llama-stack 0.4.3__py3-none-any.whl → 0.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (311) hide show
  1. llama_stack/cli/stack/_list_deps.py +11 -7
  2. llama_stack/cli/stack/run.py +3 -25
  3. llama_stack/core/access_control/datatypes.py +78 -0
  4. llama_stack/core/configure.py +2 -2
  5. {llama_stack_api/internal → llama_stack/core/connectors}/__init__.py +2 -2
  6. llama_stack/core/connectors/connectors.py +162 -0
  7. llama_stack/core/conversations/conversations.py +61 -58
  8. llama_stack/core/datatypes.py +54 -8
  9. llama_stack/core/library_client.py +60 -13
  10. llama_stack/core/prompts/prompts.py +43 -42
  11. llama_stack/core/routers/datasets.py +20 -17
  12. llama_stack/core/routers/eval_scoring.py +143 -53
  13. llama_stack/core/routers/inference.py +20 -9
  14. llama_stack/core/routers/safety.py +30 -42
  15. llama_stack/core/routers/vector_io.py +15 -7
  16. llama_stack/core/routing_tables/models.py +42 -3
  17. llama_stack/core/routing_tables/scoring_functions.py +19 -19
  18. llama_stack/core/routing_tables/shields.py +20 -17
  19. llama_stack/core/routing_tables/vector_stores.py +8 -5
  20. llama_stack/core/server/auth.py +192 -17
  21. llama_stack/core/server/fastapi_router_registry.py +40 -5
  22. llama_stack/core/server/server.py +24 -5
  23. llama_stack/core/stack.py +54 -10
  24. llama_stack/core/storage/datatypes.py +9 -0
  25. llama_stack/core/store/registry.py +1 -1
  26. llama_stack/core/utils/exec.py +2 -2
  27. llama_stack/core/utils/type_inspection.py +16 -2
  28. llama_stack/distributions/dell/config.yaml +4 -1
  29. llama_stack/distributions/dell/doc_template.md +209 -0
  30. llama_stack/distributions/dell/run-with-safety.yaml +4 -1
  31. llama_stack/distributions/nvidia/config.yaml +4 -1
  32. llama_stack/distributions/nvidia/doc_template.md +170 -0
  33. llama_stack/distributions/nvidia/run-with-safety.yaml +4 -1
  34. llama_stack/distributions/oci/config.yaml +4 -1
  35. llama_stack/distributions/oci/doc_template.md +140 -0
  36. llama_stack/distributions/open-benchmark/config.yaml +9 -1
  37. llama_stack/distributions/postgres-demo/config.yaml +1 -1
  38. llama_stack/distributions/starter/build.yaml +62 -0
  39. llama_stack/distributions/starter/config.yaml +22 -3
  40. llama_stack/distributions/starter/run-with-postgres-store.yaml +22 -3
  41. llama_stack/distributions/starter/starter.py +13 -1
  42. llama_stack/distributions/starter-gpu/build.yaml +62 -0
  43. llama_stack/distributions/starter-gpu/config.yaml +22 -3
  44. llama_stack/distributions/starter-gpu/run-with-postgres-store.yaml +22 -3
  45. llama_stack/distributions/template.py +10 -2
  46. llama_stack/distributions/watsonx/config.yaml +4 -1
  47. llama_stack/log.py +1 -0
  48. llama_stack/models/llama/resources/dog.jpg +0 -0
  49. llama_stack/models/llama/resources/pasta.jpeg +0 -0
  50. llama_stack/models/llama/resources/small_dog.jpg +0 -0
  51. llama_stack/providers/inline/agents/meta_reference/__init__.py +1 -0
  52. llama_stack/providers/inline/agents/meta_reference/agents.py +58 -61
  53. llama_stack/providers/inline/agents/meta_reference/responses/openai_responses.py +187 -60
  54. llama_stack/providers/inline/agents/meta_reference/responses/streaming.py +99 -22
  55. llama_stack/providers/inline/agents/meta_reference/responses/types.py +2 -1
  56. llama_stack/providers/inline/agents/meta_reference/responses/utils.py +4 -1
  57. llama_stack/providers/inline/agents/meta_reference/safety.py +2 -2
  58. llama_stack/providers/inline/batches/reference/batches.py +2 -1
  59. llama_stack/providers/inline/eval/meta_reference/eval.py +40 -32
  60. llama_stack/providers/inline/ios/inference/LocalInferenceImpl/LocalInference.h +9 -0
  61. llama_stack/providers/inline/ios/inference/LocalInferenceImpl/LocalInference.swift +189 -0
  62. llama_stack/providers/inline/ios/inference/LocalInferenceImpl/Parsing.swift +238 -0
  63. llama_stack/providers/inline/ios/inference/LocalInferenceImpl/PromptTemplate.swift +12 -0
  64. llama_stack/providers/inline/ios/inference/LocalInferenceImpl/SystemPrompts.swift +89 -0
  65. llama_stack/providers/inline/ios/inference/LocalInferenceImpl.xcodeproj/project.pbxproj +550 -0
  66. llama_stack/providers/inline/ios/inference/LocalInferenceImpl.xcodeproj/project.xcworkspace/contents.xcworkspacedata +7 -0
  67. llama_stack/providers/inline/ios/inference/LocalInferenceImpl.xcodeproj/project.xcworkspace/xcshareddata/IDEWorkspaceChecks.plist +8 -0
  68. llama_stack/providers/inline/post_training/huggingface/post_training.py +33 -38
  69. llama_stack/providers/inline/post_training/huggingface/utils.py +2 -5
  70. llama_stack/providers/inline/post_training/torchtune/common/utils.py +5 -9
  71. llama_stack/providers/inline/post_training/torchtune/post_training.py +28 -33
  72. llama_stack/providers/inline/post_training/torchtune/recipes/lora_finetuning_single_device.py +2 -4
  73. llama_stack/providers/inline/safety/code_scanner/code_scanner.py +12 -15
  74. llama_stack/providers/inline/safety/llama_guard/llama_guard.py +20 -24
