llama-cloud 0.1.7__py3-none-any.whl → 0.1.8__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of llama-cloud might be problematic. Click here for more details.

@@ -6,7 +6,7 @@ import typing
6
6
  from ..core.datetime_utils import serialize_datetime
7
7
  from .extract_resultset_data import ExtractResultsetData
8
8
  from .extract_resultset_extraction_metadata_value import ExtractResultsetExtractionMetadataValue
9
- from .file import File
9
+ from .extract_run import ExtractRun
10
10
 
11
11
  try:
12
12
  import pydantic
@@ -30,7 +30,7 @@ class ExtractResultset(pydantic.BaseModel):
30
30
  extraction_metadata: typing.Dict[str, typing.Optional[ExtractResultsetExtractionMetadataValue]] = pydantic.Field(
31
31
  description="The metadata extracted from the file"
32
32
  )
33
- file: File = pydantic.Field(description="The file that the extract was extracted from")
33
+ extraction_run: ExtractRun = pydantic.Field(description="The extraction run that produced the resultset.")
34
34
 
35
35
  def json(self, **kwargs: typing.Any) -> str:
36
36
  kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
@@ -0,0 +1,49 @@
1
+ # This file was auto-generated by Fern from our API Definition.
2
+
3
+ import datetime as dt
4
+ import typing
5
+
6
+ from ..core.datetime_utils import serialize_datetime
7
+ from .extract_config import ExtractConfig
8
+ from .extract_run_data_schema_value import ExtractRunDataSchemaValue
9
+ from .extract_state import ExtractState
10
+ from .file import File
11
+
12
+ try:
13
+ import pydantic
14
+ if pydantic.__version__.startswith("1."):
15
+ raise ImportError
16
+ import pydantic.v1 as pydantic # type: ignore
17
+ except ImportError:
18
+ import pydantic # type: ignore
19
+
20
+
21
+ class ExtractRun(pydantic.BaseModel):
22
+ """
23
+ Schema for an extraction run.
24
+ """
25
+
26
+ id: str = pydantic.Field(description="The id of the extraction run")
27
+ created_at: typing.Optional[dt.datetime]
28
+ updated_at: typing.Optional[dt.datetime]
29
+ extraction_agent_id: str = pydantic.Field(description="The id of the extraction agent")
30
+ data_schema: typing.Dict[str, typing.Optional[ExtractRunDataSchemaValue]] = pydantic.Field(
31
+ description="The schema used for extraction"
32
+ )
33
+ config: ExtractConfig = pydantic.Field(description="The config used for extraction")
34
+ file: File = pydantic.Field(description="The file that the extract was extracted from")
35
+ status: ExtractState = pydantic.Field(description="The status of the extraction run")
36
+ error: typing.Optional[str]
37
+
38
+ def json(self, **kwargs: typing.Any) -> str:
39
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
40
+ return super().json(**kwargs_with_defaults)
41
+
42
+ def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
43
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
44
+ return super().dict(**kwargs_with_defaults)
45
+
46
+ class Config:
47
+ frozen = True
48
+ smart_union = True
49
+ json_encoders = {dt.datetime: serialize_datetime}
@@ -0,0 +1,5 @@
1
+ # This file was auto-generated by Fern from our API Definition.
2
+
3
+ import typing
4
+
5
+ ExtractRunDataSchemaValue = typing.Union[typing.Dict[str, typing.Any], typing.List[typing.Any], str, int, float, bool]
@@ -0,0 +1,29 @@
1
+ # This file was auto-generated by Fern from our API Definition.
