llama-cloud 0.1.8__py3-none-any.whl → 0.1.10__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of llama-cloud might be problematic. Click here for more details.
- llama_cloud/__init__.py +32 -22
- llama_cloud/client.py +0 -3
- llama_cloud/resources/__init__.py +14 -8
- llama_cloud/resources/chat_apps/client.py +99 -133
- llama_cloud/resources/files/client.py +34 -6
- llama_cloud/resources/llama_extract/__init__.py +16 -2
- llama_cloud/resources/llama_extract/client.py +238 -366
- llama_cloud/resources/llama_extract/types/__init__.py +14 -3
- llama_cloud/resources/llama_extract/types/extract_agent_create_data_schema.py +9 -0
- llama_cloud/resources/llama_extract/types/{extract_agent_create_data_schema_value.py → extract_agent_create_data_schema_zero_value.py} +1 -1
- llama_cloud/resources/llama_extract/types/extract_agent_update_data_schema.py +9 -0
- llama_cloud/resources/{extraction/types/extraction_schema_create_data_schema_value.py → llama_extract/types/extract_agent_update_data_schema_zero_value.py} +1 -1
- llama_cloud/resources/llama_extract/types/extract_schema_validate_request_data_schema.py +9 -0
- llama_cloud/resources/llama_extract/types/extract_schema_validate_request_data_schema_zero_value.py +7 -0
- llama_cloud/resources/organizations/client.py +8 -12
- llama_cloud/resources/parsing/client.py +146 -18
- llama_cloud/resources/reports/client.py +30 -26
- llama_cloud/resources/retrievers/client.py +16 -4
- llama_cloud/types/__init__.py +20 -12
- llama_cloud/types/chat_app.py +11 -9
- llama_cloud/types/chat_app_response.py +12 -10
- llama_cloud/types/cloud_mongo_db_atlas_vector_search.py +1 -0
- llama_cloud/types/extract_job.py +3 -1
- llama_cloud/types/extract_job_create.py +4 -2
- llama_cloud/types/extract_job_create_data_schema_override.py +9 -0
- llama_cloud/{resources/extraction/types/extraction_schema_update_data_schema_value.py → types/extract_job_create_data_schema_override_zero_value.py} +1 -1
- llama_cloud/types/extract_resultset.py +2 -6
- llama_cloud/types/extract_run.py +5 -0
- llama_cloud/types/extract_run_data.py +11 -0
- llama_cloud/types/extract_run_data_item_value.py +5 -0
- llama_cloud/types/extract_run_data_zero_value.py +5 -0
- llama_cloud/{resources/llama_extract/types/extract_agent_update_data_schema_value.py → types/extract_run_extraction_metadata_value.py} +1 -1
- llama_cloud/types/{extraction_job.py → extract_schema_validate_response.py} +3 -6
- llama_cloud/types/extract_schema_validate_response_data_schema_value.py +7 -0
- llama_cloud/types/extract_state.py +4 -4
- llama_cloud/types/llama_extract_settings.py +4 -0
- llama_cloud/types/llama_parse_parameters.py +11 -0
- llama_cloud/types/plan.py +4 -0
- llama_cloud/types/{extraction_result.py → preset_composite_retrieval_params.py} +5 -14
- llama_cloud/types/{extraction_schema.py → report_file_info.py} +5 -9
- llama_cloud/types/report_metadata.py +2 -1
- {llama_cloud-0.1.8.dist-info → llama_cloud-0.1.10.dist-info}/METADATA +2 -1
- {llama_cloud-0.1.8.dist-info → llama_cloud-0.1.10.dist-info}/RECORD +45 -42
- {llama_cloud-0.1.8.dist-info → llama_cloud-0.1.10.dist-info}/WHEEL +1 -1
- llama_cloud/resources/extraction/__init__.py +0 -5
- llama_cloud/resources/extraction/client.py +0 -756
- llama_cloud/resources/extraction/types/__init__.py +0 -6
- llama_cloud/types/extract_job_create_data_schema_override_value.py +0 -7
- llama_cloud/types/extraction_result_data_value.py +0 -5
- llama_cloud/types/extraction_schema_data_schema_value.py +0 -7
- {llama_cloud-0.1.8.dist-info → llama_cloud-0.1.10.dist-info}/LICENSE +0 -0
|
@@ -1,756 +0,0 @@
|
|
|
1
|
-
# This file was auto-generated by Fern from our API Definition.
|
|
2
|
-
|
|
3
|
-
import typing
|
|
4
|
-
import urllib.parse
|
|
5
|
-
from json.decoder import JSONDecodeError
|
|
6
|
-
|
|
7
|
-
from ...core.api_error import ApiError
|
|
8
|
-
from ...core.client_wrapper import AsyncClientWrapper, SyncClientWrapper
|
|
9
|
-
from ...core.jsonable_encoder import jsonable_encoder
|
|
10
|
-
from ...core.remove_none_from_dict import remove_none_from_dict
|
|
11
|
-
from ...errors.unprocessable_entity_error import UnprocessableEntityError
|
|
12
|
-
from ...types.extraction_job import ExtractionJob
|
|
13
|
-
from ...types.extraction_result import ExtractionResult
|
|
14
|
-
from ...types.extraction_schema import ExtractionSchema
|
|
15
|
-
from ...types.http_validation_error import HttpValidationError
|
|
16
|
-
from .types.extraction_schema_create_data_schema_value import ExtractionSchemaCreateDataSchemaValue
|
|
17
|
-
from .types.extraction_schema_update_data_schema_value import ExtractionSchemaUpdateDataSchemaValue
|
|
18
|
-
|
|
19
|
-
try:
|
|
20
|
-
import pydantic
|
|
21
|
-
if pydantic.__version__.startswith("1."):
|
|
22
|
-
raise ImportError
|
|
23
|
-
import pydantic.v1 as pydantic # type: ignore
|
|
24
|
-
except ImportError:
|
|
25
|
-
import pydantic # type: ignore
|
|
26
|
-
|
|
27
|
-
# this is used as the default value for optional parameters
|
|
28
|
-
OMIT = typing.cast(typing.Any, ...)