  75. llama_stack/providers/inline/safety/prompt_guard/prompt_guard.py +11 -17
  76. llama_stack/providers/inline/scoring/basic/scoring.py +13 -17
  77. llama_stack/providers/inline/scoring/braintrust/braintrust.py +15 -15
  78. llama_stack/providers/inline/scoring/llm_as_judge/scoring.py +13 -17
  79. llama_stack/providers/inline/vector_io/sqlite_vec/sqlite_vec.py +1 -1
  80. llama_stack/providers/registry/agents.py +1 -0
  81. llama_stack/providers/registry/inference.py +1 -9
  82. llama_stack/providers/registry/vector_io.py +136 -16
  83. llama_stack/providers/remote/datasetio/nvidia/README.md +74 -0
  84. llama_stack/providers/remote/eval/nvidia/README.md +134 -0
  85. llama_stack/providers/remote/eval/nvidia/eval.py +22 -21
  86. llama_stack/providers/remote/files/s3/README.md +266 -0
  87. llama_stack/providers/remote/files/s3/config.py +5 -3
  88. llama_stack/providers/remote/files/s3/files.py +2 -2
  89. llama_stack/providers/remote/inference/gemini/gemini.py +4 -0
  90. llama_stack/providers/remote/inference/nvidia/NVIDIA.md +203 -0
  91. llama_stack/providers/remote/inference/openai/openai.py +2 -0
  92. llama_stack/providers/remote/inference/together/together.py +4 -0
  93. llama_stack/providers/remote/inference/vertexai/config.py +3 -3
  94. llama_stack/providers/remote/inference/vertexai/vertexai.py +5 -2
  95. llama_stack/providers/remote/inference/vllm/config.py +37 -18
  96. llama_stack/providers/remote/inference/vllm/vllm.py +0 -3
  97. llama_stack/providers/remote/inference/watsonx/watsonx.py +4 -0
  98. llama_stack/providers/remote/post_training/nvidia/README.md +151 -0
  99. llama_stack/providers/remote/post_training/nvidia/models.py +3 -11
  100. llama_stack/providers/remote/post_training/nvidia/post_training.py +31 -33
  101. llama_stack/providers/remote/safety/bedrock/bedrock.py +10 -27
  102. llama_stack/providers/remote/safety/nvidia/README.md +78 -0
  103. llama_stack/providers/remote/safety/nvidia/nvidia.py +9 -25
  104. llama_stack/providers/remote/safety/sambanova/sambanova.py +13 -11
  105. llama_stack/providers/remote/vector_io/elasticsearch/__init__.py +17 -0
  106. llama_stack/providers/remote/vector_io/elasticsearch/config.py +32 -0
  107. llama_stack/providers/remote/vector_io/elasticsearch/elasticsearch.py +463 -0
  108. llama_stack/providers/remote/vector_io/oci/__init__.py +22 -0
  109. llama_stack/providers/remote/vector_io/oci/config.py +41 -0
  110. llama_stack/providers/remote/vector_io/oci/oci26ai.py +595 -0
  111. llama_stack/providers/remote/vector_io/pgvector/config.py +69 -2
  112. llama_stack/providers/remote/vector_io/pgvector/pgvector.py +255 -6
  113. llama_stack/providers/remote/vector_io/qdrant/qdrant.py +62 -38
  114. llama_stack/providers/utils/bedrock/client.py +3 -3
  115. llama_stack/providers/utils/bedrock/config.py +7 -7
  116. llama_stack/providers/utils/inference/__init__.py +0 -25
  117. llama_stack/providers/utils/inference/embedding_mixin.py +4 -0
  118. llama_stack/providers/utils/inference/http_client.py +239 -0
  119. llama_stack/providers/utils/inference/litellm_openai_mixin.py +6 -0
  120. llama_stack/providers/utils/inference/model_registry.py +148 -2
  121. llama_stack/providers/utils/inference/openai_compat.py +1 -158
  122. llama_stack/providers/utils/inference/openai_mixin.py +42 -2
  123. llama_stack/providers/utils/inference/prompt_adapter.py +0 -209
  124. llama_stack/providers/utils/memory/openai_vector_store_mixin.py +92 -5
  125. llama_stack/providers/utils/memory/vector_store.py +46 -19
  126. llama_stack/providers/utils/responses/responses_store.py +40 -6
  127. llama_stack/providers/utils/safety.py +114 -0
  128. llama_stack/providers/utils/tools/mcp.py +44 -3
  129. llama_stack/testing/api_recorder.py +9 -3
  130. {llama_stack-0.4.3.dist-info → llama_stack-0.5.0.dist-info}/METADATA +14 -2
  131. {llama_stack-0.4.3.dist-info → llama_stack-0.5.0.dist-info}/RECORD +135 -279
  132. llama_stack-0.5.0.dist-info/top_level.txt +1 -0
  133. llama_stack/distributions/meta-reference-gpu/__init__.py +0 -7
  134. llama_stack/distributions/meta-reference-gpu/config.yaml +0 -140
  135. llama_stack/distributions/meta-reference-gpu/meta_reference.py +0 -163
  136. llama_stack/distributions/meta-reference-gpu/run-with-safety.yaml +0 -155
  137. llama_stack/models/llama/hadamard_utils.py +0 -88
  138. llama_stack/models/llama/llama3/args.py +0 -74
  139. llama_stack/models/llama/llama3/generation.py +0 -378
  140. llama_stack/models/llama/llama3/model.py +0 -304
  141. llama_stack/models/llama/llama3/multimodal/__init__.py +0 -12
  142. llama_stack/models/llama/llama3/multimodal/encoder_utils.py +0 -180
  143. llama_stack/models/llama/llama3/multimodal/image_transform.py +0 -409
  144. llama_stack/models/llama/llama3/multimodal/model.py +0 -1430
  145. llama_stack/models/llama/llama3/multimodal/utils.py +0 -26
  146. llama_stack/models/llama/llama3/quantization/__init__.py +0 -5
  147. llama_stack/models/llama/llama3/quantization/loader.py +0 -316
  148. llama_stack/models/llama/llama3_1/__init__.py +0 -12
