llama-cloud 0.1.9__py3-none-any.whl → 0.1.11__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of llama-cloud might be problematic. Click here for more details.
- llama_cloud/__init__.py +34 -8
- llama_cloud/resources/__init__.py +14 -3
- llama_cloud/resources/chat_apps/client.py +99 -133
- llama_cloud/resources/llama_extract/__init__.py +16 -2
- llama_cloud/resources/llama_extract/client.py +328 -122
- llama_cloud/resources/llama_extract/types/__init__.py +14 -3
- llama_cloud/resources/llama_extract/types/extract_agent_create_data_schema.py +9 -0
- llama_cloud/resources/llama_extract/types/{extract_agent_create_data_schema_value.py → extract_agent_create_data_schema_zero_value.py} +1 -1
- llama_cloud/resources/llama_extract/types/extract_agent_update_data_schema.py +9 -0
- llama_cloud/resources/llama_extract/types/{extract_agent_update_data_schema_value.py → extract_agent_update_data_schema_zero_value.py} +1 -1
- llama_cloud/resources/llama_extract/types/extract_schema_validate_request_data_schema.py +9 -0
- llama_cloud/resources/llama_extract/types/extract_schema_validate_request_data_schema_zero_value.py +7 -0
- llama_cloud/resources/organizations/client.py +8 -12
- llama_cloud/resources/parsing/client.py +244 -0
- llama_cloud/resources/reports/client.py +30 -26
- llama_cloud/resources/retrievers/client.py +16 -4
- llama_cloud/types/__init__.py +22 -4
- llama_cloud/types/chat_app.py +11 -9
- llama_cloud/types/chat_app_response.py +12 -10
- llama_cloud/types/cloud_mongo_db_atlas_vector_search.py +1 -0
- llama_cloud/types/edit_suggestion.py +3 -4
- llama_cloud/types/edit_suggestion_blocks_item.py +8 -0
- llama_cloud/types/extract_config.py +2 -0
- llama_cloud/types/extract_job_create.py +4 -2
- llama_cloud/types/extract_job_create_data_schema_override.py +9 -0
- llama_cloud/types/{extract_job_create_data_schema_override_value.py → extract_job_create_data_schema_override_zero_value.py} +1 -1
- llama_cloud/types/extract_mode.py +7 -7
- llama_cloud/types/extract_run.py +2 -2
- llama_cloud/types/extract_run_data.py +11 -0
- llama_cloud/types/extract_run_data_item_value.py +5 -0
- llama_cloud/types/extract_run_data_zero_value.py +5 -0
- llama_cloud/types/extract_schema_validate_response.py +32 -0
- llama_cloud/types/extract_schema_validate_response_data_schema_value.py +7 -0
- llama_cloud/types/extract_target.py +17 -0
- llama_cloud/types/llama_extract_settings.py +8 -1
- llama_cloud/types/llama_parse_parameters.py +9 -0
- llama_cloud/types/plan.py +4 -0
- llama_cloud/types/preset_composite_retrieval_params.py +35 -0
- llama_cloud/types/report_file_info.py +37 -0
- llama_cloud/types/report_metadata.py +2 -1
- llama_cloud/types/supported_llm_model_names.py +28 -4
- {llama_cloud-0.1.9.dist-info → llama_cloud-0.1.11.dist-info}/METADATA +1 -1
- {llama_cloud-0.1.9.dist-info → llama_cloud-0.1.11.dist-info}/RECORD +45 -32
- llama_cloud/types/extract_run_data_value.py +0 -5
- {llama_cloud-0.1.9.dist-info → llama_cloud-0.1.11.dist-info}/LICENSE +0 -0
- {llama_cloud-0.1.9.dist-info → llama_cloud-0.1.11.dist-info}/WHEEL +0 -0
llama_cloud/types/__init__.py
CHANGED
|
@@ -73,6 +73,7 @@ from .data_source_create_custom_metadata_value import DataSourceCreateCustomMeta
|
|
|
73
73
|
from .data_source_custom_metadata_value import DataSourceCustomMetadataValue
|
|
74
74
|
from .data_source_definition import DataSourceDefinition
|
|
75
75
|
from .edit_suggestion import EditSuggestion
|
|
76
|
+
from .edit_suggestion_blocks_item import EditSuggestionBlocksItem
|
|
76
77
|
from .element_segmentation_config import ElementSegmentationConfig
|
|
77
78
|
from .embedding_model_config import EmbeddingModelConfig
|
|
78
79
|
from .embedding_model_config_embedding_config import (
|
|
@@ -110,7 +111,8 @@ from .extract_agent_data_schema_value import ExtractAgentDataSchemaValue
|
|
|
110
111
|
from .extract_config import ExtractConfig
|
|
111
112
|
from .extract_job import ExtractJob
|
|
112
113
|
from .extract_job_create import ExtractJobCreate
|
|
113
|
-
from .