|
|
29
|
-
|
|
30
|
-
|
|
31
|
-
class ExtractionClient:
|
|
32
|
-
def __init__(self, *, client_wrapper: SyncClientWrapper):
|
|
33
|
-
self._client_wrapper = client_wrapper
|
|
34
|
-
|
|
35
|
-
def list_schemas(self, *, project_id: typing.Optional[str] = None) -> typing.List[ExtractionSchema]:
|
|
36
|
-
"""
|
|
37
|
-
Parameters:
|
|
38
|
-
- project_id: typing.Optional[str].
|
|
39
|
-
---
|
|
40
|
-
from llama_cloud.client import LlamaCloud
|
|
41
|
-
|
|
42
|
-
client = LlamaCloud(
|
|
43
|
-
token="YOUR_TOKEN",
|
|
44
|
-
)
|
|
45
|
-
client.extraction.list_schemas()
|
|
46
|
-
"""
|
|
47
|
-
_response = self._client_wrapper.httpx_client.request(
|
|
48
|
-
"GET",
|
|
49
|
-
urllib.parse.urljoin(f"{self._client_wrapper.get_base_url()}/", "api/v1/extraction/schemas"),
|
|
50
|
-
params=remove_none_from_dict({"project_id": project_id}),
|
|
51
|
-
headers=self._client_wrapper.get_headers(),
|
|
52
|
-
timeout=60,
|
|
53
|
-
)
|
|
54
|
-
if 200 <= _response.status_code < 300:
|
|
55
|
-
return pydantic.parse_obj_as(typing.List[ExtractionSchema], _response.json()) # type: ignore
|
|
56
|
-
if _response.status_code == 422:
|
|
57
|
-
raise UnprocessableEntityError(pydantic.parse_obj_as(HttpValidationError, _response.json())) # type: ignore
|
|
58
|
-
try:
|
|
59
|
-
_response_json = _response.json()
|
|
60
|
-
except JSONDecodeError:
|
|
61
|
-
raise ApiError(status_code=_response.status_code, body=_response.text)
|
|
62
|
-
raise ApiError(status_code=_response.status_code, body=_response_json)
|
|
63
|
-
|
|
64
|
-
def create_schema(
|
|
65
|
-
self,
|
|
66
|
-
*,
|
|
67
|
-
name: str,
|
|
68
|
-
project_id: typing.Optional[str] = OMIT,
|
|
69
|
-
data_schema: typing.Dict[str, typing.Optional[ExtractionSchemaCreateDataSchemaValue]],
|
|
70
|
-
) -> ExtractionSchema:
|
|
71
|
-
"""
|
|
72
|
-
Parameters:
|
|
73
|
-
- name: str. The name of the extraction schema
|
|
74
|
-
|
|
75
|
-
- project_id: typing.Optional[str].
|
|
76
|
-
|
|
77
|
-
- data_schema: typing.Dict[str, typing.Optional[ExtractionSchemaCreateDataSchemaValue]]. The schema of the data
|
|
78
|
-
---
|
|
79
|
-
from llama_cloud.client import LlamaCloud
|
|
80
|
-
|
|
81
|
-
client = LlamaCloud(
|
|
82
|
-
token="YOUR_TOKEN",
|
|
83
|
-
)
|
|
84
|
-
client.extraction.create_schema(
|
|
85
|
-
name="string",
|
|
86
|
-
data_schema={},
|
|
87
|
-
)
|
|
88
|
-
"""
|
|
89
|
-
_request: typing.Dict[str, typing.Any] = {"name": name, "data_schema": data_schema}
|
|
90
|
-
if project_id is not OMIT:
|
|
91
|
-
_request["project_id"] = project_id
|
|
92
|
-
_response = self._client_wrapper.httpx_client.request(
|
|
93
|
-
"POST",
|
|
94
|
-
urllib.parse.urljoin(f"{self._client_wrapper.get_base_url()}/", "api/v1/extraction/schemas"),
|
|
95
|
-
json=jsonable_encoder(_request),
|
|
96
|
-
headers=self._client_wrapper.get_headers(),
|
|
97
|
-
timeout=60,
|
|
98
|
-
)
|
|
99
|
-
if 200 <= _response.status_code < 300:
|
|
100
|
-
return pydantic.parse_obj_as(ExtractionSchema, _response.json()) # type: ignore
|
|
101
|
-
if _response.status_code == 422:
|
|
102
|
-
raise UnprocessableEntityError(pydantic.parse_obj_as(HttpValidationError, _response.json())) # type: ignore
|
|
103
|
-
try:
|
|
104
|
-
_response_json = _response.json()
|
|
105
|
-
except JSONDecodeError:
|
|
106
|
-
raise ApiError(status_code=_response.status_code, body=_response.text)
|
|
107
|
-
raise ApiError(status_code=_response.status_code, body=_response_json)
|
|
108
|
-
|
|
109
|
-
def infer_schema(
|
|
110
|
-
self,
|
|
111
|
-
*,
|
|
112
|
-
schema_id: typing.Optional[str] = OMIT,
|
|
113
|
-
name: str,
|
|
114
|
-
project_id: typing.Optional[str] = OMIT,
|
|
115
|
-
file_ids: typing.List[str],
|
|
116
|
-
stream: typing.Optional[bool] = OMIT,
|
|
117
|
-
) -> ExtractionSchema:
|
|
118
|
-
"""
|
|
119
|
-
Parameters:
|
|
120
|
-
- schema_id: typing.Optional[str].
|
|
121
|
-
|
|
122
|
-
- name: str. The name of the extraction schema
|
|
123
|
-
|
|
124
|
-
- project_id: typing.Optional[str].