  149. llama_stack/models/llama/llama3_1/prompt_format.md +0 -358
  150. llama_stack/models/llama/llama3_1/prompts.py +0 -258
  151. llama_stack/models/llama/llama3_2/__init__.py +0 -5
  152. llama_stack/models/llama/llama3_2/prompts_text.py +0 -229
  153. llama_stack/models/llama/llama3_2/prompts_vision.py +0 -126
  154. llama_stack/models/llama/llama3_2/text_prompt_format.md +0 -286
  155. llama_stack/models/llama/llama3_2/vision_prompt_format.md +0 -141
  156. llama_stack/models/llama/llama3_3/__init__.py +0 -5
  157. llama_stack/models/llama/llama3_3/prompts.py +0 -259
  158. llama_stack/models/llama/llama4/args.py +0 -107
  159. llama_stack/models/llama/llama4/ffn.py +0 -58
  160. llama_stack/models/llama/llama4/moe.py +0 -214
  161. llama_stack/models/llama/llama4/preprocess.py +0 -435
  162. llama_stack/models/llama/llama4/quantization/__init__.py +0 -5
  163. llama_stack/models/llama/llama4/quantization/loader.py +0 -226
  164. llama_stack/models/llama/llama4/vision/__init__.py +0 -5
  165. llama_stack/models/llama/llama4/vision/embedding.py +0 -210
  166. llama_stack/models/llama/llama4/vision/encoder.py +0 -412
  167. llama_stack/models/llama/quantize_impls.py +0 -316
  168. llama_stack/providers/inline/inference/meta_reference/__init__.py +0 -20
  169. llama_stack/providers/inline/inference/meta_reference/common.py +0 -24
  170. llama_stack/providers/inline/inference/meta_reference/config.py +0 -68
  171. llama_stack/providers/inline/inference/meta_reference/generators.py +0 -201
  172. llama_stack/providers/inline/inference/meta_reference/inference.py +0 -542
  173. llama_stack/providers/inline/inference/meta_reference/model_parallel.py +0 -77
  174. llama_stack/providers/inline/inference/meta_reference/parallel_utils.py +0 -353
  175. llama_stack-0.4.3.dist-info/top_level.txt +0 -2
  176. llama_stack_api/__init__.py +0 -945
  177. llama_stack_api/admin/__init__.py +0 -45
  178. llama_stack_api/admin/api.py +0 -72
  179. llama_stack_api/admin/fastapi_routes.py +0 -117
  180. llama_stack_api/admin/models.py +0 -113
  181. llama_stack_api/agents.py +0 -173
  182. llama_stack_api/batches/__init__.py +0 -40
  183. llama_stack_api/batches/api.py +0 -53
  184. llama_stack_api/batches/fastapi_routes.py +0 -113
  185. llama_stack_api/batches/models.py +0 -78
  186. llama_stack_api/benchmarks/__init__.py +0 -43
  187. llama_stack_api/benchmarks/api.py +0 -39
  188. llama_stack_api/benchmarks/fastapi_routes.py +0 -109
  189. llama_stack_api/benchmarks/models.py +0 -109
  190. llama_stack_api/common/__init__.py +0 -5
  191. llama_stack_api/common/content_types.py +0 -101
  192. llama_stack_api/common/errors.py +0 -95
  193. llama_stack_api/common/job_types.py +0 -38
  194. llama_stack_api/common/responses.py +0 -77
  195. llama_stack_api/common/training_types.py +0 -47
  196. llama_stack_api/common/type_system.py +0 -146
  197. llama_stack_api/connectors.py +0 -146
  198. llama_stack_api/conversations.py +0 -270
  199. llama_stack_api/datasetio.py +0 -55
  200. llama_stack_api/datasets/__init__.py +0 -61
  201. llama_stack_api/datasets/api.py +0 -35
  202. llama_stack_api/datasets/fastapi_routes.py +0 -104
  203. llama_stack_api/datasets/models.py +0 -152
  204. llama_stack_api/datatypes.py +0 -373
  205. llama_stack_api/eval.py +0 -137
  206. llama_stack_api/file_processors/__init__.py +0 -27
  207. llama_stack_api/file_processors/api.py +0 -64
  208. llama_stack_api/file_processors/fastapi_routes.py +0 -78
  209. llama_stack_api/file_processors/models.py +0 -42
  210. llama_stack_api/files/__init__.py +0 -35
  211. llama_stack_api/files/api.py +0 -51
  212. llama_stack_api/files/fastapi_routes.py +0 -124
  213. llama_stack_api/files/models.py +0 -107
  214. llama_stack_api/inference.py +0 -1169
  215. llama_stack_api/inspect_api/__init__.py +0 -37
  216. llama_stack_api/inspect_api/api.py +0 -25
  217. llama_stack_api/inspect_api/fastapi_routes.py +0 -76
  218. llama_stack_api/inspect_api/models.py +0 -28
  219. llama_stack_api/internal/kvstore.py +0 -28
  220. llama_stack_api/internal/sqlstore.py +0 -81
  221. llama_stack_api/llama_stack_api/__init__.py +0 -945
  222. llama_stack_api/llama_stack_api/admin/__init__.py +0 -45
  223. llama_stack_api/llama_stack_api/admin/api.py +0 -72
  224. llama_stack_api/llama_stack_api/admin/fastapi_routes.py +0 -117
  225. llama_stack_api/llama_stack_api/admin/models.py +0 -113
  226. llama_stack_api/llama_stack_api/agents.py +0 -173
  227. llama_stack_api/llama_stack_api/batches/__init__.py +0 -40
  228. llama_stack_api/llama_stack_api/batches/api.py +0 -53
  229. llama_stack_api/llama_stack_api/batches/fastapi_routes.py +0 -113
  230. llama_stack_api/llama_stack_api/batches/models.py +0 -78
  231. llama_stack_api/llama_stack_api/benchmarks/__init__.py +0 -43
  232. llama_stack_api/llama_stack_api/benchmarks/api.py +0 -39
  233. llama_stack_api/llama_stack_api/benchmarks/fastapi_routes.py +0 -109
  234. llama_stack_api/llama_stack_api/benchmarks/models.py +0 -109
  235. llama_stack_api/llama_stack_api/common/__init__.py +0 -5