|
|
114
|
+
from .extract_job_create_data_schema_override import ExtractJobCreateDataSchemaOverride
|
|
115
|
+
from .extract_job_create_data_schema_override_zero_value import ExtractJobCreateDataSchemaOverrideZeroValue
|
|
114
116
|
from .extract_mode import ExtractMode
|
|
115
117
|
from .extract_resultset import ExtractResultset
|
|
116
118
|
from .extract_resultset_data import ExtractResultsetData
|
|
@@ -118,10 +120,15 @@ from .extract_resultset_data_item_value import ExtractResultsetDataItemValue
|
|
|
118
120
|
from .extract_resultset_data_zero_value import ExtractResultsetDataZeroValue
|
|
119
121
|
from .extract_resultset_extraction_metadata_value import ExtractResultsetExtractionMetadataValue
|
|
120
122
|
from .extract_run import ExtractRun
|
|
123
|
+
from .extract_run_data import ExtractRunData
|
|
124
|
+
from .extract_run_data_item_value import ExtractRunDataItemValue
|
|
121
125
|
from .extract_run_data_schema_value import ExtractRunDataSchemaValue
|
|
122
|
-
from .
|
|
126
|
+
from .extract_run_data_zero_value import ExtractRunDataZeroValue
|
|
123
127
|
from .extract_run_extraction_metadata_value import ExtractRunExtractionMetadataValue
|
|
128
|
+
from .extract_schema_validate_response import ExtractSchemaValidateResponse
|
|
129
|
+
from .extract_schema_validate_response_data_schema_value import ExtractSchemaValidateResponseDataSchemaValue
|
|
124
130
|
from .extract_state import ExtractState
|
|
131
|
+
from .extract_target import ExtractTarget
|
|
125
132
|
from .file import File
|
|
126
133
|
from .file_permission_info_value import FilePermissionInfoValue
|
|
127
134
|
from .file_resource_info_value import FileResourceInfoValue
|
|
@@ -240,6 +247,7 @@ from .pipeline_type import PipelineType
|
|
|
240
247
|
from .plan import Plan
|
|
241
248
|
from .playground_session import PlaygroundSession
|
|
242
249
|
from .pooling import Pooling
|
|
250
|
+
from .preset_composite_retrieval_params import PresetCompositeRetrievalParams
|
|
243
251
|
from .preset_retrieval_params import PresetRetrievalParams
|
|
244
252
|
from .presigned_url import PresignedUrl
|
|
245
253
|
from .progress_event import ProgressEvent
|
|
@@ -263,6 +271,7 @@ from .report_event_item_event_data import (
|
|
|
263
271
|
ReportEventItemEventData_ReportStateUpdate,
|
|
264
272
|
)
|
|
265
273
|
from .report_event_type import ReportEventType
|
|
274
|
+
from .report_file_info import ReportFileInfo
|
|
266
275
|
from .report_metadata import ReportMetadata
|
|
267
276
|
from .report_plan import ReportPlan
|
|
268
277
|
from .report_plan_block import ReportPlanBlock
|
|
@@ -373,6 +382,7 @@ __all__ = [
|
|
|
373
382
|
"DataSourceCustomMetadataValue",
|
|
374
383
|
"DataSourceDefinition",
|
|
375
384
|
"EditSuggestion",
|
|
385
|
+
"EditSuggestionBlocksItem",
|
|
376
386
|
"ElementSegmentationConfig",
|
|
377
387
|
"EmbeddingModelConfig",
|
|
378
388
|
"EmbeddingModelConfigEmbeddingConfig",
|
|
@@ -406,7 +416,8 @@ __all__ = [
|
|
|
406
416
|
"ExtractConfig",
|
|
407
417
|
"ExtractJob",
|
|
408
418
|
"ExtractJobCreate",
|
|
409
|
-
"
|
|
419
|
+
"ExtractJobCreateDataSchemaOverride",
|
|
420
|
+
"ExtractJobCreateDataSchemaOverrideZeroValue",
|
|
410
421
|
"ExtractMode",
|
|
411
422
|
"ExtractResultset",
|
|
412
423
|
"ExtractResultsetData",
|
|
@@ -414,10 +425,15 @@ __all__ = [
|
|
|
414
425
|
"ExtractResultsetDataZeroValue",
|
|
415
426
|
"ExtractResultsetExtractionMetadataValue",
|
|
416
427
|
"ExtractRun",
|
|
428
|
+
"ExtractRunData",
|
|
429
|
+
"ExtractRunDataItemValue",
|
|
417
430
|
"ExtractRunDataSchemaValue",
|
|
418
|
-
"
|
|
431
|
+
"ExtractRunDataZeroValue",
|
|
419
432
|
"ExtractRunExtractionMetadataValue",
|
|
433
|
+
"ExtractSchemaValidateResponse",
|
|
434
|
+
"ExtractSchemaValidateResponseDataSchemaValue",
|
|
420
435
|
"ExtractState",
|
|
436
|
+
"ExtractTarget",
|
|
421
437
|
"File",
|
|
422
438
|
"FilePermissionInfoValue",
|
|
423
439
|
"FileResourceInfoValue",
|
|
@@ -528,6 +544,7 @@ __all__ = [
|
|
|
528
544
|
"Plan",
|
|
529
545
|
"PlaygroundSession",
|
|
530
546
|
"Pooling",
|
|
547
|
+
"PresetCompositeRetrievalParams",
|
|
531
548
|
"PresetRetrievalParams",
|
|
532
549
|
"PresignedUrl",
|
|
533
550
|
"ProgressEvent",
|
|
@@ -549,6 +566,7 @@ __all__ = [
|
|
|
549
566
|
"ReportEventItemEventData_ReportBlockUpdate",
|
|
550
567
|
"ReportEventItemEventData_ReportStateUpdate",
|
|
551
568
|
"ReportEventType",
|
|
569
|
+
"ReportFileInfo",
|
|
552
570
|
"ReportMetadata",
|
|
553
571
|
"ReportPlan",
|
|
554
572
|
"ReportPlanBlock",
|
llama_cloud/types/chat_app.py
CHANGED
|
@@ -5,7 +5,7 @@ import typing
|
|
|
5
5
|
|
|
6
6
|
from ..core.datetime_utils import serialize_datetime
|
|
7
7
|
from .llm_parameters import LlmParameters
|
|
8
|
-
from .