|
|
125
|
-
|
|
126
|
-
- file_ids: typing.List[str]. The IDs of the files that the extraction schema contains
|
|
127
|
-
|
|
128
|
-
- stream: typing.Optional[bool]. Whether to stream the results of the extraction schema
|
|
129
|
-
---
|
|
130
|
-
from llama_cloud.client import LlamaCloud
|
|
131
|
-
|
|
132
|
-
client = LlamaCloud(
|
|
133
|
-
token="YOUR_TOKEN",
|
|
134
|
-
)
|
|
135
|
-
client.extraction.infer_schema(
|
|
136
|
-
name="string",
|
|
137
|
-
file_ids=[],
|
|
138
|
-
)
|
|
139
|
-
"""
|
|
140
|
-
_request: typing.Dict[str, typing.Any] = {"name": name, "file_ids": file_ids}
|
|
141
|
-
if schema_id is not OMIT:
|
|
142
|
-
_request["schema_id"] = schema_id
|
|
143
|
-
if project_id is not OMIT:
|
|
144
|
-
_request["project_id"] = project_id
|
|
145
|
-
if stream is not OMIT:
|
|
146
|
-
_request["stream"] = stream
|
|
147
|
-
_response = self._client_wrapper.httpx_client.request(
|
|
148
|
-
"POST",
|
|
149
|
-
urllib.parse.urljoin(f"{self._client_wrapper.get_base_url()}/", "api/v1/extraction/schemas/infer"),
|
|
150
|
-
json=jsonable_encoder(_request),
|
|
151
|
-
headers=self._client_wrapper.get_headers(),
|
|
152
|
-
timeout=60,
|
|
153
|
-
)
|
|
154
|
-
if 200 <= _response.status_code < 300:
|
|
155
|
-
return pydantic.parse_obj_as(ExtractionSchema, _response.json()) # type: ignore
|
|
156
|
-
if _response.status_code == 422:
|
|
157
|
-
raise UnprocessableEntityError(pydantic.parse_obj_as(HttpValidationError, _response.json())) # type: ignore
|
|
158
|
-
try:
|
|
159
|
-
_response_json = _response.json()
|
|
160
|
-
except JSONDecodeError:
|
|
161
|
-
raise ApiError(status_code=_response.status_code, body=_response.text)
|
|
162
|
-
raise ApiError(status_code=_response.status_code, body=_response_json)
|
|
163
|
-
|
|
164
|
-
def get_schema(self, schema_id: str) -> ExtractionSchema:
|
|
165
|
-
"""
|
|
166
|
-
Parameters:
|
|
167
|
-
- schema_id: str.
|
|
168
|
-
---
|
|
169
|
-
from llama_cloud.client import LlamaCloud
|
|
170
|
-
|
|
171
|
-
client = LlamaCloud(
|
|
172
|
-
token="YOUR_TOKEN",
|
|
173
|
-
)
|
|
174
|
-
client.extraction.get_schema(
|
|
175
|
-
schema_id="string",
|
|
176
|
-
)
|
|
177
|
-
"""
|
|
178
|
-
_response = self._client_wrapper.httpx_client.request(
|
|
179
|
-
"GET",
|
|
180
|
-
urllib.parse.urljoin(f"{self._client_wrapper.get_base_url()}/", f"api/v1/extraction/schemas/{schema_id}"),
|
|
181
|
-
headers=self._client_wrapper.get_headers(),
|
|
182
|
-
timeout=60,
|
|
183
|
-
)
|
|
184
|
-
if 200 <= _response.status_code < 300:
|
|
185
|
-
return pydantic.parse_obj_as(ExtractionSchema, _response.json()) # type: ignore
|
|
186
|
-
if _response.status_code == 422:
|
|
187
|
-
raise UnprocessableEntityError(pydantic.parse_obj_as(HttpValidationError, _response.json())) # type: ignore
|
|
188
|
-
try:
|
|
189
|
-
_response_json = _response.json()
|
|
190
|
-
except JSONDecodeError:
|
|
191
|
-
raise ApiError(status_code=_response.status_code, body=_response.text)
|
|
192
|
-
raise ApiError(status_code=_response.status_code, body=_response_json)
|
|
193
|
-
|
|
194
|
-
def update_schema(
|
|
195
|
-
self,
|
|
196
|
-
schema_id: str,
|
|
197
|
-
*,
|
|
198
|
-
data_schema: typing.Optional[typing.Dict[str, typing.Optional[ExtractionSchemaUpdateDataSchemaValue]]] = OMIT,
|
|
199
|
-
) -> ExtractionSchema:
|
|
200
|
-
"""
|
|
201
|
-
Parameters:
|
|
202
|
-
- schema_id: str.
|
|
203
|
-
|
|
204
|
-
- data_schema: typing.Optional[typing.Dict[str, typing.Optional[ExtractionSchemaUpdateDataSchemaValue]]].
|
|
205
|
-
---
|
|
206
|
-
from llama_cloud.client import LlamaCloud
|
|
207
|
-
|
|
208
|
-
client = LlamaCloud(
|
|
209
|
-
token="YOUR_TOKEN",
|
|
210
|
-
)
|
|
211
|
-
client.extraction.update_schema(
|
|
212
|
-
schema_id="string",
|
|
213
|
-
)
|
|
214
|
-
"""
|
|
215
|
-
_request: typing.Dict[str, typing.Any] = {}
|
|
216
|
-
if data_schema is not OMIT:
|
|
217
|
-
_request["data_schema"] = data_schema
|
|
218
|
-
_response = self._client_wrapper.httpx_client.request(
|
|
219
|
-
"PUT",
|
|
220
|
-
urllib.parse.urljoin(f"{self._client_wrapper.get_base_url()}/", f"api/v1/extraction/schemas/{schema_id}"),
|
|
221
|
-
json=jsonable_encoder(_request),
|
|
222
|
-
headers=self._client_wrapper.get_headers(),
|
|
223
|
-
timeout=60,
|
|
224
|
-
)
|
|
225
|
-
if 200 <= _response.status_code < 300:
|
|
226
|
-
return pydantic.parse_obj_as(ExtractionSchema, _response.json()) # type: ignore
|
|
227
|
-
if _response.status_code == 422:
|
|
228
|
-
raise UnprocessableEntityError(pydantic.parse_obj_as(HttpValidationError, _response.json())) # type: ignore
|
|
229
|
-
try:
|
|
230
|
-
_response_json = _response.json()
|
|
231
|
-
except JSONDecodeError:
|
|
232
|
-
raise ApiError(status_code=_response.status_code, body=_response.text)
|
|
233
|
-
raise ApiError(status_code=_response.status_code, body=_response_json)
|
|
234
|
-
|
|
235
|
-
def list_jobs(self, *, schema_id: str) -> typing.List[ExtractionJob]:
|
|
236
|
-
"""
|
|
237
|
-
Parameters:
|
|
238
|
-
- schema_id: str.