2
+
3
+ import enum
4
+ import typing
5
+
6
+ T_Result = typing.TypeVar("T_Result")
7
+
8
+
9
+ class ExtractState(str, enum.Enum):
10
+ CREATED = "CREATED"
11
+ RUNNING = "RUNNING"
12
+ SUCCESS = "SUCCESS"
13
+ ERROR = "ERROR"
14
+
15
+ def visit(
16
+ self,
17
+ created: typing.Callable[[], T_Result],
18
+ running: typing.Callable[[], T_Result],
19
+ success: typing.Callable[[], T_Result],
20
+ error: typing.Callable[[], T_Result],
21
+ ) -> T_Result:
22
+ if self is ExtractState.CREATED:
23
+ return created()
24
+ if self is ExtractState.RUNNING:
25
+ return running()
26
+ if self is ExtractState.SUCCESS:
27
+ return success()
28
+ if self is ExtractState.ERROR:
29
+ return error()
@@ -0,0 +1,45 @@
1
+ # This file was auto-generated by Fern from our API Definition.
2
+
3
+ import datetime as dt
4
+ import typing
5
+
6
+ from ..core.datetime_utils import serialize_datetime
7
+
8
+ try:
9
+ import pydantic
10
+ if pydantic.__version__.startswith("1."):
11
+ raise ImportError
12
+ import pydantic.v1 as pydantic # type: ignore
13
+ except ImportError:
14
+ import pydantic # type: ignore
15
+
16
+
17
+ class LlamaExtractSettings(pydantic.BaseModel):
18
+ """
19
+ All settings for the extraction agent. Only the settings in ExtractConfig
20
+ are exposed to the user.
21
+ """
22
+
23
+ model: typing.Optional[str] = pydantic.Field(description="The model to use for the extraction.")
24
+ temperature: typing.Optional[float] = pydantic.Field(description="The temperature to use for the extraction.")
25
+ max_file_size: typing.Optional[int] = pydantic.Field(
26
+ description="The maximum file size (in bytes) allowed for the document."
27
+ )
28
+ max_num_pages: typing.Optional[int] = pydantic.Field(
29
+ description="The maximum number of pages allowed for the document."
30
+ )
31
+ extraction_prompt: typing.Optional[str] = pydantic.Field(description="The prompt to use for the extraction.")
32
+ error_handling_prompt: typing.Optional[str] = pydantic.Field(description="The prompt to use for error handling.")
33
+
34
+ def json(self, **kwargs: typing.Any) -> str:
35
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
36
+ return super().json(**kwargs_with_defaults)
37
+
38
+ def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
39
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
40
+ return super().dict(**kwargs_with_defaults)
41
+
42
+ class Config:
43
+ frozen = True
44
+ smart_union = True
45
+ json_encoders = {dt.datetime: serialize_datetime}
@@ -76,6 +76,9 @@ class LlamaParseParameters(pydantic.BaseModel):
76
76
  max_pages: typing.Optional[int]
77
77
  max_pages_enforced: typing.Optional[int]
78
78
  extract_charts: typing.Optional[bool]
79
+ formatting_instruction: typing.Optional[str]
80
+ complemental_formatting_instruction: typing.Optional[str]
81
+ content_guideline_instruction: typing.Optional[str]
79
82
 
80
83
  def json(self, **kwargs: typing.Any) -> str:
81
84
  kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
@@ -0,0 +1,36 @@
1
+ # This file was auto-generated by Fern from our API Definition.