|
|
8
|
+
from .preset_composite_retrieval_params import PresetCompositeRetrievalParams
|
|
9
9
|
|
|
10
10
|
try:
|
|
11
11
|
import pydantic
|
|
@@ -21,14 +21,16 @@ class ChatApp(pydantic.BaseModel):
|
|
|
21
21
|
Schema for a chat app
|
|
22
22
|
"""
|
|
23
23
|
|
|
24
|
-
id: str
|
|
25
|
-
|
|
26
|
-
|
|
27
|
-
|
|
28
|
-
|
|
29
|
-
|
|
30
|
-
|
|
31
|
-
|
|
24
|
+
id: str = pydantic.Field(description="Unique identifier")
|
|
25
|
+
created_at: typing.Optional[dt.datetime]
|
|
26
|
+
updated_at: typing.Optional[dt.datetime]
|
|
27
|
+
name: str = pydantic.Field(description="Name of the chat app")
|
|
28
|
+
retriever_id: str = pydantic.Field(description="ID of the retriever to use for the chat app")
|
|
29
|
+
llm_config: LlmParameters = pydantic.Field(description="Configuration for the LLM model to use for the chat app")
|
|
30
|
+
retrieval_config: PresetCompositeRetrievalParams = pydantic.Field(
|
|
31
|
+
description="Configuration for the retrieval model to use for the chat app"
|
|
32
|
+
)
|
|
33
|
+
project_id: str = pydantic.Field(description="ID of the project the chat app belongs to")
|
|
32
34
|
|
|
33
35
|
def json(self, **kwargs: typing.Any) -> str:
|
|
34
36
|
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
@@ -5,7 +5,7 @@ import typing
|
|
|
5
5
|
|
|
6
6
|
from ..core.datetime_utils import serialize_datetime
|
|
7
7
|
from .llm_parameters import LlmParameters
|
|
8
|
-
from .
|
|
8
|
+
from .preset_composite_retrieval_params import PresetCompositeRetrievalParams
|
|
9
9
|
|
|
10
10
|
try:
|
|
11
11
|
import pydantic
|
|
@@ -17,15 +17,17 @@ except ImportError:
|
|
|
17
17
|
|
|
18
18
|
|
|
19
19
|
class ChatAppResponse(pydantic.BaseModel):
|
|
20
|
-
id: str
|
|
21
|
-
|
|
22
|
-
|
|
23
|
-
|
|
24
|
-
|
|
25
|
-
|
|
26
|
-
|
|
27
|
-
|
|
28
|
-
|
|
20
|
+
id: str = pydantic.Field(description="Unique identifier")
|
|
21
|
+
created_at: typing.Optional[dt.datetime]
|
|
22
|
+
updated_at: typing.Optional[dt.datetime]
|
|
23
|
+
name: str = pydantic.Field(description="Name of the chat app")
|
|
24
|
+
retriever_id: str = pydantic.Field(description="ID of the retriever to use for the chat app")
|
|
25
|
+
llm_config: LlmParameters = pydantic.Field(description="Configuration for the LLM model to use for the chat app")
|
|
26
|
+
retrieval_config: PresetCompositeRetrievalParams = pydantic.Field(
|
|
27
|
+
description="Configuration for the retrieval model to use for the chat app"
|
|
28
|
+
)
|
|
29
|
+
project_id: str = pydantic.Field(description="ID of the project the chat app belongs to")
|
|
30
|
+
retriever_name: str
|
|
29
31
|
|
|
30
32
|
def json(self, **kwargs: typing.Any) -> str:
|
|
31
33
|
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
@@ -35,6 +35,7 @@ class CloudMongoDbAtlasVectorSearch(pydantic.BaseModel):
|
|
|
35
35
|
collection_name: str
|
|
36
36
|
vector_index_name: typing.Optional[str]
|
|
37
37
|
fulltext_index_name: typing.Optional[str]
|
|
38
|
+
embedding_dimension: typing.Optional[int]
|
|
38
39
|
class_name: typing.Optional[str]
|
|
39
40
|
|
|
40
41
|
def json(self, **kwargs: typing.Any) -> str:
|
|
@@ -4,7 +4,7 @@ import datetime as dt
|
|
|
4
4
|
import typing
|
|
5
5
|
|
|
6
6
|
from ..core.datetime_utils import serialize_datetime
|
|
7
|
-
from .