|
|
239
|
-
---
|
|
240
|
-
from llama_cloud.client import LlamaCloud
|
|
241
|
-
|
|
242
|
-
client = LlamaCloud(
|
|
243
|
-
token="YOUR_TOKEN",
|
|
244
|
-
)
|
|
245
|
-
client.extraction.list_jobs(
|
|
246
|
-
schema_id="string",
|
|
247
|
-
)
|
|
248
|
-
"""
|
|
249
|
-
_response = self._client_wrapper.httpx_client.request(
|
|
250
|
-
"GET",
|
|
251
|
-
urllib.parse.urljoin(f"{self._client_wrapper.get_base_url()}/", "api/v1/extraction/jobs"),
|
|
252
|
-
params=remove_none_from_dict({"schema_id": schema_id}),
|
|
253
|
-
headers=self._client_wrapper.get_headers(),
|
|
254
|
-
timeout=60,
|
|
255
|
-
)
|
|
256
|
-
if 200 <= _response.status_code < 300:
|
|
257
|
-
return pydantic.parse_obj_as(typing.List[ExtractionJob], _response.json()) # type: ignore
|
|
258
|
-
if _response.status_code == 422:
|
|
259
|
-
raise UnprocessableEntityError(pydantic.parse_obj_as(HttpValidationError, _response.json())) # type: ignore
|
|
260
|
-
try:
|
|
261
|
-
_response_json = _response.json()
|
|
262
|
-
except JSONDecodeError:
|
|
263
|
-
raise ApiError(status_code=_response.status_code, body=_response.text)
|
|
264
|
-
raise ApiError(status_code=_response.status_code, body=_response_json)
|
|
265
|
-
|
|
266
|
-
def run_job(self, *, schema_id: str, file_id: str) -> ExtractionJob:
|
|
267
|
-
"""
|
|
268
|
-
Parameters:
|
|
269
|
-
- schema_id: str. The id of the schema
|
|
270
|
-
|
|
271
|
-
- file_id: str. The id of the file
|
|
272
|
-
---
|
|
273
|
-
from llama_cloud.client import LlamaCloud
|
|
274
|
-
|
|
275
|
-
client = LlamaCloud(
|
|
276
|
-
token="YOUR_TOKEN",
|
|
277
|
-
)
|
|
278
|
-
client.extraction.run_job(
|
|
279
|
-
schema_id="string",
|
|
280
|
-
file_id="string",
|
|
281
|
-
)
|
|
282
|
-
"""
|
|
283
|
-
_response = self._client_wrapper.httpx_client.request(
|
|
284
|
-
"POST",
|
|
285
|
-
urllib.parse.urljoin(f"{self._client_wrapper.get_base_url()}/", "api/v1/extraction/jobs"),
|
|
286
|
-
json=jsonable_encoder({"schema_id": schema_id, "file_id": file_id}),
|
|
287
|
-
headers=self._client_wrapper.get_headers(),
|
|
288
|
-
timeout=60,
|
|
289
|
-
)
|
|
290
|
-
if 200 <= _response.status_code < 300:
|
|
291
|
-
return pydantic.parse_obj_as(ExtractionJob, _response.json()) # type: ignore
|
|
292
|
-
if _response.status_code == 422:
|
|
293
|
-
raise UnprocessableEntityError(pydantic.parse_obj_as(HttpValidationError, _response.json())) # type: ignore
|
|
294
|
-
try:
|
|
295
|
-
_response_json = _response.json()
|
|
296
|
-
except JSONDecodeError:
|
|
297
|
-
raise ApiError(status_code=_response.status_code, body=_response.text)
|
|
298
|
-
raise ApiError(status_code=_response.status_code, body=_response_json)
|
|
299
|
-
|
|
300
|
-
def get_job(self, job_id: str) -> ExtractionJob:
|
|
301
|
-
"""
|
|
302
|
-
Parameters:
|
|
303
|
-
- job_id: str.
|
|
304
|
-
---
|
|
305
|
-
from llama_cloud.client import LlamaCloud
|
|
306
|
-
|
|
307
|
-
client = LlamaCloud(
|
|
308
|
-
token="YOUR_TOKEN",
|
|
309
|
-
)
|
|
310
|
-
client.extraction.get_job(
|
|
311
|
-
job_id="string",
|
|
312
|
-
)
|
|
313
|
-
"""
|
|
314
|
-
_response = self._client_wrapper.httpx_client.request(
|
|
315
|
-
"GET",
|
|
316
|
-
urllib.parse.urljoin(f"{self._client_wrapper.get_base_url()}/", f"api/v1/extraction/jobs/{job_id}"),
|
|
317
|
-
headers=self._client_wrapper.get_headers(),
|
|
318
|
-
timeout=60,
|
|
319
|
-
)
|
|
320
|
-
if 200 <= _response.status_code < 300:
|
|
321
|
-
return pydantic.parse_obj_as(ExtractionJob, _response.json()) # type: ignore
|
|
322
|
-
if _response.status_code == 422:
|
|
323
|
-
raise UnprocessableEntityError(pydantic.parse_obj_as(HttpValidationError, _response.json())) # type: ignore
|
|
324
|
-
try:
|
|
325
|
-
_response_json = _response.json()
|
|
326
|
-
except JSONDecodeError:
|
|
327
|
-
raise ApiError(status_code=_response.status_code, body=_response.text)
|
|
328
|
-
raise ApiError(status_code=_response.status_code, body=_response_json)
|
|
329
|
-
|
|
330
|
-
def run_jobs_in_batch(self, *, schema_id: str, file_ids: typing.List[str]) -> typing.List[ExtractionJob]:
|
|
331
|
-
"""
|
|
332
|
-
Parameters:
|
|
333
|
-
- schema_id: str. The id of the schema
|
|
334
|
-
|
|
335
|
-
- file_ids: typing.List[str]. The ids of the files
|
|
336
|
-
---
|
|
337
|
-
from llama_cloud.client import LlamaCloud
|
|
338
|
-
|
|
339
|
-
client = LlamaCloud(
|
|
340
|
-
token="YOUR_TOKEN",
|
|
341
|
-
)
|
|
342
|
-
client.extraction.run_jobs_in_batch(
|
|
343
|
-
schema_id="string",
|
|
344
|
-
file_ids=[],
|
|
345
|
-
)
|
|
346
|
-
"""
|
|
347
|
-
_response = self._client_wrapper.httpx_client.request(
|
|
348
|
-
"POST",
|
|
349
|
-
urllib.parse.urljoin(f"{self._client_wrapper.get_base_url()}/", "api/v1/extraction/jobs/batch"),
|
|
350
|
-
json=jsonable_encoder({"schema_id": schema_id, "file_ids": file_ids}),
|
|
351
|
-
headers=self._client_wrapper.get_headers(),
|
|
352
|
-
timeout=60,
|
|
353
|
-
)
|
|
354
|
-
if 200 <= _response.status_code < 300:
|
|
355
|
-
return pydantic.parse_obj_as(typing.List[ExtractionJob], _response.json()) # type: ignore
|
|
356
|
-
if _response.status_code == 422:
|
|
357
|
-
raise UnprocessableEntityError(pydantic.parse_obj_as(HttpValidationError, _response.json())) # type: ignore
|
|
358
|
-
try:
|
|
359
|
-
_response_json = _response.json()
|
|
360
|
-
except JSONDecodeError:
|
|
361
|
-
raise ApiError(status_code=_response.status_code, body=_response.text)
|
|
362
|
-
raise ApiError(status_code=_response.status_code, body=_response_json)
|
|
363
|
-
|
|
364
|
-
def get_job_result(self, job_id: str) -> ExtractionResult:
|
|
365
|
-
"""
|
|
366
|
-
Parameters:
|
|
367
|
-
- job_id: str.