  236. llama_stack_api/llama_stack_api/common/content_types.py +0 -101
  237. llama_stack_api/llama_stack_api/common/errors.py +0 -95
  238. llama_stack_api/llama_stack_api/common/job_types.py +0 -38
  239. llama_stack_api/llama_stack_api/common/responses.py +0 -77
  240. llama_stack_api/llama_stack_api/common/training_types.py +0 -47
  241. llama_stack_api/llama_stack_api/common/type_system.py +0 -146
  242. llama_stack_api/llama_stack_api/connectors.py +0 -146
  243. llama_stack_api/llama_stack_api/conversations.py +0 -270
  244. llama_stack_api/llama_stack_api/datasetio.py +0 -55
  245. llama_stack_api/llama_stack_api/datasets/__init__.py +0 -61
  246. llama_stack_api/llama_stack_api/datasets/api.py +0 -35
  247. llama_stack_api/llama_stack_api/datasets/fastapi_routes.py +0 -104
  248. llama_stack_api/llama_stack_api/datasets/models.py +0 -152
  249. llama_stack_api/llama_stack_api/datatypes.py +0 -373
  250. llama_stack_api/llama_stack_api/eval.py +0 -137
  251. llama_stack_api/llama_stack_api/file_processors/__init__.py +0 -27
  252. llama_stack_api/llama_stack_api/file_processors/api.py +0 -64
  253. llama_stack_api/llama_stack_api/file_processors/fastapi_routes.py +0 -78
  254. llama_stack_api/llama_stack_api/file_processors/models.py +0 -42
  255. llama_stack_api/llama_stack_api/files/__init__.py +0 -35
  256. llama_stack_api/llama_stack_api/files/api.py +0 -51
  257. llama_stack_api/llama_stack_api/files/fastapi_routes.py +0 -124
  258. llama_stack_api/llama_stack_api/files/models.py +0 -107
  259. llama_stack_api/llama_stack_api/inference.py +0 -1169
  260. llama_stack_api/llama_stack_api/inspect_api/__init__.py +0 -37
  261. llama_stack_api/llama_stack_api/inspect_api/api.py +0 -25
  262. llama_stack_api/llama_stack_api/inspect_api/fastapi_routes.py +0 -76
  263. llama_stack_api/llama_stack_api/inspect_api/models.py +0 -28
  264. llama_stack_api/llama_stack_api/internal/__init__.py +0 -9
  265. llama_stack_api/llama_stack_api/internal/kvstore.py +0 -28
  266. llama_stack_api/llama_stack_api/internal/sqlstore.py +0 -81
  267. llama_stack_api/llama_stack_api/models.py +0 -171
  268. llama_stack_api/llama_stack_api/openai_responses.py +0 -1468
  269. llama_stack_api/llama_stack_api/post_training.py +0 -370
  270. llama_stack_api/llama_stack_api/prompts.py +0 -203
  271. llama_stack_api/llama_stack_api/providers/__init__.py +0 -33
  272. llama_stack_api/llama_stack_api/providers/api.py +0 -16
  273. llama_stack_api/llama_stack_api/providers/fastapi_routes.py +0 -57
  274. llama_stack_api/llama_stack_api/providers/models.py +0 -24
  275. llama_stack_api/llama_stack_api/py.typed +0 -0
  276. llama_stack_api/llama_stack_api/rag_tool.py +0 -168
  277. llama_stack_api/llama_stack_api/resource.py +0 -37
  278. llama_stack_api/llama_stack_api/router_utils.py +0 -160
  279. llama_stack_api/llama_stack_api/safety.py +0 -132
  280. llama_stack_api/llama_stack_api/schema_utils.py +0 -208
  281. llama_stack_api/llama_stack_api/scoring.py +0 -93
  282. llama_stack_api/llama_stack_api/scoring_functions.py +0 -211
  283. llama_stack_api/llama_stack_api/shields.py +0 -93
  284. llama_stack_api/llama_stack_api/tools.py +0 -226
  285. llama_stack_api/llama_stack_api/vector_io.py +0 -941
  286. llama_stack_api/llama_stack_api/vector_stores.py +0 -53
  287. llama_stack_api/llama_stack_api/version.py +0 -9
  288. llama_stack_api/models.py +0 -171
  289. llama_stack_api/openai_responses.py +0 -1468
  290. llama_stack_api/post_training.py +0 -370
  291. llama_stack_api/prompts.py +0 -203
  292. llama_stack_api/providers/__init__.py +0 -33
  293. llama_stack_api/providers/api.py +0 -16
  294. llama_stack_api/providers/fastapi_routes.py +0 -57
  295. llama_stack_api/providers/models.py +0 -24
  296. llama_stack_api/py.typed +0 -0
  297. llama_stack_api/rag_tool.py +0 -168
  298. llama_stack_api/resource.py +0 -37
  299. llama_stack_api/router_utils.py +0 -160
  300. llama_stack_api/safety.py +0 -132
  301. llama_stack_api/schema_utils.py +0 -208
  302. llama_stack_api/scoring.py +0 -93
  303. llama_stack_api/scoring_functions.py +0 -211
  304. llama_stack_api/shields.py +0 -93
  305. llama_stack_api/tools.py +0 -226
  306. llama_stack_api/vector_io.py +0 -941
  307. llama_stack_api/vector_stores.py +0 -53
  308. llama_stack_api/version.py +0 -9
  309. {llama_stack-0.4.3.dist-info → llama_stack-0.5.0.dist-info}/WHEEL +0 -0
  310. {llama_stack-0.4.3.dist-info → llama_stack-0.5.0.dist-info}/entry_points.txt +0 -0
  311. {llama_stack-0.4.3.dist-info → llama_stack-0.5.0.dist-info}/licenses/LICENSE +0 -0
@@ -29,11 +29,13 @@ from llama_stack.providers.utils.scoring.aggregation_utils import aggregate_metr
29
29
  from llama_stack_api import (
30
30
  DatasetIO,
31
31
  Datasets,
32
+ IterRowsRequest,
33
+ ScoreBatchRequest,
32
34
  ScoreBatchResponse,
35
+ ScoreRequest,
33
36
  ScoreResponse,
34
37
  Scoring,
35
38
  ScoringFn,
36
- ScoringFnParams,
37
39
  ScoringFunctionsProtocolPrivate,
38
40
  ScoringResult,
39
41
  ScoringResultRow,
@@ -158,18 +160,17 @@ class BraintrustScoringImpl(
158
160
 