2
+
3
+ import datetime as dt
4
+ import typing
5
+
6
+ from ..core.datetime_utils import serialize_datetime
7
+
8
+ try:
9
+ import pydantic
10
+ if pydantic.__version__.startswith("1."):
11
+ raise ImportError
12
+ import pydantic.v1 as pydantic # type: ignore
13
+ except ImportError:
14
+ import pydantic # type: ignore
15
+
16
+
17
+ class PageFigureMetadata(pydantic.BaseModel):
18
+ figure_name: str = pydantic.Field(description="The name of the figure")
19
+ file_id: str = pydantic.Field(description="The ID of the file that the figure was taken from")
20
+ page_index: int = pydantic.Field(description="The index of the page for which the figure is taken (0-indexed)")
21
+ figure_size: int = pydantic.Field(description="The size of the figure in bytes")
22
+ is_likely_noise: typing.Optional[bool] = pydantic.Field(description="Whether the figure is likely to be noise")
23
+ confidence: float = pydantic.Field(description="The confidence of the figure")
24
+
25
+ def json(self, **kwargs: typing.Any) -> str:
26
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
27
+ return super().json(**kwargs_with_defaults)
28
+
29
+ def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
30
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
31
+ return super().dict(**kwargs_with_defaults)
32
+
33
+ class Config:
34
+ frozen = True
35
+ smart_union = True
36
+ json_encoders = {dt.datetime: serialize_datetime}
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: llama-cloud
3
- Version: 0.1.7
3
+ Version: 0.1.8
4
4
  Summary:
5
5
  License: MIT
6
6
  Author: Logan Markewich
@@ -1,4 +1,4 @@
1
- llama_cloud/__init__.py,sha256=MTdmdhGqQjGi2R3n81MTydMNJ1bSP1DGl0kqG5JYw44,21117
1
+ llama_cloud/__init__.py,sha256=XobZHkP2EfbNeAEhuKukmrHhxYTmR6JwR4f49wDPvq4,21441
2
2
  llama_cloud/client.py,sha256=tR2pbEQS9P70s5KbXdOI-xGVUiUFc4_8hyPOkSVoyUg,5801
3
3
  llama_cloud/core/__init__.py,sha256=QJS3CJ2TYP2E1Tge0CS6Z7r8LTNzJHQVX1hD3558eP0,519
4
4
  llama_cloud/core/api_error.py,sha256=RE8LELok2QCjABadECTvtDp7qejA1VmINCh6TbqPwSE,426
@@ -35,7 +35,7 @@ llama_cloud/resources/extraction/types/__init__.py,sha256=ePJKSJ6hGIsPnfpe0Sp5w4
35
35
  llama_cloud/resources/extraction/types/extraction_schema_create_data_schema_value.py,sha256=igTdUjMeB-PI5xKrloRKHY-EvL6_V8OLshABu6Dyx4A,217
36
36
  llama_cloud/resources/extraction/types/extraction_schema_update_data_schema_value.py,sha256=z_4tkLkWnHnd3Xa9uUctk9hG9Mo7GKU4dK4s2pm8qow,217
37
37
  llama_cloud/resources/files/__init__.py,sha256=3B0SNM8EE6PddD5LpxYllci9vflEXy1xjPzhEEd-OUk,293
38