|
|
368
|
-
---
|
|
369
|
-
from llama_cloud.client import LlamaCloud
|
|
370
|
-
|
|
371
|
-
client = LlamaCloud(
|
|
372
|
-
token="YOUR_TOKEN",
|
|
373
|
-
)
|
|
374
|
-
client.extraction.get_job_result(
|
|
375
|
-
job_id="string",
|
|
376
|
-
)
|
|
377
|
-
"""
|
|
378
|
-
_response = self._client_wrapper.httpx_client.request(
|
|
379
|
-
"GET",
|
|
380
|
-
urllib.parse.urljoin(f"{self._client_wrapper.get_base_url()}/", f"api/v1/extraction/jobs/{job_id}/result"),
|
|
381
|
-
headers=self._client_wrapper.get_headers(),
|
|
382
|
-
timeout=60,
|
|
383
|
-
)
|
|
384
|
-
if 200 <= _response.status_code < 300:
|
|
385
|
-
return pydantic.parse_obj_as(ExtractionResult, _response.json()) # type: ignore
|
|
386
|
-
if _response.status_code == 422:
|
|
387
|
-
raise UnprocessableEntityError(pydantic.parse_obj_as(HttpValidationError, _response.json())) # type: ignore
|
|
388
|
-
try:
|
|
389
|
-
_response_json = _response.json()
|
|
390
|
-
except JSONDecodeError:
|
|
391
|
-
raise ApiError(status_code=_response.status_code, body=_response.text)
|
|
392
|
-
raise ApiError(status_code=_response.status_code, body=_response_json)
|
|
393
|
-
|
|
394
|
-
|
|
395
|
-
class AsyncExtractionClient:
|
|
396
|
-
def __init__(self, *, client_wrapper: AsyncClientWrapper):
|
|
397
|
-
self._client_wrapper = client_wrapper
|
|
398
|
-
|
|
399
|
-
async def list_schemas(self, *, project_id: typing.Optional[str] = None) -> typing.List[ExtractionSchema]:
|
|
400
|
-
"""
|
|
401
|
-
Parameters:
|
|
402
|
-
- project_id: typing.Optional[str].
|
|
403
|
-
---
|
|
404
|
-
from llama_cloud.client import AsyncLlamaCloud
|
|
405
|
-
|
|
406
|
-
client = AsyncLlamaCloud(
|
|
407
|
-
token="YOUR_TOKEN",
|
|
408
|
-
)
|
|
409
|
-
await client.extraction.list_schemas()
|
|
410
|
-
"""
|
|
411
|
-
_response = await self._client_wrapper.httpx_client.request(
|
|
412
|
-
"GET",
|
|
413
|
-
urllib.parse.urljoin(f"{self._client_wrapper.get_base_url()}/", "api/v1/extraction/schemas"),
|
|
414
|
-
params=remove_none_from_dict({"project_id": project_id}),
|
|
415
|
-
headers=self._client_wrapper.get_headers(),
|
|
416
|
-
timeout=60,
|
|
417
|
-
)
|
|
418
|
-
if 200 <= _response.status_code < 300:
|
|
419
|
-
return pydantic.parse_obj_as(typing.List[ExtractionSchema], _response.json()) # type: ignore
|
|
420
|
-
if _response.status_code == 422:
|
|
421
|
-
raise UnprocessableEntityError(pydantic.parse_obj_as(HttpValidationError, _response.json())) # type: ignore
|
|
422
|
-
try:
|
|
423
|
-
_response_json = _response.json()
|
|
424
|
-
except JSONDecodeError:
|
|
425
|
-
raise ApiError(status_code=_response.status_code, body=_response.text)
|
|
426
|
-
raise ApiError(status_code=_response.status_code, body=_response_json)
|
|
427
|
-
|
|
428
|
-
async def create_schema(
|
|
429
|
-
self,
|
|
430
|
-
*,
|
|
431
|
-
name: str,
|
|
432
|
-
project_id: typing.Optional[str] = OMIT,
|
|
433
|
-
data_schema: typing.Dict[str, typing.Optional[ExtractionSchemaCreateDataSchemaValue]],
|
|
434
|
-
) -> ExtractionSchema:
|
|
435
|
-
"""
|
|
436
|
-
Parameters:
|
|
437
|
-
- name: str. The name of the extraction schema
|
|
438
|
-
|
|
439
|
-
- project_id: typing.Optional[str].