159
161
  async def score_batch(
160
162
  self,
161
- dataset_id: str,
162
- scoring_functions: dict[str, ScoringFnParams | None],
163
- save_results_dataset: bool = False,
163
+ request: ScoreBatchRequest,
164
164
  ) -> ScoreBatchResponse:
165
165
  await self.set_api_key()
166
166
 
167
- all_rows = await self.datasetio_api.iterrows(
168
- dataset_id=dataset_id,
169
- limit=-1,
167
+ all_rows = await self.datasetio_api.iterrows(IterRowsRequest(dataset_id=request.dataset_id, limit=-1))
168
+ score_request = ScoreRequest(
169
+ input_rows=all_rows.data,
170
+ scoring_functions=request.scoring_functions,
170
171
  )
171
- res = await self.score(input_rows=all_rows.data, scoring_functions=scoring_functions)
172
- if save_results_dataset:
172
+ res = await self.score(score_request)
173
+ if request.save_results_dataset:
173
174
  # TODO: persist and register dataset on to server for reading
174
175
  # self.datasets_api.register_dataset()
175
176
  raise NotImplementedError("Save results dataset not implemented yet")
@@ -198,21 +199,20 @@ class BraintrustScoringImpl(
198
199
 
199
200
  async def score(
200
201
  self,
201
- input_rows: list[dict[str, Any]],
202
- scoring_functions: dict[str, ScoringFnParams | None],
202
+ request: ScoreRequest,
203
203
  ) -> ScoreResponse:
204
204
  await self.set_api_key()
205
205
  res = {}
206
- for scoring_fn_id in scoring_functions:
206
+ for scoring_fn_id in request.scoring_functions:
207
207
  if scoring_fn_id not in self.supported_fn_defs_registry:
208
208
  raise ValueError(f"Scoring function {scoring_fn_id} is not supported.")
209
209
 