|
|
7
|
+
from .edit_suggestion_blocks_item import EditSuggestionBlocksItem
|
|
8
8
|
|
|
9
9
|
try:
|
|
10
10
|
import pydantic
|
|
@@ -21,9 +21,8 @@ class EditSuggestion(pydantic.BaseModel):
|
|
|
21
21
|
"""
|
|
22
22
|
|
|
23
23
|
justification: str
|
|
24
|
-
|
|
25
|
-
|
|
26
|
-
blocks: typing.List[ReportBlock]
|
|
24
|
+
blocks: typing.List[EditSuggestionBlocksItem]
|
|
25
|
+
removed_indices: typing.Optional[typing.List[int]]
|
|
27
26
|
|
|
28
27
|
def json(self, **kwargs: typing.Any) -> str:
|
|
29
28
|
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
@@ -5,6 +5,7 @@ import typing
|
|
|
5
5
|
|
|
6
6
|
from ..core.datetime_utils import serialize_datetime
|
|
7
7
|
from .extract_mode import ExtractMode
|
|
8
|
+
from .extract_target import ExtractTarget
|
|
8
9
|
|
|
9
10
|
try:
|
|
10
11
|
import pydantic
|
|
@@ -20,6 +21,7 @@ class ExtractConfig(pydantic.BaseModel):
|
|
|
20
21
|
Additional parameters for the extraction agent.
|
|
21
22
|
"""
|
|
22
23
|
|
|
24
|
+
extraction_target: typing.Optional[ExtractTarget] = pydantic.Field(description="The extraction target specified.")
|
|
23
25
|
extraction_mode: typing.Optional[ExtractMode] = pydantic.Field(description="The extraction mode specified.")
|
|
24
26
|
handle_missing: typing.Optional[bool] = pydantic.Field(
|
|
25
27
|
description="Whether to handle missing fields in the schema."
|
|
@@ -5,7 +5,7 @@ import typing
|
|
|
5
5
|
|
|
6
6
|
from ..core.datetime_utils import serialize_datetime
|
|
7
7
|
from .extract_config import ExtractConfig
|
|
8
|
-
from .
|
|
8
|
+
from .extract_job_create_data_schema_override import ExtractJobCreateDataSchemaOverride
|
|
9
9
|
|
|
10
10
|
try:
|
|
11
11
|
import pydantic
|
|
@@ -23,7 +23,9 @@ class ExtractJobCreate(pydantic.BaseModel):
|
|
|
23
23
|
|
|
24
24
|
extraction_agent_id: str = pydantic.Field(description="The id of the extraction agent")
|
|
25
25
|
file_id: str = pydantic.Field(description="The id of the file")
|
|
26
|
-
data_schema_override: typing.Optional[
|
|
26
|
+
data_schema_override: typing.Optional[ExtractJobCreateDataSchemaOverride] = pydantic.Field(
|
|
27
|
+
description="The data schema to override the extraction agent's data schema with"
|
|
28
|
+
)
|
|
27
29
|
config_override: typing.Optional[ExtractConfig]
|
|
28
30
|
|
|
29
31
|
def json(self, **kwargs: typing.Any) -> str:
|
|
@@ -0,0 +1,9 @@
|
|
|
1
|
+
# This file was auto-generated by Fern from our API Definition.
|
|
2
|
+
|
|
3
|
+
import typing
|
|
4
|
+
|
|
5
|
+
from .extract_job_create_data_schema_override_zero_value import ExtractJobCreateDataSchemaOverrideZeroValue
|
|
6
|
+
|
|
7
|
+
ExtractJobCreateDataSchemaOverride = typing.Union[
|
|
8
|
+
typing.Dict[str, typing.Optional[ExtractJobCreateDataSchemaOverrideZeroValue]], str
|
|
9
|
+
]
|
|
@@ -7,11 +7,11 @@ T_Result = typing.TypeVar("T_Result")
|
|
|
7
7
|
|
|
8
8
|
|
|
9
9
|
class ExtractMode(str, enum.Enum):
|
|
10
|
-
|
|
11
|
-
|
|
10
|
+
FAST = "FAST"
|
|
11
|
+
ACCURATE = "ACCURATE"
|
|
12
12
|
|
|
13
|
-
def visit(self,
|
|
14
|
-
if self is ExtractMode.
