORIES)
|
|
221
218
|
else:
|
|
222
219
|
# For unknown models, use default Llama Guard 3 8B categories
|
|
223
220
|
safety_categories = DEFAULT_LG_V3_SAFETY_CATEGORIES + [CAT_CODE_INTERPRETER_ABUSE]
|
|
224
221
|
|
|
225
222
|
impl = LlamaGuardShield(
|
|
226
|
-
model=model,
|
|
223
|
+
model=request.model,
|
|
227
224
|
inference_api=self.inference_api,
|
|
228
225
|
excluded_categories=self.config.excluded_categories,
|
|
229
226
|
safety_categories=safety_categories,
|
|
@@ -4,17 +4,19 @@
|
|
|
4
4
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
5
5
|
# the root directory of this source tree.
|
|
6
6
|
|
|
7
|
-
from typing import Any
|
|
8
|
-
|
|
9
7
|
import torch
|
|
10
8
|
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
|
11
9
|
|
|
12
10
|
from llama_stack.core.utils.model_utils import model_local_dir
|
|
13
11
|
from llama_stack.log import get_logger
|
|
14
|
-
from llama_stack.providers.utils.inference.prompt_adapter import
|
|
12
|
+
from llama_stack.providers.utils.inference.prompt_adapter import (
|
|
13
|
+
interleaved_content_as_str,
|
|
14
|
+
)
|
|
15
|
+
from llama_stack.providers.utils.safety import ShieldToModerationMixin
|
|
15
16
|
from llama_stack_api import (
|
|
16
|
-
|
|
17
|
+
GetShieldRequest,
|
|
17
18
|
OpenAIMessageParam,
|
|
19
|
+
RunShieldRequest,
|
|
18
20
|
RunShieldResponse,
|
|
19
21
|
Safety,
|
|
20
22
|
SafetyViolation,
|
|
@@ -31,7 +33,7 @@ log = get_logger(name=__name__, category="safety")
|
|
|
31
33
|
PROMPT_GUARD_MODEL = "Prompt-Guard-86M"
|
|
32
34
|
|
|
33
35
|
|
|
34
|
-
class PromptGuardSafetyImpl(Safety, ShieldsProtocolPrivate):
|
|
36
|
+
class PromptGuardSafetyImpl(ShieldToModerationMixin, Safety, ShieldsProtocolPrivate):
|
|
35
37
|
shield_store: ShieldStore
|
|
36
38
|
|
|
37
39
|
def __init__(self, config: PromptGuardConfig, _deps) -> None:
|
|
@@ -51,20 +53,12 @@ class PromptGuardSafetyImpl(Safety, ShieldsProtocolPrivate):
|
|
|
51
53
|
async def unregister_shield(self, identifier: str) -> None:
|
|
52
54
|
pass
|
|
53
55
|
|
|
54
|
-
async def run_shield(
|
|
55
|
-
self
|
|
56
|
-
shield_id: str,
|
|
57
|
-
messages: list[OpenAIMessageParam],
|
|
58
|
-
params: dict[str, Any],
|
|
59
|
-
) -> RunShieldResponse:
|
|
60
|
-
shield = await self.shield_store.get_shield(shield_id)
|
|
56
|
+
async def run_shield(self, request: RunShieldRequest) -> RunShieldResponse:
|
|
57
|
+
shield = await self.shield_store.get_shield(GetShieldRequest(identifier=request.shield_id))
|
|
61
58
|
if not shield:
|
|
62
|
-
raise ValueError(f"Unknown shield {shield_id}")
|
|
63
|
-
|
|
64
|
-
return await self.shield.run(messages)
|
|
59
|
+
raise ValueError(f"Unknown shield {request.shield_id}")
|
|
65
60
|
|
|
66
|
-
|
|
67
|
-
raise NotImplementedError("run_moderation is not implemented for Prompt Guard")
|
|
61
|
+
return await self.shield.run(request.messages)
|
|
68
62
|
|
|
69
63
|
|
|
70
64
|
class PromptGuardShield:
|
|
@@ -3,16 +3,17 @@
|
|
|
3
3
|
#
|
|
4
4
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
5
5
|
# the root directory of this source tree.
|
|
6
|
-
from typing import Any
|
|
7
6
|
|
|
8
7
|
from llama_stack_api import (
|
|
9
8
|
DatasetIO,
|
|
10
9
|
Datasets,
|
|
10
|
+
IterRowsRequest,
|
|
11
|
+
ScoreBatchRequest,
|
|
11
12
|
ScoreBatchResponse,
|
|
13
|
+
ScoreRequest,
|
|
12
14
|
ScoreResponse,
|
|
13
15
|
Scoring,
|
|
14
16
|
ScoringFn,
|
|
15
|
-
ScoringFnParams,
|
|
16
17
|
ScoringFunctionsProtocolPrivate,
|
|
17
18
|
ScoringResult,
|
|
18
19
|
)
|
|
@@ -75,19 +76,15 @@ class BasicScoringImpl(
|
|
|
75
76
|
|
|
76
77
|
async def score_batch(
|
|
77
78
|
self,
|
|
78
|
-
|
|
79
|
-
scoring_functions: dict[str, ScoringFnParams | None] = None,
|
|
80
|
-
save_results_dataset: bool = False,
|
|
79
|
+
request: ScoreBatchRequest,
|
|
81
80
|
) -> ScoreBatchResponse:
|
|
82
|
-
all_rows = await self.datasetio_api.iterrows(
|
|
83
|
-
|
|
84
|
-
limit=-1,
|
|
85
|
-
)
|
|
86
|
-
res = await self.score(
|
|
81
|
+
all_rows = await self.datasetio_api.iterrows(IterRowsRequest(dataset_id=request.dataset_id, limit=-1))
|
|
82
|
+
score_request = ScoreRequest(
|
|
87
83
|
input_rows=all_rows.data,
|
|
88
|
-
scoring_functions=scoring_functions,
|
|
84
|
+
scoring_functions=request.scoring_functions,
|
|
89
85
|
)
|
|
90
|
-
|
|
86
|
+
res = await self.score(score_request)
|
|
87
|
+
if request.save_results_dataset:
|
|
91
88
|
# TODO: persist and register dataset on to server for reading
|
|
92
89
|
# self.datasets_api.register_dataset()
|
|
93
90
|
raise NotImplementedError("Save results dataset not implemented yet")
|
|
@@ -98,16 +95,15 @@ class BasicScoringImpl(
|
|
|
98
95
|
|
|
99
96
|
async def score(
|
|
100
97
|
self,
|
|
101
|
-
|
|
102
|
-
scoring_functions: dict[str, ScoringFnParams | None] = None,
|
|
98
|
+
request: ScoreRequest,
|
|
103
99
|
) -> ScoreResponse:
|
|
104
100
|
res = {}
|
|
105
|
-
for scoring_fn_id in scoring_functions.keys():
|
|
101
|
+
for scoring_fn_id in request.scoring_functions.keys():
|
|
106
102
|
if scoring_fn_id not in self.scoring_fn_id_impls:
|
|
107
103
|
raise ValueError(f"Scoring function {scoring_fn_id} is not supported.")
|
|
108
104
|
scoring_fn = self.scoring_fn_id_impls[scoring_fn_id]
|
|
109
|
-
scoring_fn_params = scoring_functions.get(scoring_fn_id, None)
|
|
110
|
-
score_results = await scoring_fn.score(input_rows, scoring_fn_id, scoring_fn_params)
|
|
105
|
+
scoring_fn_params = request.scoring_functions.get(scoring_fn_id, None)
|
|
106
|
+
score_results = await scoring_fn.score(request.input_rows, scoring_fn_id, scoring_fn_params)
|
|
111
107
|
agg_results = await scoring_fn.aggregate(score_results, scoring_fn_id, scoring_fn_params)
|
|
112
108
|
res[scoring_fn_id] = ScoringResult(
|
|
113
109
|
score_rows=score_results,
|
|
@@ -29,11 +29,13 @@ from llama_stack.providers.utils.scoring.aggregation_utils import aggregate_metr