210
- score_results = [await self.score_row(input_row, scoring_fn_id) for input_row in input_rows]
210
+ score_results = [await self.score_row(input_row, scoring_fn_id) for input_row in request.input_rows]
211
211
  aggregation_functions = self.supported_fn_defs_registry[scoring_fn_id].params.aggregation_functions
212
212
 
213
213
  # override scoring_fn params if provided
214
- if scoring_functions[scoring_fn_id] is not None:
215
- override_params = scoring_functions[scoring_fn_id]
214
+ if request.scoring_functions[scoring_fn_id] is not None:
215
+ override_params = request.scoring_functions[scoring_fn_id]
216
216
  if override_params.aggregation_functions:
217
217
  aggregation_functions = override_params.aggregation_functions
218
218
 
@@ -3,17 +3,18 @@
3
3
  #
4
4
  # This source code is licensed under the terms described in the LICENSE file in
5
5
  # the root directory of this source tree.
6
- from typing import Any
7
6
 
8
7
  from llama_stack_api import (
9
8
  DatasetIO,
10
9
  Datasets,
11
10
  Inference,
11
+ IterRowsRequest,
12
+ ScoreBatchRequest,
12
13
  ScoreBatchResponse,
14
+ ScoreRequest,
13
15
  ScoreResponse,
14
16
  Scoring,
15
17
  ScoringFn,
16
- ScoringFnParams,
17
18
  ScoringFunctionsProtocolPrivate,
18
19
  ScoringResult,
19
20
  )
@@ -64,19 +65,15 @@ class LlmAsJudgeScoringImpl(
64
65
 
65
66
  async def score_batch(
66
67
  self,
67
- dataset_id: str,
68
- scoring_functions: dict[str, ScoringFnParams | None] = None,
69
- save_results_dataset: bool = False,
68
+ request: ScoreBatchRequest,
70
69
  ) -> ScoreBatchResponse:
71
- all_rows = await self.datasetio_api.iterrows(
72
- dataset_id=dataset_id,
73
- limit=-1,
74
- )
75
- res = await self.score(
70
+ all_rows = await self.datasetio_api.iterrows(IterRowsRequest(dataset_id=request.dataset_id, limit=-1))
71
+ score_request = ScoreRequest(
76
72
  input_rows=all_rows.data,
77
- scoring_functions=scoring_functions,
73
+ scoring_functions=request.scoring_functions,
78
74
  )
79
- if save_results_dataset:
75
+ res = await self.score(score_request)
76
+ if request.save_results_dataset:
80
77
  # TODO: persist and register dataset on to server for reading
81
78
  # self.datasets_api.register_dataset()
82
79
  raise NotImplementedError("Save results dataset not implemented yet")
@@ -87,14 +84,13 @@ class LlmAsJudgeScoringImpl(
87
84
 
88
85
  async def score(
89
86
  self,
90
- input_rows: list[dict[str, Any]],
91
- scoring_functions: dict[str, ScoringFnParams | None] = None,
87
+ request: ScoreRequest,
92
88
  ) -> ScoreResponse:
93
89
  res = {}
94
- for scoring_fn_id in scoring_functions.keys():
90
+ for scoring_fn_id in request.scoring_functions.keys():
95
91
  scoring_fn = self.llm_as_judge_fn
96
- scoring_fn_params = scoring_functions.get(scoring_fn_id, None)
97
- score_results = await scoring_fn.score(input_rows, scoring_fn_id, scoring_fn_params)
92
+ scoring_fn_params = request.scoring_functions.get(scoring_fn_id, None)
93
+ score_results = await scoring_fn.score(request.input_rows, scoring_fn_id, scoring_fn_params)
98
94
  agg_results = await scoring_fn.aggregate(score_results, scoring_fn_id, scoring_fn_params)
99
95
  res[scoring_fn_id] = ScoringResult(
100
96
  score_rows=score_results,
@@ -59,7 +59,7 @@ def serialize_vector(vector: list[float]) -> bytes:
59
59
  return struct.pack(f"{len(vector)}f", *vector)
60
60
 