|
|
15
|
-
return
|
|
16
|
-
if self is ExtractMode.
|
|
17
|
-
return
|
|
13
|
+
def visit(self, fast: typing.Callable[[], T_Result], accurate: typing.Callable[[], T_Result]) -> T_Result:
|
|
14
|
+
if self is ExtractMode.FAST:
|
|
15
|
+
return fast()
|
|
16
|
+
if self is ExtractMode.ACCURATE:
|
|
17
|
+
return accurate()
|
llama_cloud/types/extract_run.py
CHANGED
|
@@ -5,8 +5,8 @@ import typing
|
|
|
5
5
|
|
|
6
6
|
from ..core.datetime_utils import serialize_datetime
|
|
7
7
|
from .extract_config import ExtractConfig
|
|
8
|
+
from .extract_run_data import ExtractRunData
|
|
8
9
|
from .extract_run_data_schema_value import ExtractRunDataSchemaValue
|
|
9
|
-
from .extract_run_data_value import ExtractRunDataValue
|
|
10
10
|
from .extract_run_extraction_metadata_value import ExtractRunExtractionMetadataValue
|
|
11
11
|
from .extract_state import ExtractState
|
|
12
12
|
from .file import File
|
|
@@ -37,7 +37,7 @@ class ExtractRun(pydantic.BaseModel):
|
|
|
37
37
|
status: ExtractState = pydantic.Field(description="The status of the extraction run")
|
|
38
38
|
error: typing.Optional[str]
|
|
39
39
|
job_id: typing.Optional[str]
|
|
40
|
-
data: typing.Optional[
|
|
40
|
+
data: typing.Optional[ExtractRunData] = pydantic.Field(description="The data extracted from the file")
|
|
41
41
|
extraction_metadata: typing.Optional[typing.Dict[str, typing.Optional[ExtractRunExtractionMetadataValue]]]
|
|
42
42
|
|
|
43
43
|
def json(self, **kwargs: typing.Any) -> str:
|
|
@@ -0,0 +1,11 @@
|
|
|
1
|
+
# This file was auto-generated by Fern from our API Definition.
|
|
2
|
+
|
|
3
|
+
import typing
|
|
4
|
+
|
|
5
|
+
from .extract_run_data_item_value import ExtractRunDataItemValue
|
|
6
|
+
from .extract_run_data_zero_value import ExtractRunDataZeroValue
|
|
7
|
+
|
|
8
|
+
ExtractRunData = typing.Union[
|
|
9
|
+
typing.Dict[str, typing.Optional[ExtractRunDataZeroValue]],
|
|
10
|
+
typing.List[typing.Dict[str, typing.Optional[ExtractRunDataItemValue]]],
|
|
11
|
+
]
|
|
@@ -0,0 +1,32 @@
|
|
|
1
|
+
# This file was auto-generated by Fern from our API Definition.
|
|
2
|
+
|
|
3
|
+
import datetime as dt
|
|
4
|
+
import typing
|
|
5
|
+
|
|
6
|
+
from ..core.datetime_utils import serialize_datetime
|
|
7
|
+
from .extract_schema_validate_response_data_schema_value import ExtractSchemaValidateResponseDataSchemaValue
|
|
8
|
+
|
|
9
|
+
try:
|
|
10
|
+
import pydantic
|
|
11
|
+
if pydantic.__version__.startswith("1."):
|
|
12
|
+
raise ImportError
|
|
13
|
+
import pydantic.v1 as pydantic # type: ignore
|
|
14
|
+
except ImportError:
|
|
15
|
+
import pydantic # type: ignore
|
|
16
|
+
|
|
17
|
+
|
|
18
|
+
class ExtractSchemaValidateResponse(pydantic.BaseModel):
|
|
19
|
+
data_schema: typing.Dict[str, typing.Optional[ExtractSchemaValidateResponseDataSchemaValue]]
|
|
20
|
+
|
|
21
|
+
def json(self, **kwargs: typing.Any) -> str:
|
|
22
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
23
|
+
return super().json(**kwargs_with_defaults)
|
|
24
|
+
|
|
25
|
+
def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
|
|
26
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
27
|
+
return super().dict(**kwargs_with_defaults)
|
|
28
|
+
|
|
29
|
+
class Config:
|
|
30
|
+
frozen = True
|
|
31
|
+
smart_union = True
|
|
32
|
+
json_encoders = {dt.datetime: serialize_datetime}
|
|
@@ -0,0 +1,17 @@
|
|
|
1
|
+
# This file was auto-generated by Fern from our API Definition.
|
|
2
|
+
|
|
3
|
+
import enum
|
|
4
|
+
import typing
|
|
5
|
+
|
|
6
|
+
T_Result = typing.TypeVar("T_Result")
|
|
7
|
+
|
|
8
|
+
|
|
9
|
+
class ExtractTarget(str, enum.Enum):
|
|
10
|
+
PER_DOC = "PER_DOC"
|
|
11
|
+
PER_PAGE = "PER_PAGE"
|
|
12
|
+
|
|
13
|
+
def visit(self, per_doc: typing.Callable[[], T_Result], per_page: typing.Callable[[], T_Result]) -> T_Result:
|
|
14
|
+
if self is ExtractTarget.PER_DOC:
|
|
15
|
+
return per_doc()
|
|
16
|
+
if self is ExtractTarget.PER_PAGE:
|
|
17
|
+
return per_page()
|
|
@@ -4,6 +4,7 @@ import datetime as dt
|
|
|
4
4
|
import typing
|
|
5
5
|
|
|
6
6
|
from ..core.datetime_utils import serialize_datetime
|
|
7
|
+
from .llama_parse_parameters import LlamaParseParameters
|
|
7
8
|
|
|
8
9
|
try:
|
|
9
10
|
import pydantic
|
|
@@ -25,11 +26,17 @@ class LlamaExtractSettings(pydantic.BaseModel):
|
|
|
25
26
|
max_file_size: typing.Optional[int] = pydantic.Field(
|
|
26
27
|
description="The maximum file size (in bytes) allowed for the document."
|
|
27
28
|
)
|
|
28
|
-
|
|
29
|
+
max_tokens: typing.Optional[int] = pydantic.Field(
|
|
30
|
+
description="The maximum number of tokens allowed for the document."
|
|
31
|
+
)
|
|
32
|
+
max_pages: typing.Optional[int] = pydantic.Field(
|
|
29
33
|
description="The maximum number of pages allowed for the document."
|
|
30
34
|
)
|
|
31
35
|
extraction_prompt: typing.Optional[str] = pydantic.Field(description="The prompt to use for the extraction.")
|
|
32
36
|
error_handling_prompt: typing.Optional[str] = pydantic.Field(description="The prompt to use for error handling.")
|
|
37
|
+
llama_parse_params: typing.Optional[LlamaParseParameters] = pydantic.Field(
|
|
38
|
+
description="LlamaParse related settings."
|
|
39
|
+
)
|
|
33
40
|
|
|
34
41
|
def json(self, **kwargs: typing.Any) -> str:
|
|
35
42
|
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
@@ -82,6 +82,15 @@ class LlamaParseParameters(pydantic.BaseModel):
|
|
|
82
82
|
complemental_formatting_instruction: typing.Optional[str]
|
|
83
83
|
content_guideline_instruction: typing.Optional[str]
|
|
84
84
|
spreadsheet_extract_sub_tables: typing.Optional[bool]
|
|
85
|
+
job_timeout_in_seconds: typing.Optional[float]
|
|
86
|
+
job_timeout_extra_time_per_page_in_seconds: typing.Optional[float]
|
|
87
|
+
strict_mode_image_extraction: typing.Optional[bool]
|
|
88
|
+
strict_mode_image_ocr: typing.Optional[bool]
|
|
89
|
+
strict_mode_reconstruction: typing.Optional[bool]
|
|
90
|
+
strict_mode_buggy_font: typing.Optional[bool]
|
|
91
|
+
ignore_document_elements_for_layout_detection: typing.Optional[bool]
|
|
92
|
+
output_tables_as_html: typing.Optional[bool] = pydantic.Field(alias="output_tables_as_HTML")
|
|
93
|
+
internal_is_screenshot_job: typing.Optional[bool]
|
|
85
94
|
|
|
86
95
|
def json(self, **kwargs: typing.Any) -> str:
|
|
87
96
|
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
llama_cloud/types/plan.py
CHANGED
|
@@ -15,6 +15,8 @@ except ImportError:
|
|
|
15
15
|
|
|
16
16
|
|
|
17
17
|
class Plan(pydantic.BaseModel):
|
|
18
|
+
id: str = pydantic.Field(description="The ID of the plan")
|
|
19
|
+
name: typing.Optional[str]
|
|
18
20
|
total_users: typing.Optional[int]
|
|
19
21
|
total_indexes: typing.Optional[int]
|
|
20
22
|
total_indexed_pages: typing.Optional[int]
|
|
@@ -25,6 +27,8 @@ class Plan(pydantic.BaseModel):
|
|
|
25
27
|
allowed_external_index: typing.Optional[bool] = pydantic.Field(
|
|
26
28
|
description="If is allowed to use external data sources or sinks in indexes"
|
|
27
29
|
)
|
|
30
|
+
starting_on: typing.Optional[dt.datetime]
|
|
31
|
+
ending_before: typing.Optional[dt.datetime]
|
|
28
32
|
|
|
29
33
|
def json(self, **kwargs: typing.Any) -> str:
|
|
30
34
|
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
@@ -0,0 +1,35 @@
|
|
|
1
|
+
# This file was auto-generated by Fern from our API Definition.
|
|
2
|
+
|
|
3
|
+
import datetime as dt
|
|
4
|
+
import typing
|
|
5
|
+
|
|
6
|
+
from ..core.datetime_utils import serialize_datetime
|
|
7
|
+
from .composite_retrieval_mode import CompositeRetrievalMode
|
|
8
|
+
|
|
9
|
+
try:
|
|
10
|
+
import pydantic
|
|
11
|
+
if pydantic.__version__.startswith("1."):
|
|
12
|
+
raise ImportError
|
|
13
|
+
import pydantic.v1 as pydantic # type: ignore
|
|
14
|
+
except ImportError:
|
|
15
|
+
import pydantic # type: ignore
|
|
16
|
+
|
|
17
|
+
|
|
18
|
+
class PresetCompositeRetrievalParams(pydantic.BaseModel):
|
|
19
|
+
mode: typing.Optional[CompositeRetrievalMode] = pydantic.Field(description="The mode of composite retrieval.")
|
|
20
|
+
rerank_top_n: typing.Optional[int] = pydantic.Field(
|
|
21
|
+
description="The number of nodes to retrieve after reranking over retrieved nodes from all retrieval tools."
|
|
22
|
+
)
|
|
23
|
+
|
|
24
|
+
def json(self, **kwargs: typing.Any) -> str:
|
|
25
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
26
|
+
return super().json(**kwargs_with_defaults)
|
|
27
|
+
|
|
28
|
+
def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
|
|
29
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
30
|
+
return super().dict(**kwargs_with_defaults)
|
|
31
|
+
|
|
32
|
+
class Config:
|
|
33
|
+
frozen = True
|
|
34
|
+
smart_union = True
|
|
35
|
+
json_encoders = {dt.datetime: serialize_datetime}
|
|
@@ -0,0 +1,37 @@
|
|
|
1
|
+
# This file was auto-generated by Fern from our API Definition.
|
|
2
|
+
|
|
3
|
+
import datetime as dt
|
|
4
|
+
import typing
|
|
5
|
+
|
|
6
|
+
from ..core.datetime_utils import serialize_datetime
|
|
7
|
+
|
|
8
|
+
try:
|
|
9
|
+
import pydantic
|
|
10
|
+
if pydantic.__version__.startswith("1."):
|
|
11
|
+
raise ImportError
|
|
12
|
+
import pydantic.v1 as pydantic # type: ignore
|
|
13
|
+
except ImportError:
|
|
14
|
+
import pydantic # type: ignore
|
|
15
|
+
|
|
16
|
+
|
|
17
|
+
class ReportFileInfo(pydantic.BaseModel):
|
|
18
|
+
"""
|
|
19
|
+
Information about a file stored in S3
|
|
20
|
+
"""
|
|
21
|
+
|
|
22
|
+
original_name: str = pydantic.Field(description="Original filename uploaded by user")
|
|
23
|
+
s_3_path: str = pydantic.Field(alias="s3_path", description="Path to file in S3")
|
|
24
|
+
|
|
25
|
+
def json(self, **kwargs: typing.Any) -> str:
|
|
26
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
27
|
+
return super().json(**kwargs_with_defaults)
|
|
28
|
+
|
|
29
|
+
def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
|
|
30
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
31
|
+
return super().dict(**kwargs_with_defaults)
|
|
32
|
+
|
|
33
|
+
class Config:
|
|
34
|
+
frozen = True
|
|
35
|
+
smart_union = True
|
|
36
|
+
allow_population_by_field_name = True
|
|
37
|
+
json_encoders = {dt.datetime: serialize_datetime}
|
|
@@ -4,6 +4,7 @@ import datetime as dt
|
|
|
4
4
|
import typing
|
|
5
5
|
|
|
6
6
|
from ..core.datetime_utils import serialize_datetime
|
|
7
|
+
from .report_file_info import ReportFileInfo
|
|
7
8
|
from .report_state import ReportState
|
|
8
9
|
|
|
9
10
|
try:
|
|
@@ -25,7 +26,7 @@ class ReportMetadata(pydantic.BaseModel):
|
|
|
25
26
|