|
|
|
29
29
|
from llama_stack_api import (
|
|
30
30
|
DatasetIO,
|
|
31
31
|
Datasets,
|
|
32
|
+
IterRowsRequest,
|
|
33
|
+
ScoreBatchRequest,
|
|
32
34
|
ScoreBatchResponse,
|
|
35
|
+
ScoreRequest,
|
|
33
36
|
ScoreResponse,
|
|
34
37
|
Scoring,
|
|
35
38
|
ScoringFn,
|
|
36
|
-
ScoringFnParams,
|
|
37
39
|
ScoringFunctionsProtocolPrivate,
|
|
38
40
|
ScoringResult,
|
|
39
41
|
ScoringResultRow,
|
|
@@ -158,18 +160,17 @@ class BraintrustScoringImpl(
|
|
|
158
160
|
|
|
159
161
|
async def score_batch(
|
|
160
162
|
self,
|
|
161
|
-
|
|
162
|
-
scoring_functions: dict[str, ScoringFnParams | None],
|
|
163
|
-
save_results_dataset: bool = False,
|
|
163
|
+
request: ScoreBatchRequest,
|
|
164
164
|
) -> ScoreBatchResponse:
|
|
165
165
|
await self.set_api_key()
|
|
166
166
|
|
|
167
|
-
all_rows = await self.datasetio_api.iterrows(
|
|
168
|
-
|
|
169
|
-
|
|
167
|
+
all_rows = await self.datasetio_api.iterrows(IterRowsRequest(dataset_id=request.dataset_id, limit=-1))
|
|
168
|
+
score_request = ScoreRequest(
|
|
169
|
+
input_rows=all_rows.data,
|
|
170
|
+
scoring_functions=request.scoring_functions,
|
|
170
171
|
)
|
|
171
|
-
res = await self.score(
|
|
172
|
-
if save_results_dataset:
|
|
172
|
+
res = await self.score(score_request)
|
|
173
|
+
if request.save_results_dataset:
|
|
173
174
|
# TODO: persist and register dataset on to server for reading
|
|
174
175
|
# self.datasets_api.register_dataset()
|
|
175
176
|
raise NotImplementedError("Save results dataset not implemented yet")
|
|
@@ -198,21 +199,20 @@ class BraintrustScoringImpl(
|
|
|
198
199
|
|
|
199
200
|
async def score(
|
|
200
201
|
self,
|
|
201
|
-
|
|
202
|
-
scoring_functions: dict[str, ScoringFnParams | None],
|
|
202
|
+
request: ScoreRequest,
|
|
203
203
|
) -> ScoreResponse:
|
|
204
204
|
await self.set_api_key()
|
|
205
205
|
res = {}
|
|
206
|
-
for scoring_fn_id in scoring_functions:
|
|
206
|
+
for scoring_fn_id in request.scoring_functions:
|
|
207
207
|
if scoring_fn_id not in self.supported_fn_defs_registry:
|
|
208
208
|
raise ValueError(f"Scoring function {scoring_fn_id} is not supported.")
|
|
209
209
|
|
|
210
|
-
score_results = [await self.score_row(input_row, scoring_fn_id) for input_row in input_rows]
|
|
210
|
+
score_results = [await self.score_row(input_row, scoring_fn_id) for input_row in request.input_rows]
|
|
211
211
|
aggregation_functions = self.supported_fn_defs_registry[scoring_fn_id].params.aggregation_functions
|
|
212
212
|
|
|
213
213
|
# override scoring_fn params if provided
|
|
214
|
-
if scoring_functions[scoring_fn_id] is not None:
|
|
215
|
-
override_params = scoring_functions[scoring_fn_id]
|
|
214
|
+
if request.scoring_functions[scoring_fn_id] is not None:
|
|
215
|
+
override_params = request.scoring_functions[scoring_fn_id]
|
|
216
216
|
if override_params.aggregation_functions:
|
|
217
217
|
aggregation_functions = override_params.aggregation_functions
|
|
218
218
|
|
|
@@ -3,17 +3,18 @@
|
|
|
3
3
|
#
|
|
4
4
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
5
5
|
# the root directory of this source tree.
|
|
6
|
-
from typing import Any
|
|
7
6
|
|
|
8
7
|
from llama_stack_api import (
|
|
9
8
|
DatasetIO,
|
|
10
9
|
Datasets,
|
|
11
10
|
Inference,
|
|
11
|
+
IterRowsRequest,
|
|
12
|
+
ScoreBatchRequest,
|
|
12
13
|
ScoreBatchResponse,
|
|
14
|
+
ScoreRequest,
|
|
13
15
|
ScoreResponse,
|
|
14
16
|
Scoring,
|
|
15
17
|
ScoringFn,
|
|
16
|
-
ScoringFnParams,
|
|
17
18
|
ScoringFunctionsProtocolPrivate,
|
|
18
19
|
ScoringResult,
|
|
19
20
|
)
|
|
@@ -64,19 +65,15 @@ class LlmAsJudgeScoringImpl(
|
|
|
64
65
|
|
|
65
66
|
async def score_batch(
|
|
66
67
|
self,
|
|
67
|
-
|
|
68
|
-
scoring_functions: dict[str, ScoringFnParams | None] = None,
|
|
69
|
-
save_results_dataset: bool = False,
|
|
68
|
+
request: ScoreBatchRequest,
|
|
70
69
|
) -> ScoreBatchResponse:
|
|
71
|
-
all_rows = await self.datasetio_api.iterrows(
|
|
72
|
-
|
|
73
|
-
limit=-1,
|
|
74
|
-
)
|
|
75
|
-
res = await self.score(
|
|
70
|
+
all_rows = await self.datasetio_api.iterrows(IterRowsRequest(dataset_id=request.dataset_id, limit=-1))
|
|
71
|
+
score_request = ScoreRequest(
|
|
76
72
|
input_rows=all_rows.data,
|
|
77
|
-
scoring_functions=scoring_functions,
|
|
73
|
+
scoring_functions=request.scoring_functions,
|
|
78
74
|
)
|
|
79
|
-
|
|
75
|
+
res = await self.score(score_request)
|
|
76
|
+
if request.save_results_dataset:
|
|
80
77
|
# TODO: persist and register dataset on to server for reading
|
|
81
78
|
# self.datasets_api.register_dataset()
|
|
82
79
|
raise NotImplementedError("Save results dataset not implemented yet")
|
|
@@ -87,14 +84,13 @@ class LlmAsJudgeScoringImpl(
|
|
|
87
84
|
|
|
88
85
|
async def score(
|
|
89
86
|
self,
|
|
90
|
-
|
|
91
|
-
scoring_functions: dict[str, ScoringFnParams | None] = None,
|
|
87
|
+
request: ScoreRequest,
|
|
92
88
|
) -> ScoreResponse:
|
|
93
89
|
res = {}
|
|
94
|
-
for scoring_fn_id in scoring_functions.keys():
|
|
90
|
+
for scoring_fn_id in request.scoring_functions.keys():
|
|
95
91
|
scoring_fn = self.llm_as_judge_fn
|
|
96
|
-
scoring_fn_params = scoring_functions.get(scoring_fn_id, None)
|
|
97
|
-
score_results = await scoring_fn.score(input_rows, scoring_fn_id, scoring_fn_params)
|
|
92
|
+
scoring_fn_params = request.scoring_functions.get(scoring_fn_id, None)
|
|
93
|
+
score_results = await scoring_fn.score(request.input_rows, scoring_fn_id, scoring_fn_params)
|
|
98
94
|
agg_results = await scoring_fn.aggregate(score_results, scoring_fn_id, scoring_fn_params)
|
|
99
95
|
res[scoring_fn_id] = ScoringResult(
|
|
100
96
|
score_rows=score_results,
|
|
@@ -59,7 +59,7 @@ def serialize_vector(vector: list[float]) -> bytes:
|
|
|
59
59
|
return struct.pack(f"{len(vector)}f", *vector)
|
|
60
60
|
|
|
61
61
|
|
|
62
|
-
def _create_sqlite_connection(db_path):
|
|
62
|
+
def _create_sqlite_connection(db_path: str):
|
|
63
63
|
"""Create a SQLite connection with sqlite_vec extension loaded."""