|
|
440
|
-
|
|
441
|
-
- data_schema: typing.Dict[str, typing.Optional[ExtractionSchemaCreateDataSchemaValue]]. The schema of the data
|
|
442
|
-
---
|
|
443
|
-
from llama_cloud.client import AsyncLlamaCloud
|
|
444
|
-
|
|
445
|
-
client = AsyncLlamaCloud(
|
|
446
|
-
token="YOUR_TOKEN",
|
|
447
|
-
)
|
|
448
|
-
await client.extraction.create_schema(
|
|
449
|
-
name="string",
|
|
450
|
-
data_schema={},
|
|
451
|
-
)
|
|
452
|
-
"""
|
|
453
|
-
_request: typing.Dict[str, typing.Any] = {"name": name, "data_schema": data_schema}
|
|
454
|
-
if project_id is not OMIT:
|
|
455
|
-
_request["project_id"] = project_id
|
|
456
|
-
_response = await self._client_wrapper.httpx_client.request(
|
|
457
|
-
"POST",
|
|
458
|
-
urllib.parse.urljoin(f"{self._client_wrapper.get_base_url()}/", "api/v1/extraction/schemas"),
|
|
459
|
-
json=jsonable_encoder(_request),
|
|
460
|
-
headers=self._client_wrapper.get_headers(),
|
|
461
|
-
timeout=60,
|
|
462
|
-
)
|
|
463
|
-
if 200 <= _response.status_code < 300:
|
|
464
|
-
return pydantic.parse_obj_as(ExtractionSchema, _response.json()) # type: ignore
|
|
465
|
-
if _response.status_code == 422:
|
|
466
|
-
raise UnprocessableEntityError(pydantic.parse_obj_as(HttpValidationError, _response.json())) # type: ignore
|
|
467
|
-
try:
|
|
468
|
-
_response_json = _response.json()
|
|
469
|
-
except JSONDecodeError:
|
|
470
|
-
raise ApiError(status_code=_response.status_code, body=_response.text)
|
|
471
|
-
raise ApiError(status_code=_response.status_code, body=_response_json)
|
|
472
|
-
|
|
473
|
-
async def infer_schema(
|
|
474
|
-
self,
|
|
475
|
-
*,
|
|
476
|
-
schema_id: typing.Optional[str] = OMIT,
|
|
477
|
-
name: str,
|
|
478
|
-
project_id: typing.Optional[str] = OMIT,
|
|
479
|
-
file_ids: typing.List[str],
|
|
480
|
-
stream: typing.Optional[bool] = OMIT,
|
|
481
|
-
) -> ExtractionSchema:
|
|
482
|
-
"""
|
|
483
|
-
Parameters:
|
|
484
|
-
- schema_id: typing.Optional[str].
|
|
485
|
-
|
|
486
|
-
- name: str. The name of the extraction schema
|
|
487
|
-
|
|
488
|
-
- project_id: typing.Optional[str].
|
|
489
|
-
|
|
490
|
-
- file_ids: typing.List[str]. The IDs of the files that the extraction schema contains
|
|
491
|
-
|
|
492
|
-
- stream: typing.Optional[bool]. Whether to stream the results of the extraction schema
|
|
493
|
-
---
|
|
494
|
-
from llama_cloud.client import AsyncLlamaCloud
|
|
495
|
-
|
|
496
|
-
client = AsyncLlamaCloud(
|
|
497
|
-
token="YOUR_TOKEN",
|
|
498
|
-
)
|
|
499
|
-
await client.extraction.infer_schema(
|
|
500
|
-
name="string",
|
|
501
|
-
file_ids=[],
|
|
502
|
-
)
|
|
503
|
-
"""
|
|
504
|
-
_request: typing.Dict[str, typing.Any] = {"name": name, "file_ids": file_ids}
|
|
505
|
-
if schema_id is not OMIT:
|
|
506
|
-
_request["schema_id"] = schema_id
|
|
507
|
-
if project_id is not OMIT:
|
|
508
|
-
_request["project_id"] = project_id
|
|
509
|
-
if stream is not OMIT:
|
|
510
|
-
_request["stream"] = stream
|
|
511
|
-
_response = await self._client_wrapper.httpx_client.request(
|
|
512
|
-
"POST",
|
|
513
|
-
urllib.parse.urljoin(f"{self._client_wrapper.get_base_url()}/", "api/v1/extraction/schemas/infer"),
|
|
514
|
-
json=jsonable_encoder(_request),
|
|
515
|
-
headers=self._client_wrapper.get_headers(),
|
|
516
|
-
timeout=60,
|
|
517
|
-
)
|
|
518
|
-
if 200 <= _response.status_code < 300:
|
|
519
|
-
return pydantic.parse_obj_as(ExtractionSchema, _response.json()) # type: ignore
|
|
520
|
-
if _response.status_code == 422:
|
|
521
|
-
raise UnprocessableEntityError(pydantic.parse_obj_as(HttpValidationError, _response.json())) # type: ignore
|
|
522
|
-
try:
|
|
523
|
-
_response_json = _response.json()
|
|
524
|
-
except JSONDecodeError:
|
|
525
|
-
raise ApiError(status_code=_response.status_code, body=_response.text)
|
|
526
|
-
raise ApiError(status_code=_response.status_code, body=_response_json)
|
|
527
|
-
|
|
528
|
-
async def get_schema(self, schema_id: str) -> ExtractionSchema:
|
|
529
|
-
"""
|
|
530
|
-
Parameters:
|
|
531
|
-
- schema_id: str.
|
|
532
|
-
---
|
|
533
|
-
from llama_cloud.client import AsyncLlamaCloud
|
|
534
|
-
|
|
535
|
-
client = AsyncLlamaCloud(
|
|
536
|
-
token="YOUR_TOKEN",
|
|
537
|
-
)
|
|
538
|
-
await client.extraction.get_schema(
|
|
539
|
-
schema_id="string",
|
|
540
|
-
)
|
|
541
|
-
"""
|
|
542
|
-
_response = await self._client_wrapper.httpx_client.request(
|
|
543
|
-
"GET",
|
|
544
|
-
urllib.parse.urljoin(f"{self._client_wrapper.get_base_url()}/", f"api/v1/extraction/schemas/{schema_id}"),
|
|
545
|
-
headers=self._client_wrapper.get_headers(),
|
|
546
|
-
timeout=60,
|
|
547
|
-
)
|
|
548
|
-
if 200 <= _response.status_code < 300:
|
|
549
|
-
return pydantic.parse_obj_as(ExtractionSchema, _response.json()) # type: ignore
|
|
550
|
-
if _response.status_code == 422:
|
|
551
|
-
raise UnprocessableEntityError(pydantic.parse_obj_as(HttpValidationError, _response.json())) # type: ignore
|
|
552
|
-
try:
|
|
553
|
-
_response_json = _response.json()
|
|
554
|
-
except JSONDecodeError:
|
|
555
|
-
raise ApiError(status_code=_response.status_code, body=_response.text)
|
|
556
|
-
raise ApiError(status_code=_response.status_code, body=_response_json)
|
|
557
|
-
|
|
558
|
-
async def update_schema(
|
|
559
|
-
self,
|
|
560
|
-
schema_id: str,
|
|
561
|
-
*,
|
|
562
|
-
data_schema: typing.Optional[typing.Dict[str, typing.Optional[ExtractionSchemaUpdateDataSchemaValue]]] = OMIT,
|
|
563
|
-
) -> ExtractionSchema:
|
|
564
|
-
"""
|
|
565
|
-
Parameters:
|
|
566
|
-
- schema_id: str.