61
61
 
62
- def _create_sqlite_connection(db_path):
62
+ def _create_sqlite_connection(db_path: str):
63
63
  """Create a SQLite connection with sqlite_vec extension loaded."""
64
64
  connection = sqlite3.connect(db_path)
65
65
  connection.enable_load_extension(True)
@@ -37,6 +37,7 @@ def available_providers() -> list[ProviderSpec]:
37
37
  Api.conversations,
38
38
  Api.prompts,
39
39
  Api.files,
40
+ Api.connectors,
40
41
  ],
41
42
  optional_api_dependencies=[
42
43
  Api.safety,
@@ -28,14 +28,6 @@ META_REFERENCE_DEPS = [
28
28
 
29
29
  def available_providers() -> list[ProviderSpec]:
30
30
  return [
31
- InlineProviderSpec(
32
- api=Api.inference,
33
- provider_type="inline::meta-reference",
34
- pip_packages=META_REFERENCE_DEPS,
35
- module="llama_stack.providers.inline.inference.meta_reference",
36
- config_class="llama_stack.providers.inline.inference.meta_reference.MetaReferenceInferenceConfig",
37
- description="Meta's reference implementation of inference with support for various model formats and optimization techniques.",
38
- ),
39
31
  InlineProviderSpec(
40
32
  api=Api.inference,
41
33
  provider_type="inline::sentence-transformers",
@@ -223,7 +215,7 @@ def available_providers() -> list[ProviderSpec]:
223
215
 
224
216
  Configuration:
225
217
  - Set VERTEX_AI_PROJECT environment variable (required)
226
- - Set VERTEX_AI_LOCATION environment variable (optional, defaults to us-central1)
218
+ - Set VERTEX_AI_LOCATION environment variable (optional, defaults to global)
227
219
  - Use Google Cloud Application Default Credentials or service account key
228
220
 
229
221
  Authentication Setup:
@@ -419,6 +419,7 @@ There are three implementations of search for PGVectoIndex available:
419
419
  - Semantic understanding - finds documents similar in meaning even if they don't share keywords
420
420
  - Works with high-dimensional vector embeddings (typically 768, 1024, or higher dimensions)
421
421
  - Best for: Finding conceptually related content, handling synonyms, cross-language search
422
+ - By default, Llama Stack creates a HNSW (Hierarchical Navigable Small Worlds) index on a column "embedding" in a vector store table enabling production-ready, performant and scalable vector search for large datasets out of the box.
422
423
 
423
424
  2. Keyword Search
424
425
  - How it works:
@@ -448,6 +449,7 @@ There are three implementations of search for PGVectoIndex available:
448
449
  - Best for: General-purpose search where you want both precision and recall
449
450
 
450
451
  4. Database Schema
452
+
451
453
  The PGVector implementation stores data optimized for all three search types:
452
454
  CREATE TABLE vector_store_xxx (
453
455
  id TEXT PRIMARY KEY,
@@ -457,9 +459,6 @@ CREATE TABLE vector_store_xxx (
457
459
  tokenized_content TSVECTOR -- For keyword search
458
460
  );
459
461
 
460
- -- Indexes for performance
461
- CREATE INDEX content_gin_idx ON table USING GIN(tokenized_content); -- Keyword search
462
- -- Vector index created automatically by pgvector
463
462
 
464
463
  ## Usage
465
464
 
@@ -469,32 +468,55 @@ To use PGVector in your Llama Stack project, follow these steps:
469
468
  2. Configure your Llama Stack project to use pgvector. (e.g. remote::pgvector).
470
469
  3. Start storing and querying vectors.
471
470
 
472
- ## This is an example how you can set up your environment for using PGVector
471
+ ## This is an example how you can set up your environment for using PGVector (you can use either Podman or Docker)
473
472
 
474
- 1. Export env vars:
473
+ 1. Export PGVector environment variables:
475
474
  ```bash
476
- export ENABLE_PGVECTOR=true
475
+ export PGVECTOR_DB=testvectordb
477
476
  export PGVECTOR_HOST=localhost
478
477
  export PGVECTOR_PORT=5432
479
- export PGVECTOR_DB=llamastack
480
- export PGVECTOR_USER=llamastack
481
- export PGVECTOR_PASSWORD=llamastack
478
+ export PGVECTOR_USER=user
479
+ export PGVECTOR_PASSWORD=password
482
480
  ```
483
481
 
484
- 2. Create DB:
482
+ 2. Pull pgvector image with that tag you want:
483
+
484
+ Via Podman:
485
485
  ```bash
486
- psql -h localhost -U postgres -c "CREATE ROLE llamastack LOGIN PASSWORD 'llamastack';"
487
- psql -h localhost -U postgres -c "CREATE DATABASE llamastack OWNER llamastack;"
488
- psql -h localhost -U llamastack -d llamastack -c "CREATE EXTENSION IF NOT EXISTS vector;"
486
+ podman pull pgvector/pgvector:0.8.1-pg18-trixie
489
487
  ```
490
488
 
491
- ## Installation
489
+ Via Docker:
490
+ ```bash
491
+ docker pull pgvector/pgvector:0.8.1-pg18-trixie
492
+ ```
493
+
494
+ 3. Run container with PGVector:
492
495
 
493
- You can install PGVector using docker:
496
+ Via Podman
497
+ ```bash
498
+ podman run -d \
499
+ --name pgvector \
500
+ -e POSTGRES_PASSWORD=password \
501
+ -e POSTGRES_USER=user \
502
+ -e POSTGRES_DB=testvectordb \
503
+ -p 5432:5432 \
504
+ -v pgvector_data:/var/lib/postgresql \
505
+ pgvector/pgvector:0.8.1-pg18-trixie
506
+ ```
494
507
 