|
|
64
64
|
connection = sqlite3.connect(db_path)
|
|
65
65
|
connection.enable_load_extension(True)
|
|
@@ -28,14 +28,6 @@ META_REFERENCE_DEPS = [
|
|
|
28
28
|
|
|
29
29
|
def available_providers() -> list[ProviderSpec]:
|
|
30
30
|
return [
|
|
31
|
-
InlineProviderSpec(
|
|
32
|
-
api=Api.inference,
|
|
33
|
-
provider_type="inline::meta-reference",
|
|
34
|
-
pip_packages=META_REFERENCE_DEPS,
|
|
35
|
-
module="llama_stack.providers.inline.inference.meta_reference",
|
|
36
|
-
config_class="llama_stack.providers.inline.inference.meta_reference.MetaReferenceInferenceConfig",
|
|
37
|
-
description="Meta's reference implementation of inference with support for various model formats and optimization techniques.",
|
|
38
|
-
),
|
|
39
31
|
InlineProviderSpec(
|
|
40
32
|
api=Api.inference,
|
|
41
33
|
provider_type="inline::sentence-transformers",
|
|
@@ -223,7 +215,7 @@ def available_providers() -> list[ProviderSpec]:
|
|
|
223
215
|
|
|
224
216
|
Configuration:
|
|
225
217
|
- Set VERTEX_AI_PROJECT environment variable (required)
|
|
226
|
-
- Set VERTEX_AI_LOCATION environment variable (optional, defaults to
|
|
218
|
+
- Set VERTEX_AI_LOCATION environment variable (optional, defaults to global)
|
|
227
219
|
- Use Google Cloud Application Default Credentials or service account key
|
|
228
220
|
|
|
229
221
|
Authentication Setup:
|
|
@@ -419,6 +419,7 @@ There are three implementations of search for PGVectoIndex available:
|
|
|
419
419
|
- Semantic understanding - finds documents similar in meaning even if they don't share keywords
|
|
420
420
|
- Works with high-dimensional vector embeddings (typically 768, 1024, or higher dimensions)
|
|
421
421
|
- Best for: Finding conceptually related content, handling synonyms, cross-language search
|
|
422
|
+
- By default, Llama Stack creates a HNSW (Hierarchical Navigable Small Worlds) index on a column "embedding" in a vector store table enabling production-ready, performant and scalable vector search for large datasets out of the box.
|
|
422
423
|
|
|
423
424
|
2. Keyword Search
|
|
424
425
|
- How it works:
|
|
@@ -448,6 +449,7 @@ There are three implementations of search for PGVectoIndex available:
|
|
|
448
449
|
- Best for: General-purpose search where you want both precision and recall
|
|
449
450
|
|
|
450
451
|
4. Database Schema
|
|
452
|
+
|
|
451
453
|
The PGVector implementation stores data optimized for all three search types:
|
|
452
454
|
CREATE TABLE vector_store_xxx (
|
|
453
455
|
id TEXT PRIMARY KEY,
|
|
@@ -457,9 +459,6 @@ CREATE TABLE vector_store_xxx (
|
|
|
457
459
|
tokenized_content TSVECTOR -- For keyword search
|
|
458
460
|
);
|
|
459
461
|
|
|
460
|
-
-- Indexes for performance
|
|
461
|
-
CREATE INDEX content_gin_idx ON table USING GIN(tokenized_content); -- Keyword search
|
|
462
|
-
-- Vector index created automatically by pgvector
|
|
463
462
|
|
|
464
463
|
## Usage
|
|
465
464
|
|
|
@@ -469,32 +468,55 @@ To use PGVector in your Llama Stack project, follow these steps:
|
|
|
469
468
|
2. Configure your Llama Stack project to use pgvector. (e.g. remote::pgvector).
|
|
470
469
|
3. Start storing and querying vectors.
|
|
471
470
|
|
|
472
|
-
## This is an example how you can set up your environment for using PGVector
|
|
471
|
+
## This is an example how you can set up your environment for using PGVector (you can use either Podman or Docker)
|
|
473
472
|
|
|
474
|
-
1. Export
|
|
473
|
+
1. Export PGVector environment variables:
|
|
475
474
|
```bash
|
|
476
|
-
export
|
|
475
|
+
export PGVECTOR_DB=testvectordb
|
|
477
476
|
export PGVECTOR_HOST=localhost
|
|
478
477
|
export PGVECTOR_PORT=5432
|
|
479
|
-
export
|
|
480
|
-
export
|
|
481
|
-
export PGVECTOR_PASSWORD=llamastack
|
|
478
|
+
export PGVECTOR_USER=user
|
|
479
|
+
export PGVECTOR_PASSWORD=password
|
|
482
480
|
```
|
|
483
481
|
|
|
484
|
-
2.