|
|
567
|
-
|
|
568
|
-
- data_schema: typing.Optional[typing.Dict[str, typing.Optional[ExtractionSchemaUpdateDataSchemaValue]]].
|
|
569
|
-
---
|
|
570
|
-
from llama_cloud.client import AsyncLlamaCloud
|
|
571
|
-
|
|
572
|
-
client = AsyncLlamaCloud(
|
|
573
|
-
token="YOUR_TOKEN",
|
|
574
|
-
)
|
|
575
|
-
await client.extraction.update_schema(
|
|
576
|
-
schema_id="string",
|
|
577
|
-
)
|
|
578
|
-
"""
|
|
579
|
-
_request: typing.Dict[str, typing.Any] = {}
|
|
580
|
-
if data_schema is not OMIT:
|
|
581
|
-
_request["data_schema"] = data_schema
|
|
582
|
-
_response = await self._client_wrapper.httpx_client.request(
|
|
583
|
-
"PUT",
|
|
584
|
-
urllib.parse.urljoin(f"{self._client_wrapper.get_base_url()}/", f"api/v1/extraction/schemas/{schema_id}"),
|
|
585
|
-
json=jsonable_encoder(_request),
|
|
586
|
-
headers=self._client_wrapper.get_headers(),
|
|
587
|
-
timeout=60,
|
|
588
|
-
)
|
|
589
|
-
if 200 <= _response.status_code < 300:
|
|
590
|
-
return pydantic.parse_obj_as(ExtractionSchema, _response.json()) # type: ignore
|
|
591
|
-
if _response.status_code == 422:
|
|
592
|
-
raise UnprocessableEntityError(pydantic.parse_obj_as(HttpValidationError, _response.json())) # type: ignore
|
|
593
|
-
try:
|
|
594
|
-
_response_json = _response.json()
|
|
595
|
-
except JSONDecodeError:
|
|
596
|
-
raise ApiError(status_code=_response.status_code, body=_response.text)
|
|
597
|
-
raise ApiError(status_code=_response.status_code, body=_response_json)
|
|
598
|
-
|
|
599
|
-
async def list_jobs(self, *, schema_id: str) -> typing.List[ExtractionJob]:
|
|
600
|
-
"""
|
|
601
|
-
Parameters:
|
|
602
|
-
- schema_id: str.
|
|
603
|
-
---
|
|
604
|
-
from llama_cloud.client import AsyncLlamaCloud
|
|
605
|
-
|
|
606
|
-
client = AsyncLlamaCloud(
|
|
607
|
-
token="YOUR_TOKEN",
|
|
608
|
-
)
|
|
609
|
-
await client.extraction.list_jobs(
|
|
610
|
-
schema_id="string",
|
|
611
|
-
)
|
|
612
|
-
"""
|
|
613
|
-
_response = await self._client_wrapper.httpx_client.request(
|
|
614
|
-
"GET",
|
|
615
|
-
urllib.parse.urljoin(f"{self._client_wrapper.get_base_url()}/", "api/v1/extraction/jobs"),
|
|
616
|
-
params=remove_none_from_dict({"schema_id": schema_id}),
|
|
617
|
-
headers=self._client_wrapper.get_headers(),
|
|
618
|
-
timeout=60,
|
|
619
|
-
)
|
|
620
|
-
if 200 <= _response.status_code < 300:
|
|
621
|
-
return pydantic.parse_obj_as(typing.List[ExtractionJob], _response.json()) # type: ignore
|
|
622
|
-
if _response.status_code == 422:
|
|
623
|
-
raise UnprocessableEntityError(pydantic.parse_obj_as(HttpValidationError, _response.json())) # type: ignore
|
|
624
|
-
try:
|
|
625
|
-
_response_json = _response.json()
|
|
626
|
-
except JSONDecodeError:
|
|
627
|
-
raise ApiError(status_code=_response.status_code, body=_response.text)
|
|
628
|
-
raise ApiError(status_code=_response.status_code, body=_response_json)
|
|
629
|
-
|
|
630
|
-
async def run_job(self, *, schema_id: str, file_id: str) -> ExtractionJob:
|
|
631
|
-
"""
|
|
632
|
-
Parameters:
|
|
633
|
-
- schema_id: str. The id of the schema
|
|
634
|
-
|
|
635
|
-
- file_id: str. The id of the file
|
|
636
|
-
---
|
|
637
|
-
from llama_cloud.client import AsyncLlamaCloud
|
|
638
|
-
|
|
639
|
-
client = AsyncLlamaCloud(
|
|
640
|
-
token="YOUR_TOKEN",
|
|
641
|
-
)
|
|
642
|
-
await client.extraction.run_job(
|
|
643
|
-
schema_id="string",
|
|
644
|
-
file_id="string",
|
|
645
|
-
)
|
|
646
|
-
"""
|
|
647
|
-
_response = await self._client_wrapper.httpx_client.request(
|
|
648
|
-
"POST",
|
|
649
|
-
urllib.parse.urljoin(f"{self._client_wrapper.get_base_url()}/", "api/v1/extraction/jobs"),
|
|
650
|
-
json=jsonable_encoder({"schema_id": schema_id, "file_id": file_id}),
|
|
651
|
-
headers=self._client_wrapper.get_headers(),
|
|
652
|
-
timeout=60,
|
|
653
|
-
)
|
|
654
|
-
if 200 <= _response.status_code < 300:
|
|
655
|
-
return pydantic.parse_obj_as(ExtractionJob, _response.json()) # type: ignore
|
|
656
|
-
if _response.status_code == 422:
|
|
657
|
-
raise UnprocessableEntityError(pydantic.parse_obj_as(HttpValidationError, _response.json())) # type: ignore
|
|
658
|
-
try:
|
|
659
|
-
_response_json = _response.json()
|
|
660
|
-
except JSONDecodeError:
|
|
661
|
-
raise ApiError(status_code=_response.status_code, body=_response.text)
|
|
662
|
-
raise ApiError(status_code=_response.status_code, body=_response_json)
|
|
663
|
-
|
|
664
|
-
async def get_job(self, job_id: str) -> ExtractionJob:
|
|
665
|
-
"""
|
|
666
|
-
Parameters:
|
|
667
|
-
- job_id: str.