- llama_cloud/resources/files/client.py,sha256=H4rXLxIB5Oh4_zas8HXnfMzuOjUC4Gu3y7RCG4Ihr1M,38417
38
+ llama_cloud/resources/files/client.py,sha256=LuqttQFEizwxApouUQSAMfEqMEWqGH_TNT0eKov-hqk,48510
39
39
  llama_cloud/resources/files/types/__init__.py,sha256=EPYENAwkjBWv1MLf8s7R5-RO-cxZ_8NPrqfR4ZoR7jY,418
40
40
  llama_cloud/resources/files/types/file_create_from_url_resource_info_value.py,sha256=Wc8wFgujOO5pZvbbh2TMMzpa37GKZd14GYNJ9bdq7BE,214
41
41
  llama_cloud/resources/files/types/file_create_permission_info_value.py,sha256=KPCFuEaa8NiB85A5MfdXRAQ0poAUTl7Feg6BTfmdWas,209
@@ -43,14 +43,14 @@ llama_cloud/resources/files/types/file_create_resource_info_value.py,sha256=R7Y-
43
43
  llama_cloud/resources/jobs/__init__.py,sha256=FTtvy8EDg9nNNg9WCatVgKTRYV8-_v1roeGPAKoa_pw,65
44
44
  llama_cloud/resources/jobs/client.py,sha256=mN9uOzys9aZkhOJkApUy0yhfNeK8X09xQxT34ZPptNY,5386
45
45
  llama_cloud/resources/llama_extract/__init__.py,sha256=mGjNDYAR0wkKNv8ijOuYWs2eLOVHKT7aA7W38G1YmbA,239
46
- llama_cloud/resources/llama_extract/client.py,sha256=WfcCfdfbHNkO3Yn0gw_WO_ZicdXdtht2rwNJTD3hpU8,41281
46
+ llama_cloud/resources/llama_extract/client.py,sha256=FnsKPpbIr8VkTdkz2VlpZ8n9BFFa0Y9zKhjGXFrohMA,57454
47
47
  llama_cloud/resources/llama_extract/types/__init__.py,sha256=t7W_qg9IjxLCGBYLqcJCfYgvS2kaztA24CVdAxmavAI,323
48
48
  llama_cloud/resources/llama_extract/types/extract_agent_create_data_schema_value.py,sha256=lfZKA5iwWjOwoEzEXwmFTL9AFPRyt55ZhqMzTeTkvyg,213
49
49
  llama_cloud/resources/llama_extract/types/extract_agent_update_data_schema_value.py,sha256=uC3amoxbU8Rn1N1NRbbgf77ZE1qkFH6M4JEXursKGgo,213
50
50
  llama_cloud/resources/organizations/__init__.py,sha256=FTtvy8EDg9nNNg9WCatVgKTRYV8-_v1roeGPAKoa_pw,65
51
51
  llama_cloud/resources/organizations/client.py,sha256=ik_mtJs7C32f0dnZXC-9OlmxjOs0uagU1E8umaykqDU,55652
52
52
  llama_cloud/resources/parsing/__init__.py,sha256=FTtvy8EDg9nNNg9WCatVgKTRYV8-_v1roeGPAKoa_pw,65
53
- llama_cloud/resources/parsing/client.py,sha256=eNKKDbODRHaVSJqleMyoMWEITjhUpBIMTLgEt4G2v7s,59206
53
+ llama_cloud/resources/parsing/client.py,sha256=xZmx9N_4GMfAUo8YJ7rhIRpKIPpgN5pMRAJDH3fg6NA,60224
54
54
  llama_cloud/resources/pipelines/__init__.py,sha256=Mx7p3jDZRLMltsfywSufam_4AnHvmAfsxtMHVI72e-8,1083
55
55
  llama_cloud/resources/pipelines/client.py,sha256=MORoQkrH6-8-utV41zrXjFW2BegDsa_6pJhJvFH4OMQ,134251
56
56
  llama_cloud/resources/pipelines/types/__init__.py,sha256=jjaMc0V3K1HZLMYZ6WT4ydMtBCVy-oF5koqTCovbDws,1202
@@ -65,7 +65,7 @@ llama_cloud/resources/reports/types/__init__.py,sha256=LfwDYrI4RcQu-o42iAe7HkcwH
65
65