report_metadata: typing.Dict[str, typing.Any] = pydantic.Field(description="The metadata for the report")
|
|
26
27
|
state: ReportState = pydantic.Field(description="The state of the report")
|
|
27
28
|
input_files: typing.Optional[typing.List[str]]
|
|
28
|
-
template_file: typing.Optional[
|
|
29
|
+
template_file: typing.Optional[ReportFileInfo]
|
|
29
30
|
template_text: typing.Optional[str]
|
|
30
31
|
template_instructions: typing.Optional[str]
|
|
31
32
|
|
|
@@ -12,8 +12,14 @@ class SupportedLlmModelNames(str, enum.Enum):
|
|
|
12
12
|
GPT_4_TURBO = "GPT_4_TURBO"
|
|
13
13
|
GPT_4_O = "GPT_4O"
|
|
14
14
|
GPT_4_O_MINI = "GPT_4O_MINI"
|
|
15
|
-
|
|
15
|
+
AZURE_OPENAI_GPT_3_5_TURBO = "AZURE_OPENAI_GPT_3_5_TURBO"
|
|
16
|
+
AZURE_OPENAI_GPT_4_O = "AZURE_OPENAI_GPT_4O"
|
|
17
|
+
AZURE_OPENAI_GPT_4_O_MINI = "AZURE_OPENAI_GPT_4O_MINI"
|
|
18
|
+
AZURE_OPENAI_GPT_4 = "AZURE_OPENAI_GPT_4"
|
|
19
|
+
AZURE_OPENAI_TEXT_EMBEDDING_3_LARGE = "AZURE_OPENAI_TEXT_EMBEDDING_3_LARGE"
|
|
16
20
|
CLAUDE_3_5_SONNET = "CLAUDE_3_5_SONNET"
|
|
21
|
+
BEDROCK_CLAUDE_3_5_SONNET = "BEDROCK_CLAUDE_3_5_SONNET"
|
|
22
|
+
VERTEX_AI_CLAUDE_3_5_SONNET = "VERTEX_AI_CLAUDE_3_5_SONNET"
|
|
17
23
|
|
|
18
24
|
def visit(
|
|
19
25
|
self,
|
|
@@ -22,8 +28,14 @@ class SupportedLlmModelNames(str, enum.Enum):
|
|
|
22
28
|
gpt_4_turbo: typing.Callable[[], T_Result],
|
|
23
29
|
gpt_4_o: typing.Callable[[], T_Result],
|
|
24
30
|
gpt_4_o_mini: typing.Callable[[], T_Result],
|
|
25
|
-
|
|
31
|
+
azure_openai_gpt_3_5_turbo: typing.Callable[[], T_Result],
|
|
32
|
+
azure_openai_gpt_4_o: typing.Callable[[], T_Result],
|
|
33
|
+
azure_openai_gpt_4_o_mini: typing.Callable[[], T_Result],
|
|
34
|
+
azure_openai_gpt_4: typing.Callable[[], T_Result],
|
|
35
|
+
azure_openai_text_embedding_3_large: typing.Callable[[], T_Result],
|
|
26
36
|
claude_3_5_sonnet: typing.Callable[[], T_Result],
|
|
37
|
+
bedrock_claude_3_5_sonnet: typing.Callable[[], T_Result],
|
|
38
|
+
vertex_ai_claude_3_5_sonnet: typing.Callable[[], T_Result],
|
|
27
39
|
) -> T_Result:
|
|
28
40
|
if self is SupportedLlmModelNames.GPT_3_5_TURBO:
|
|
29
41
|
return gpt_3_5_turbo()
|
|
@@ -35,7 +47,19 @@ class SupportedLlmModelNames(str, enum.Enum):
|
|
|
35
47
|
return gpt_4_o()
|
|
36
48
|
if self is SupportedLlmModelNames.GPT_4_O_MINI:
|
|
37
49
|
return gpt_4_o_mini()
|
|
38
|
-
if self is SupportedLlmModelNames.
|
|
39
|
-
return
|
|
50
|
+
if self is SupportedLlmModelNames.AZURE_OPENAI_GPT_3_5_TURBO:
|
|
51
|
+
return azure_openai_gpt_3_5_turbo()
|
|
52
|
+
if self is SupportedLlmModelNames.AZURE_OPENAI_GPT_4_O:
|
|
53
|
+
return azure_openai_gpt_4_o()
|
|
54
|
+
if self is SupportedLlmModelNames.AZURE_OPENAI_GPT_4_O_MINI:
|
|
55
|
+
return azure_openai_gpt_4_o_mini()
|
|
56
|
+
if self is SupportedLlmModelNames.AZURE_OPENAI_GPT_4:
|
|
57
|
+
return azure_openai_gpt_4()
|
|
58
|
+
if self is SupportedLlmModelNames.AZURE_OPENAI_TEXT_EMBEDDING_3_LARGE:
|
|
59
|
+
return azure_openai_text_embedding_3_large()
|
|
40
60
|
if self is SupportedLlmModelNames.CLAUDE_3_5_SONNET:
|
|
41
61
|
return claude_3_5_sonnet()
|
|
62
|
+
if self is SupportedLlmModelNames.BEDROCK_CLAUDE_3_5_SONNET:
|
|
63
|
+
return bedrock_claude_3_5_sonnet()
|
|
64
|
+
if self is SupportedLlmModelNames.VERTEX_AI_CLAUDE_3_5_SONNET:
|
|
65
|
+
return vertex_ai_claude_3_5_sonnet()
|