|
|
668
|
-
---
|
|
669
|
-
from llama_cloud.client import AsyncLlamaCloud
|
|
670
|
-
|
|
671
|
-
client = AsyncLlamaCloud(
|
|
672
|
-
token="YOUR_TOKEN",
|
|
673
|
-
)
|
|
674
|
-
await client.extraction.get_job(
|
|
675
|
-
job_id="string",
|
|
676
|
-
)
|
|
677
|
-
"""
|
|
678
|
-
_response = await self._client_wrapper.httpx_client.request(
|
|
679
|
-
"GET",
|
|
680
|
-
urllib.parse.urljoin(f"{self._client_wrapper.get_base_url()}/", f"api/v1/extraction/jobs/{job_id}"),
|
|
681
|
-
headers=self._client_wrapper.get_headers(),
|
|
682
|
-
timeout=60,
|
|
683
|
-
)
|
|
684
|
-
if 200 <= _response.status_code < 300:
|
|
685
|
-
return pydantic.parse_obj_as(ExtractionJob, _response.json()) # type: ignore
|
|
686
|
-
if _response.status_code == 422:
|
|
687
|
-
raise UnprocessableEntityError(pydantic.parse_obj_as(HttpValidationError, _response.json())) # type: ignore
|
|
688
|
-
try:
|
|
689
|
-
_response_json = _response.json()
|
|
690
|
-
except JSONDecodeError:
|
|
691
|
-
raise ApiError(status_code=_response.status_code, body=_response.text)
|
|
692
|
-
raise ApiError(status_code=_response.status_code, body=_response_json)
|
|
693
|
-
|
|
694
|
-
async def run_jobs_in_batch(self, *, schema_id: str, file_ids: typing.List[str]) -> typing.List[ExtractionJob]:
|
|
695
|
-
"""
|
|
696
|
-
Parameters:
|
|
697
|
-
- schema_id: str. The id of the schema
|
|
698
|
-
|
|
699
|
-
- file_ids: typing.List[str]. The ids of the files
|
|
700
|
-
---
|
|
701
|
-
from llama_cloud.client import AsyncLlamaCloud
|
|
702
|
-
|
|
703
|
-
client = AsyncLlamaCloud(
|
|
704
|
-
token="YOUR_TOKEN",
|
|
705
|
-
)
|
|
706
|
-
await client.extraction.run_jobs_in_batch(
|
|
707
|
-
schema_id="string",
|
|
708
|
-
file_ids=[],
|
|
709
|
-
)
|
|
710
|
-
"""
|
|
711
|
-
_response = await self._client_wrapper.httpx_client.request(
|
|
712
|
-
"POST",
|
|
713
|
-
urllib.parse.urljoin(f"{self._client_wrapper.get_base_url()}/", "api/v1/extraction/jobs/batch"),
|
|
714
|
-
json=jsonable_encoder({"schema_id": schema_id, "file_ids": file_ids}),
|
|
715
|
-
headers=self._client_wrapper.get_headers(),
|
|
716
|
-
timeout=60,
|
|
717
|
-
)
|
|
718
|
-
if 200 <= _response.status_code < 300:
|
|
719
|
-
return pydantic.parse_obj_as(typing.List[ExtractionJob], _response.json()) # type: ignore
|
|
720
|
-
if _response.status_code == 422:
|
|
721
|
-
raise UnprocessableEntityError(pydantic.parse_obj_as(HttpValidationError, _response.json())) # type: ignore
|
|
722
|
-
try:
|
|
723
|
-
_response_json = _response.json()
|
|
724
|
-
except JSONDecodeError:
|
|
725
|
-
raise ApiError(status_code=_response.status_code, body=_response.text)
|
|
726
|
-
raise ApiError(status_code=_response.status_code, body=_response_json)
|
|
727
|
-
|
|
728
|
-
async def get_job_result(self, job_id: str) -> ExtractionResult:
|
|
729
|
-
"""
|
|
730
|
-
Parameters:
|
|
731
|
-
- job_id: str.
|
|
732
|
-
---
|
|
733
|
-
from llama_cloud.client import AsyncLlamaCloud
|
|
734
|
-
|
|
735
|
-
client = AsyncLlamaCloud(
|
|
736
|
-
token="YOUR_TOKEN",
|
|
737
|
-
)
|
|
738
|
-
await client.extraction.get_job_result(
|
|
739
|
-
job_id="string",
|
|
740
|
-
)
|
|
741
|
-
"""
|
|
742
|
-
_response = await self._client_wrapper.httpx_client.request(
|
|
743
|
-
"GET",
|
|
744
|
-
urllib.parse.urljoin(f"{self._client_wrapper.get_base_url()}/", f"api/v1/extraction/jobs/{job_id}/result"),
|
|
745
|
-
headers=self._client_wrapper.get_headers(),
|
|
746
|
-
timeout=60,
|
|
747
|
-
)
|
|
748
|
-
if 200 <= _response.status_code < 300:
|
|
749
|
-
return pydantic.parse_obj_as(ExtractionResult, _response.json()) # type: ignore
|
|
750
|
-
if _response.status_code == 422:
|
|
751
|
-
raise UnprocessableEntityError(pydantic.parse_obj_as(HttpValidationError, _response.json())) # type: ignore
|
|
752
|
-
try:
|
|
753
|
-
_response_json = _response.json()
|
|
754
|
-
except JSONDecodeError:
|
|
755
|
-
raise ApiError(status_code=_response.status_code, body=_response.text)
|
|
756
|
-
raise ApiError(status_code=_response.status_code, body=_response_json)
|