  llama_cloud/resources/reports/types/update_report_plan_api_v_1_reports_report_id_plan_patch_request_action.py,sha256=Qh-MSeRvDBfNb5hoLELivv1pLtrYVf52WVoP7G8V34A,807
66
66
  llama_cloud/resources/retrievers/__init__.py,sha256=FTtvy8EDg9nNNg9WCatVgKTRYV8-_v1roeGPAKoa_pw,65
67
67
  llama_cloud/resources/retrievers/client.py,sha256=7dWF6uaeoLn8SEhLrt5-cZo-teL0evV7WyJ50dnRpGQ,24655
68
- llama_cloud/types/__init__.py,sha256=2obblJXKhvfGbQVAUKDCbAxe0EcC3c68v6wCS4ojzeQ,24880
68
+ llama_cloud/types/__init__.py,sha256=folGdU1Q2oeFRAsUuvB2z_axpXI2fXRmLd3n7CZj6w4,25393
69
69
  llama_cloud/types/advanced_mode_transform_config.py,sha256=4xCXye0_cPmVS1F8aNTx81sIaEPjQH9kiCCAIoqUzlI,1502
70
70
  llama_cloud/types/advanced_mode_transform_config_chunking_config.py,sha256=wYbJnWLpeQDfhmDZz-wJfYzD1iGT5Jcxb9ga3mzUuvk,1983
71
71
  llama_cloud/types/advanced_mode_transform_config_segmentation_config.py,sha256=anNGq0F5-IlbIW3kpC8OilzLJnUq5tdIcWHnRnmlYsg,1303
@@ -105,8 +105,9 @@ llama_cloud/types/code_splitter.py,sha256=8MJScSxk9LzByufokcWG3AHAnOjUt13VlV2w0S
105
105
  llama_cloud/types/cohere_embedding.py,sha256=wkv_fVCA1WEroGawzPFExwmiJ75gPfzeeemty7NBlsM,1579
106
106
  llama_cloud/types/cohere_embedding_config.py,sha256=c0Kj1wuSsBX9TQ2AondKv5ZtX5PmkivsHj6P0M7tVB4,1142
107
107
  llama_cloud/types/composite_retrieval_mode.py,sha256=PtN0vQ90xyAJL4vyGRG4lMNOpnJ__2L1xiwosI9yfms,548
108
- llama_cloud/types/composite_retrieval_result.py,sha256=9BF9r5atA9AW_59iQjfPUHPqYphF0DG54WqHm0aV7FU,1450
108
+ llama_cloud/types/composite_retrieval_result.py,sha256=1GmLnT-PlpXdURfXn8vaWdEL9BjuWV-AyjqjPvJ4YGk,1479
109
109
  llama_cloud/types/composite_retrieved_text_node.py,sha256=eTQ99cdZ2PASff5n4oVV1oaNiS9Ie3AtY_E55kBYpBs,1702
110
+ llama_cloud/types/composite_retrieved_text_node_with_score.py,sha256=o-HvmyjqODc68zYuobtj10_62FMBAKRLfRoTHGDdmxw,1148
110
111
  llama_cloud/types/configurable_data_sink_names.py,sha256=0Yk9i8hcNXKCcSKpa5KwsCwy_EDeodqbny7qmF86_lM,1225
111
112
  llama_cloud/types/configurable_data_source_names.py,sha256=mNW71sSgcVhU3kePAOUgRxeqK1Vo7F_J1xIzmYKPRq0,1971
112
113
  llama_cloud/types/configurable_transformation_definition.py,sha256=LDOhI5IDxlLDWM_p_xwCFM7qq1y-aGA8UxN7dnplDlU,1886
@@ -143,15 +144,18 @@ llama_cloud/types/eval_question_result.py,sha256=Y4RFXnA4YJTlzM6_NtLOi0rt6hRZoQb
143
144
  llama_cloud/types/extract_agent.py,sha256=T98IOueut4M52Qm7hqcUOcWFFDhZ-ye0OFdXgfFGtS4,1763
144
145
  llama_cloud/types/extract_agent_data_schema_value.py,sha256=UaDQ2KjajLDccW7F4NKdfpefeTJrr1hl0c95WRETYkM,201
145
146
  llama_cloud/types/extract_config.py,sha256=KFg8cG61KvVlPVwGxtRSgR5XC40V_ID5u97P3t62QuU,1344