|
|
482
|
+
2. Pull pgvector image with that tag you want:
|
|
483
|
+
|
|
484
|
+
Via Podman:
|
|
485
485
|
```bash
|
|
486
|
-
|
|
487
|
-
psql -h localhost -U postgres -c "CREATE DATABASE llamastack OWNER llamastack;"
|
|
488
|
-
psql -h localhost -U llamastack -d llamastack -c "CREATE EXTENSION IF NOT EXISTS vector;"
|
|
486
|
+
podman pull pgvector/pgvector:0.8.1-pg18-trixie
|
|
489
487
|
```
|
|
490
488
|
|
|
491
|
-
|
|
489
|
+
Via Docker:
|
|
490
|
+
```bash
|
|
491
|
+
docker pull pgvector/pgvector:0.8.1-pg18-trixie
|
|
492
|
+
```
|
|
493
|
+
|
|
494
|
+
3. Run container with PGVector:
|
|
492
495
|
|
|
493
|
-
|
|
496
|
+
Via Podman
|
|
497
|
+
```bash
|
|
498
|
+
podman run -d \
|
|
499
|
+
--name pgvector \
|
|
500
|
+
-e POSTGRES_PASSWORD=password \
|
|
501
|
+
-e POSTGRES_USER=user \
|
|
502
|
+
-e POSTGRES_DB=testvectordb \
|
|
503
|
+
-p 5432:5432 \
|
|
504
|
+
-v pgvector_data:/var/lib/postgresql \
|
|
505
|
+
pgvector/pgvector:0.8.1-pg18-trixie
|
|
506
|
+
```
|
|
494
507
|
|
|
508
|
+
Via Docker
|
|
495
509
|
```bash
|
|
496
|
-
docker
|
|
510
|
+
docker run -d \
|
|
511
|
+
--name pgvector \
|
|
512
|
+
-e POSTGRES_PASSWORD=password \
|
|
513
|
+
-e POSTGRES_USER=user \
|
|
514
|
+
-e POSTGRES_DB=testvectordb \
|
|
515
|
+
-p 5432:5432 \
|
|
516
|
+
-v pgvector_data:/var/lib/postgresql \
|
|
517
|
+
pgvector/pgvector:0.8.1-pg18-trixie
|
|
497
518
|
```
|
|
519
|
+
|
|
498
520
|
## Documentation
|
|
499
521
|
See [PGVector's documentation](https://github.com/pgvector/pgvector) for more details about PGVector in general.
|
|
500
522
|
""",
|
|
@@ -823,6 +845,104 @@ For more details on TLS configuration, refer to the [TLS setup guide](https://mi
|
|
|
823
845
|
optional_api_dependencies=[Api.files, Api.models],
|
|
824
846
|
description="""
|
|
825
847
|
Please refer to the remote provider documentation.
|
|
848
|
+
""",
|
|
849
|
+
),
|
|
850
|
+
RemoteProviderSpec(
|
|
851
|
+
api=Api.vector_io,
|
|
852
|
+
adapter_type="elasticsearch",
|
|
853
|
+
provider_type="remote::elasticsearch",
|
|
854
|
+
pip_packages=["elasticsearch>=8.16.0,<9.0.0"] + DEFAULT_VECTOR_IO_DEPS,
|
|
855
|
+
module="llama_stack.providers.remote.vector_io.elasticsearch",
|
|
856
|
+
config_class="llama_stack.providers.remote.vector_io.elasticsearch.ElasticsearchVectorIOConfig",
|
|
857
|
+
api_dependencies=[Api.inference],
|
|
858
|
+
optional_api_dependencies=[Api.files, Api.models],
|
|
859
|
+
description="""
|
|
860
|
+
[Elasticsearch](https://www.elastic.co/) is a vector database provider for Llama Stack.
|
|
861
|
+
It allows you to store and query vectors directly within an Elasticsearch database.
|
|
862
|
+
That means you're not limited to storing vectors in memory or in a separate service.
|
|
863
|
+
|
|
864
|
+
## Features
|
|
865
|
+
Elasticsearch supports:
|
|
866
|
+
- Store embeddings and their metadata
|
|
867
|
+
- Vector search
|
|
868
|
+
- Full-text search
|
|
869
|
+
- Fuzzy search
|
|
870
|
+
- Hybrid search
|
|
871
|
+
- Document storage
|
|
872
|
+
- Metadata filtering
|
|
873
|
+
- Inference service
|
|
874
|
+
- Machine Learning integrations
|
|
875
|
+
|
|
876
|
+
## Usage
|
|
877
|
+
|
|
878
|
+
To use Elasticsearch in your Llama Stack project, follow these steps:
|
|
879
|
+
|
|
880
|
+
1. Install the necessary dependencies.
|
|
881
|
+
2. Configure your Llama Stack project to use Elasticsearch.
|
|
882
|
+
3. Start storing and querying vectors.
|
|
883
|
+
|
|
884
|
+
## Installation
|
|
885
|
+
|
|
886
|
+
You can test Elasticsearch locally by running this script in the terminal:
|
|
887
|
+
|
|
888
|
+
```bash
|
|
889
|
+
curl -fsSL https://elastic.co/start-local | sh
|
|
890
|
+
```
|
|
891
|
+
|
|
892
|
+
Or you can [start a free trial](https://www.elastic.co/cloud/cloud-trial-overview?utm_campaign=llama-stack-integration) on Elastic Cloud.
