llama-cloud 0.1.5__py3-none-any.whl → 0.1.7a1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of llama-cloud might be problematic. Click here for more details.
- llama_cloud/__init__.py +138 -2
- llama_cloud/client.py +15 -0
- llama_cloud/resources/__init__.py +17 -1
- llama_cloud/resources/chat_apps/__init__.py +2 -0
- llama_cloud/resources/chat_apps/client.py +620 -0
- llama_cloud/resources/data_sinks/client.py +2 -2
- llama_cloud/resources/data_sources/client.py +2 -2
- llama_cloud/resources/embedding_model_configs/client.py +4 -4
- llama_cloud/resources/files/__init__.py +2 -2
- llama_cloud/resources/files/client.py +21 -0
- llama_cloud/resources/files/types/__init__.py +2 -1
- llama_cloud/resources/files/types/file_create_permission_info_value.py +7 -0
- llama_cloud/resources/jobs/__init__.py +2 -0
- llama_cloud/resources/jobs/client.py +148 -0
- llama_cloud/resources/llama_extract/__init__.py +5 -0
- llama_cloud/resources/llama_extract/client.py +1038 -0
- llama_cloud/resources/llama_extract/types/__init__.py +6 -0
- llama_cloud/resources/llama_extract/types/extract_agent_create_data_schema_value.py +7 -0
- llama_cloud/resources/llama_extract/types/extract_agent_update_data_schema_value.py +7 -0
- llama_cloud/resources/organizations/client.py +14 -14
- llama_cloud/resources/parsing/client.py +480 -229
- llama_cloud/resources/pipelines/client.py +182 -126
- llama_cloud/resources/projects/client.py +210 -102
- llama_cloud/resources/reports/__init__.py +5 -0
- llama_cloud/resources/reports/client.py +1198 -0
- llama_cloud/resources/reports/types/__init__.py +7 -0
- llama_cloud/resources/reports/types/update_report_plan_api_v_1_reports_report_id_plan_patch_request_action.py +25 -0
- llama_cloud/resources/retrievers/__init__.py +2 -0
- llama_cloud/resources/retrievers/client.py +654 -0
- llama_cloud/types/__init__.py +124 -2
- llama_cloud/types/{chat_message.py → app_schema_chat_chat_message.py} +2 -2
- llama_cloud/types/chat_app.py +44 -0
- llama_cloud/types/chat_app_response.py +41 -0
- llama_cloud/types/cloud_az_storage_blob_data_source.py +1 -0
- llama_cloud/types/cloud_box_data_source.py +1 -0
- llama_cloud/types/cloud_confluence_data_source.py +1 -0
- llama_cloud/types/cloud_google_drive_data_source.py +1 -0
- llama_cloud/types/cloud_jira_data_source.py +1 -0
- llama_cloud/types/cloud_notion_page_data_source.py +1 -0
- llama_cloud/types/cloud_one_drive_data_source.py +1 -0
- llama_cloud/types/cloud_postgres_vector_store.py +1 -0
- llama_cloud/types/cloud_s_3_data_source.py +1 -0
- llama_cloud/types/cloud_sharepoint_data_source.py +1 -0
- llama_cloud/types/cloud_slack_data_source.py +1 -0
- llama_cloud/types/composite_retrieval_mode.py +21 -0
- llama_cloud/types/composite_retrieval_result.py +38 -0
- llama_cloud/types/composite_retrieved_text_node.py +42 -0
- llama_cloud/types/data_sink.py +1 -1
- llama_cloud/types/data_sink_create.py +1 -1
- llama_cloud/types/data_source.py +1 -1
- llama_cloud/types/data_source_create.py +1 -1
- llama_cloud/types/edit_suggestion.py +39 -0
- llama_cloud/types/eval_dataset_job_record.py +1 -0
- llama_cloud/types/extract_agent.py +45 -0
- llama_cloud/types/extract_agent_data_schema_value.py +5 -0
- llama_cloud/types/extract_config.py +40 -0
- llama_cloud/types/extract_job.py +35 -0
- llama_cloud/types/extract_job_create.py +40 -0