508
+ Via Docker
495
509
  ```bash
496
- docker pull pgvector/pgvector:pg17
510
+ docker run -d \
511
+ --name pgvector \
512
+ -e POSTGRES_PASSWORD=password \
513
+ -e POSTGRES_USER=user \
514
+ -e POSTGRES_DB=testvectordb \
515
+ -p 5432:5432 \
516
+ -v pgvector_data:/var/lib/postgresql \
517
+ pgvector/pgvector:0.8.1-pg18-trixie
497
518
  ```
519
+
498
520
  ## Documentation
499
521
  See [PGVector's documentation](https://github.com/pgvector/pgvector) for more details about PGVector in general.
500
522
  """,
@@ -823,6 +845,104 @@ For more details on TLS configuration, refer to the [TLS setup guide](https://mi
823
845
  optional_api_dependencies=[Api.files, Api.models],
824
846
  description="""
825
847
  Please refer to the remote provider documentation.
848
+ """,
849
+ ),
850
+ RemoteProviderSpec(
851
+ api=Api.vector_io,
852
+ adapter_type="elasticsearch",
853
+ provider_type="remote::elasticsearch",
854
+ pip_packages=["elasticsearch>=8.16.0,<9.0.0"] + DEFAULT_VECTOR_IO_DEPS,
855
+ module="llama_stack.providers.remote.vector_io.elasticsearch",
856
+ config_class="llama_stack.providers.remote.vector_io.elasticsearch.ElasticsearchVectorIOConfig",
857
+ api_dependencies=[Api.inference],
858
+ optional_api_dependencies=[Api.files, Api.models],
859
+ description="""
860
+ [Elasticsearch](https://www.elastic.co/) is a vector database provider for Llama Stack.
861
+ It allows you to store and query vectors directly within an Elasticsearch database.
862
+ That means you're not limited to storing vectors in memory or in a separate service.
863
+
864
+ ## Features
865
+ Elasticsearch supports:
866
+ - Store embeddings and their metadata
867
+ - Vector search
868
+ - Full-text search
869
+ - Fuzzy search
870
+ - Hybrid search
871
+ - Document storage
872
+ - Metadata filtering
873
+ - Inference service
874
+ - Machine Learning integrations
875
+
876
+ ## Usage
877
+
878
+ To use Elasticsearch in your Llama Stack project, follow these steps:
879
+
880
+ 1. Install the necessary dependencies.
881
+ 2. Configure your Llama Stack project to use Elasticsearch.
882
+ 3. Start storing and querying vectors.
883
+
884
+ ## Installation
885
+
886
+ You can test Elasticsearch locally by running this script in the terminal:
887
+
888
+ ```bash
889
+ curl -fsSL https://elastic.co/start-local | sh
890
+ ```
891
+
892
+ Or you can [start a free trial](https://www.elastic.co/cloud/cloud-trial-overview?utm_campaign=llama-stack-integration) on Elastic Cloud.
893
+ For more information on how to deploy Elasticsearch, see the [official documentation](https://www.elastic.co/docs/deploy-manage/deploy).
894
+
895
+ ## Documentation
896
+ See [Elasticsearch's documentation](https://www.elastic.co/docs/solutions/search) for more details about Elasticsearch in general.
897
+ """,
898
+ ),
899
+ RemoteProviderSpec(
900
+ api=Api.vector_io,
901
+ adapter_type="oci",
902
+ provider_type="remote::oci",
903
+ pip_packages=["oracledb", "numpy"] + DEFAULT_VECTOR_IO_DEPS,
904
+ module="llama_stack.providers.remote.vector_io.oci",
905
+ config_class="llama_stack.providers.remote.vector_io.oci.OCI26aiVectorIOConfig",
906
+ api_dependencies=[Api.inference],
907
+ optional_api_dependencies=[Api.files, Api.models],
908
+ description="""
909
+ [Oracle 26ai](https://docs.oracle.com/en/database/oracle/oracle-database/26/index.html)
910
+ is a remote vector database provider for Llama Stack. It allows you to store and query vectors directly
911
+ in an Oracle 26ai database.
912
+ ## Features
913
+ - Easy to use
914
+ - Fully integrated with Llama Stack
915
+ - Supports vector search, keyword search, and hybrid search
916
+ ## Usage
917
+ To use Oracle 26ai in your Llama Stack project, follow these steps:
918
+ 1. Install the necessary dependencies.
919
+ 2. Configure your Llama Stack project to use Oracle 26ai.
920
+ 3. Start storing and querying vectors.
921
+ ## Installation
922
+ You can install the Oracle 26ai client using pip:
923
+ ```bash
924
+ pip install oracledb
925
+ ```
926
+ ## Configuration
927
+ ```yaml
928
+ vector_io:
929
+ - provider_id: oci
930
+ provider_type: remote::oci
931
+ config:
932
+ conn_str: "${env.OCI26AI_CONNECTION_STRING}"
933
+ user: "${env.OCI26AI_USER}"
934
+ password: "${env.OCI26AI_PASSWORD}"
935
+ tnsnames_loc: "${env.OCI26AI_TNSNAMES_LOC}"
936
+ ewallet_pem_loc: "${env.OCI26AI_EWALLET_PEM_LOC}"
937
+ ewallet_password: "${env.OCI26AI_EWALLET_PWD}"
938
+ vector_datatype: "${env.OCI26AI_VECTOR_DATATYPE:=FLOAT32}"
939
+ persistence:
940
+ namespace: vector_id::oci26ai
941
+ backend: kv_default
942
+ ```
943
+ ## Documentation
944
+ See the [Oracle 26ai documentation](https://docs.oracle.com/en/database/oracle/oracle-database/26/index.html)
945
+ for more details about Oracle 26ai in general.
826
946
  """,
827
947
  ),
828
948
  ]
@@ -0,0 +1,74 @@
1
+ # NVIDIA DatasetIO Provider for LlamaStack
2
+
3
+ This provider enables dataset management using NVIDIA's NeMo Customizer service.
4
+
5
+ ## Features
6
+
7
+ - Register datasets for fine-tuning LLMs
8
+ - Unregister datasets
9
+
10
+ ## Getting Started
11
+
12
+ ### Prerequisites
13
+
14
+ - LlamaStack with NVIDIA configuration
15
+ - Access to Hosted NVIDIA NeMo Microservice
16
+ - API key for authentication with the NVIDIA service
17
+
18
+ ### Setup
19
+
20
+ Build the NVIDIA environment:
21
+
22
+ ```bash
23
+ uv pip install llama-stack-client
24
+ uv run llama stack list-deps nvidia | xargs -L1 uv pip install
25
+ ```
26
+
27
+ ### Basic Usage using the LlamaStack Python Client
28
+
29
+ #### Initialize the client
30
+
31
+ ```python
32
+ import os
33
+
34
+ os.environ["NVIDIA_API_KEY"] = "your-api-key"
35
+ os.environ["NVIDIA_CUSTOMIZER_URL"] = "http://nemo.test"
36
+ os.environ["NVIDIA_DATASET_NAMESPACE"] = "default"
37
+ os.environ["NVIDIA_PROJECT_ID"] = "test-project"
38
+ from llama_stack.core.library_client import LlamaStackAsLibraryClient
39
+
40
+ client = LlamaStackAsLibraryClient("nvidia")
41
+ client.initialize()
42
+ ```
43
+
44
+ #### Register a dataset
45
+
46
+ ```python
47
+ client.datasets.register(
48
+ purpose="post-training/messages",
49
+ dataset_id="my-training-dataset",
50
+ source={"type": "uri", "uri": "hf://datasets/default/sample-dataset"},
51
+ metadata={
52
+ "format": "json",
53
+ "description": "Dataset for LLM fine-tuning",
54
+ "provider": "nvidia",
55
+ },
56
+ )
57
+ ```
58
+
59
+ #### Get a list of all registered datasets
60
+
61
+ ```python
62
+ datasets = client.datasets.list()
63
+ for dataset in datasets:
64
+ print(f"Dataset ID: {dataset.identifier}")
65
+ print(f"Description: {dataset.metadata.get('description', '')}")
66
+ print(f"Source: {dataset.source.uri}")
67
+ print("---")
68
+ ```
69
+
70
+ #### Unregister a dataset
71
+
72
+ ```python
73
+ client.datasets.unregister(dataset_id="my-training-dataset")
74
+ ```
@@ -0,0 +1,134 @@
1
+ # NVIDIA NeMo Evaluator Eval Provider
2
+
3
+
4
+ ## Overview
5
+
6
+ For the first integration, Benchmarks are mapped to Evaluation Configs on in the NeMo Evaluator. The full evaluation config object is provided as part of the meta-data. The `dataset_id` and `scoring_functions` are not used.
7
+
8
+ Below are a few examples of how to register a benchmark, which in turn will create an evaluation config in NeMo Evaluator and how to trigger an evaluation.
9
+
10
+ ### Example for register an academic benchmark
11
+
12
+ ```
13
+ POST /eval/benchmarks
14
+ ```
15
+ ```json
16
+ {
17
+ "benchmark_id": "mmlu",
18
+ "dataset_id": "",
19
+ "scoring_functions": [],
20
+ "metadata": {
21
+ "type": "mmlu"
22
+ }
23
+ }
24
+ ```
25
+
26
+ ### Example for register a custom evaluation
27
+
28
+ ```
29
+ POST /eval/benchmarks
30
+ ```
31
+ ```json
32
+ {
33
+ "benchmark_id": "my-custom-benchmark",
34
+ "dataset_id": "",
35
+ "scoring_functions": [],
36
+ "metadata": {
37
+ "type": "custom",
38
+ "params": {
39
+ "parallelism": 8
40
+ },
41
+ "tasks": {
42
+ "qa": {
43
+ "type": "completion",
44
+ "params": {
45
+ "template": {
46
+ "prompt": "{{prompt}}",
47
+ "max_tokens": 200
48
+ }
49
+ },
50
+ "dataset": {
51
+ "files_url": "hf://datasets/default/sample-basic-test/testing/testing.jsonl"
52
+ },
53
+ "metrics": {
54
+ "bleu": {
55
+ "type": "bleu",
56
+ "params": {
57
+ "references": [
58
+ "{{ideal_response}}"
59
+ ]
60
+ }
61
+ }
62
+ }
63
+ }
64
+ }
65
+ }
66
+ }
67
+ ```
68
+
69
+ ### Example for triggering a benchmark/custom evaluation
70
+
71
+ ```
72
+ POST /eval/benchmarks/{benchmark_id}/jobs
73
+ ```
74
+ ```json
75
+ {
76
+ "benchmark_id": "my-custom-benchmark",
77
+ "benchmark_config": {
78
+ "eval_candidate": {
79
+ "type": "model",
80
+ "model": "meta-llama/Llama3.1-8B-Instruct",
81
+ "sampling_params": {
82
+ "max_tokens": 100,
83
+ "temperature": 0.7
84
+ }
85
+ },
86
+ "scoring_params": {}
87
+ }
88
+ }
89
+ ```
90
+
91
+ Response example:
92
+ ```json
93
+ {
94
+ "job_id": "eval-1234",
95
+ "status": "in_progress"
96
+ }
97
+ ```
98
+
99
+ ### Example for getting the status of a job
100
+ ```
101
+ GET /eval/benchmarks/{benchmark_id}/jobs/{job_id}
102
+ ```
103
+
104
+ Response example:
105
+ ```json
106
+ {
107
+ "job_id": "eval-1234",
108
+ "status": "in_progress"
109
+ }
110
+ ```
111
+
112
+ ### Example for cancelling a job
113
+ ```
114
+ POST /eval/benchmarks/{benchmark_id}/jobs/{job_id}/cancel
115
+ ```
116
+
117
+ ### Example for getting the results
118
+ ```
119
+ GET /eval/benchmarks/{benchmark_id}/results
120
+ ```
121
+ ```json
122
+ {
123
+ "generations": [],
124
+ "scores": {
125
+ "{benchmark_id}": {
126
+ "score_rows": [],
127
+ "aggregated_results": {
128
+ "tasks": {},
129
+ "groups": {}
130
+ }
131
+ }
132
+ }
133
+ }
134
+ ```