146
- llama_cloud/types/extract_job.py,sha256=rLe66eK1p4QUN8i_0ex2tN_6upZ3SArN34M_hW4YVr0,1257
147
+ llama_cloud/types/extract_job.py,sha256=HMWy7SxWJjhyR_RzikoX5hii1ovo19Xoqg_7phM-sgM,1334
147
148
  llama_cloud/types/extract_job_create.py,sha256=Ut4rjqN0IRvLS2jyAT8_cDdvUOUptXjG0c2MGLpQvUM,1482
148
149
  llama_cloud/types/extract_job_create_data_schema_override_value.py,sha256=qtUAZ22JIE7Xx3MJdRxchW6FHOxFIUXcJsx4XNrVtME,219
149
150
  llama_cloud/types/extract_mode.py,sha256=aE0tcuviE_eXu0y-A8Mn5MChxOIzjm7EOqyhaPZ3LbA,472
150
- llama_cloud/types/extract_resultset.py,sha256=lMLW-OO-heZej1pkYRE0FtZWo9O3mlD1at4-2tw-90s,1814
151
+ llama_cloud/types/extract_resultset.py,sha256=MSiuTBmqKiTTjDo9SmtsqUdDLG0mj7bSg_nzNVlbeNc,1846
151
152
  llama_cloud/types/extract_resultset_data.py,sha256=v9Ae4SxLsvYPE9crko4N16lBjsxuZpz1yrUOhnaM_VY,427
152
153
  llama_cloud/types/extract_resultset_data_item_value.py,sha256=JwqgDIGW0irr8QWaSTIrl24FhGxTUDOXIbxoSdIjuxs,209
153
154
  llama_cloud/types/extract_resultset_data_zero_value.py,sha256=-tqgtp3hwIr2NhuC28wVWqQDgFFGYPfRdzneMtNzoBU,209
154
155
  llama_cloud/types/extract_resultset_extraction_metadata_value.py,sha256=LEFcxgBCY35Tw93RIU8aEcyJYcLuhPp5-_G5XP07-xw,219
156
+ llama_cloud/types/extract_run.py,sha256=nh-K6yt2f-0O52ck0X2P3L5q7krMEQ0CoA7fEmSBlPA,1883
157
+ llama_cloud/types/extract_run_data_schema_value.py,sha256=C4uNdNQHBrkribgmR6nxOQpRo1eydYJ78a0lm7B-e4o,199
158
+ llama_cloud/types/extract_state.py,sha256=kE9mT8h3diLgTi3QezhBeegAVtuVf54762WBdwgDqFM,775
155
159
  llama_cloud/types/extraction_job.py,sha256=Y8Vp8zmWEl3m9-hy0v2EIbwfm9c2b6oGTUWw3eip_II,1260
156
160
  llama_cloud/types/extraction_result.py,sha256=A-BMKdbkObQRcKr_wxB9FoEMGhZuEvYzdp_r7bFp_48,1562
157
161
  llama_cloud/types/extraction_result_data_value.py,sha256=YwtoAi0U511CVX4L91Nx0udAT4ejV6wn0AfJOyETt-o,199
@@ -176,9 +180,10 @@ llama_cloud/types/job_name_mapping.py,sha256=2dQFQlVHoeSlkyEKSEJv0M3PzJf7hMvkuAB
176
180
  llama_cloud/types/job_names.py,sha256=ZapQT__pLI14SagjGi8AsEwWY949hBoplQemMgb_Aoc,4098
177
181
  llama_cloud/types/job_record.py,sha256=-tp6w7dyd5KZMMynxSrL5W5YoJSdqTRWolx_f0_Hbh0,2069
178
182
  llama_cloud/types/job_record_with_usage_metrics.py,sha256=iNV2do5TB_0e3PoOz_DJyAaM6Cn9G8KG-dGPGgEs5SY,1198
183
+ llama_cloud/types/llama_extract_settings.py,sha256=w8U44V5vo-nckKxB8XQe6F6rU2JxC0j0MIlr0N5Hdik,1812
179
184
  llama_cloud/types/llama_index_core_base_llms_types_chat_message.py,sha256=NelHo-T-ebVMhRKsqE_xV8AJW4c7o6lS0uEQnPsmTwg,1365
180
185