|
|
893
|
+
For more information on how to deploy Elasticsearch, see the [official documentation](https://www.elastic.co/docs/deploy-manage/deploy).
|
|
894
|
+
|
|
895
|
+
## Documentation
|
|
896
|
+
See [Elasticsearch's documentation](https://www.elastic.co/docs/solutions/search) for more details about Elasticsearch in general.
|
|
897
|
+
""",
|
|
898
|
+
),
|
|
899
|
+
RemoteProviderSpec(
|
|
900
|
+
api=Api.vector_io,
|
|
901
|
+
adapter_type="oci",
|
|
902
|
+
provider_type="remote::oci",
|
|
903
|
+
pip_packages=["oracledb", "numpy"] + DEFAULT_VECTOR_IO_DEPS,
|
|
904
|
+
module="llama_stack.providers.remote.vector_io.oci",
|
|
905
|
+
config_class="llama_stack.providers.remote.vector_io.oci.OCI26aiVectorIOConfig",
|
|
906
|
+
api_dependencies=[Api.inference],
|
|
907
|
+
optional_api_dependencies=[Api.files, Api.models],
|
|
908
|
+
description="""
|
|
909
|
+
[Oracle 26ai](https://docs.oracle.com/en/database/oracle/oracle-database/26/index.html)
|
|
910
|
+
is a remote vector database provider for Llama Stack. It allows you to store and query vectors directly
|
|
911
|
+
in an Oracle 26ai database.
|
|
912
|
+
## Features
|
|
913
|
+
- Easy to use
|
|
914
|
+
- Fully integrated with Llama Stack
|
|
915
|
+
- Supports vector search, keyword search, and hybrid search
|
|
916
|
+
## Usage
|
|
917
|
+
To use Oracle 26ai in your Llama Stack project, follow these steps:
|
|
918
|
+
1. Install the necessary dependencies.
|
|
919
|
+
2. Configure your Llama Stack project to use Oracle 26ai.
|
|
920
|
+
3. Start storing and querying vectors.
|
|
921
|
+
## Installation
|
|
922
|
+
You can install the Oracle 26ai client using pip:
|
|
923
|
+
```bash
|
|
924
|
+
pip install oracledb
|
|
925
|
+
```
|
|
926
|
+
## Configuration
|
|
927
|
+
```yaml
|
|
928
|
+
vector_io:
|
|
929
|
+
- provider_id: oci
|
|
930
|
+
provider_type: remote::oci
|
|
931
|
+
config:
|
|
932
|
+
conn_str: "${env.OCI26AI_CONNECTION_STRING}"
|
|
933
|
+
user: "${env.OCI26AI_USER}"
|
|
934
|
+
password: "${env.OCI26AI_PASSWORD}"
|
|
935
|
+
tnsnames_loc: "${env.OCI26AI_TNSNAMES_LOC}"
|
|
936
|
+
ewallet_pem_loc: "${env.OCI26AI_EWALLET_PEM_LOC}"
|
|
937
|
+
ewallet_password: "${env.OCI26AI_EWALLET_PWD}"
|
|
938
|
+
vector_datatype: "${env.OCI26AI_VECTOR_DATATYPE:=FLOAT32}"
|
|
939
|
+
persistence:
|
|
940
|
+
namespace: vector_id::oci26ai
|
|
941
|
+
backend: kv_default
|
|
942
|
+
```
|
|
943
|
+
## Documentation
|
|
944
|
+
See the [Oracle 26ai documentation](https://docs.oracle.com/en/database/oracle/oracle-database/26/index.html)
|
|
945
|
+
for more details about Oracle 26ai in general.
|
|
826
946
|
""",
|
|
827
947
|
),
|
|
828
948
|
]
|