  llama_cloud/types/llama_index_core_base_llms_types_chat_message_blocks_item.py,sha256=tTglUqrSUaVc2Wsi4uIt5MU-80_oxZzTnhf8ziilVGY,874
181
- llama_cloud/types/llama_parse_parameters.py,sha256=DWiZZZH5IgMgSbb7v5cJ8ANGSTtjJ5squMntzpiv55k,3929
186
+ llama_cloud/types/llama_parse_parameters.py,sha256=5d9ybW5HdQv28JOys7RdGltgFZHWb8yuvb-1YTqXSUs,4096
182
187
  llama_cloud/types/llama_parse_supported_file_extensions.py,sha256=B_0N3f8Aq59W9FbsH50mGBUiyWTIXQjHFl739uAyaQw,11207
183
188
  llama_cloud/types/llm.py,sha256=7iIItVPjURp4u5xxJDAFIefUdhUKwIuA245WXilJPXE,2234
184
189
  llama_cloud/types/llm_model_data.py,sha256=6rrycqGwlK3LZ2S-WtgmeomithdLhDCgwBBZQ5KLaso,1300
@@ -206,6 +211,7 @@ llama_cloud/types/open_ai_embedding.py,sha256=RQijkvKyzbISy92LnBSEpjmIU8p7kMpdc4
206
211
  llama_cloud/types/open_ai_embedding_config.py,sha256=Mquc0JrtCo8lVYA2WW7q0ZikS3HRkiMtzDFu5XA-20o,1143
207
212
  llama_cloud/types/organization.py,sha256=p8mYRqSsGxw17AmdW8x8nP7P1UbdpYkwr51WTIjTVLw,1467
208
213
  llama_cloud/types/organization_create.py,sha256=hUXRwArIx_0D_lilpL7z-B0oJJ5yEX8Sbu2xqfH_9so,1086
214
+ llama_cloud/types/page_figure_metadata.py,sha256=iIg6_f2SwJg6UcQo9X4MoSm_ygxnIBmFjS2LuUsI6qE,1528
209
215
  llama_cloud/types/page_screenshot_metadata.py,sha256=dXwWNDS7670xvIIuB1C_gLlsvAzQH4BRR3jLOojRvGs,1268
210
216
  llama_cloud/types/page_screenshot_node_with_score.py,sha256=EdqoXbmARCz1DV14E2saCPshIeII709uM4cLwxw_mkM,1232
211
217
  llama_cloud/types/page_segmentation_config.py,sha256=VH8uuxnubnJak1gSpS64OoMueHidhsDB-2eq2tVHbag,998
@@ -304,7 +310,7 @@ llama_cloud/types/validation_error_loc_item.py,sha256=LAtjCHIllWRBFXvAZ5QZpp7CPX
304
310
  llama_cloud/types/vertex_ai_embedding_config.py,sha256=DvQk2xMJFmo54MEXTzoM4KSADyhGm_ygmFyx6wIcQdw,1159
305
311
  llama_cloud/types/vertex_embedding_mode.py,sha256=yY23FjuWU_DkXjBb3JoKV4SCMqel2BaIMltDqGnIowU,1217
306
312
  llama_cloud/types/vertex_text_embedding.py,sha256=-C4fNCYfFl36ATdBMGFVPpiHIKxjk0KB1ERA2Ec20aU,1932
307
- llama_cloud-0.1.7.dist-info/LICENSE,sha256=_iNqtPcw1Ue7dZKwOwgPtbegMUkWVy15hC7bffAdNmY,1067
308
- llama_cloud-0.1.7.dist-info/METADATA,sha256=a9UOczxchvGzpb9ZPgLSVqqeX6S5aZ8Yie-E0MM2TTA,860
309
- llama_cloud-0.1.7.dist-info/WHEEL,sha256=sP946D7jFCHeNz5Iq4fL4Lu-PrWrFsgfLXbbkciIZwg,88
310
- llama_cloud-0.1.7.dist-info/RECORD,,
313
+ llama_cloud-0.1.8.dist-info/LICENSE,sha256=_iNqtPcw1Ue7dZKwOwgPtbegMUkWVy15hC7bffAdNmY,1067
314
+ llama_cloud-0.1.8.dist-info/METADATA,sha256=7oqeAAUjmuGNCyiI1oUesPFwabMZWAGdylAoqeGcfO4,860
315
+ llama_cloud-0.1.8.dist-info/WHEEL,sha256=sP946D7jFCHeNz5Iq4fL4Lu-PrWrFsgfLXbbkciIZwg,88
316
+ llama_cloud-0.1.8.dist-info/RECORD,,