- llama_cloud/types/extract_job_create_data_schema_override_value.py +7 -0
- llama_cloud/types/extract_mode.py +17 -0
- llama_cloud/types/extract_resultset.py +46 -0
- llama_cloud/types/extract_resultset_data.py +11 -0
- llama_cloud/types/extract_resultset_data_item_value.py +7 -0
- llama_cloud/types/extract_resultset_data_zero_value.py +7 -0
- llama_cloud/types/extract_resultset_extraction_metadata_value.py +7 -0
- llama_cloud/types/file.py +3 -0
- llama_cloud/types/file_permission_info_value.py +5 -0
- llama_cloud/types/filter_condition.py +9 -1
- llama_cloud/types/filter_operator.py +4 -0
- llama_cloud/types/image_block.py +35 -0
- llama_cloud/types/input_message.py +1 -1
- llama_cloud/types/job_name_mapping.py +4 -0
- llama_cloud/types/job_names.py +89 -0
- llama_cloud/types/job_record.py +57 -0
- llama_cloud/types/job_record_with_usage_metrics.py +36 -0
- llama_cloud/types/llama_index_core_base_llms_types_chat_message.py +39 -0
- llama_cloud/types/llama_index_core_base_llms_types_chat_message_blocks_item.py +33 -0
- llama_cloud/types/llama_parse_parameters.py +15 -0
- llama_cloud/types/llm.py +1 -0
- llama_cloud/types/llm_model_data.py +1 -0
- llama_cloud/types/llm_parameters.py +1 -0
- llama_cloud/types/managed_ingestion_status.py +4 -0
- llama_cloud/types/managed_ingestion_status_response.py +1 -0
- llama_cloud/types/object_type.py +4 -0
- llama_cloud/types/organization.py +5 -0
- llama_cloud/types/paginated_jobs_history_with_metrics.py +35 -0
- llama_cloud/types/paginated_report_response.py +35 -0
- llama_cloud/types/parse_plan_level.py +21 -0
- llama_cloud/types/parsing_job_structured_result.py +32 -0
- llama_cloud/types/pipeline_create.py +3 -1
- llama_cloud/types/pipeline_data_source.py +1 -1
- llama_cloud/types/pipeline_file.py +3 -0
- llama_cloud/types/pipeline_file_permission_info_value.py +7 -0
- llama_cloud/types/playground_session.py +2 -2
- llama_cloud/types/preset_retrieval_params.py +1 -0
- llama_cloud/types/progress_event.py +44 -0
- llama_cloud/types/progress_event_status.py +33 -0
- llama_cloud/types/prompt_spec.py +2 -2
- llama_cloud/types/related_node_info.py +2 -2
- llama_cloud/types/related_node_info_node_type.py +7 -0
- llama_cloud/types/report.py +33 -0
- llama_cloud/types/report_block.py +34 -0
- llama_cloud/types/report_block_dependency.py +29 -0
- llama_cloud/types/report_create_response.py +31 -0
- llama_cloud/types/report_event_item.py +40 -0
- llama_cloud/types/report_event_item_event_data.py +45 -0
- llama_cloud/types/report_event_type.py +37 -0
- llama_cloud/types/report_metadata.py +39 -0
- llama_cloud/types/report_plan.py +36 -0
- llama_cloud/types/report_plan_block.py +36 -0
- llama_cloud/types/report_query.py +33 -0
- llama_cloud/types/report_response.py +41 -0
- llama_cloud/types/report_state.py +37 -0
- llama_cloud/types/report_state_event.py +38 -0
- llama_cloud/types/report_update_event.py +38 -0
- llama_cloud/types/retrieve_results.py +1 -1
- llama_cloud/types/retriever.py +45 -0
- llama_cloud/types/retriever_create.py +37 -0
- llama_cloud/types/retriever_pipeline.py +37 -0
- llama_cloud/types/status_enum.py +4 -0
- llama_cloud/types/supported_llm_model_names.py +4 -0
- llama_cloud/types/text_block.py +31 -0
- llama_cloud/types/text_node.py +13 -6
- llama_cloud/types/usage_metric_response.py +34 -0
- llama_cloud/types/user_job_record.py +32 -0
- {llama_cloud-0.1.5.dist-info → llama_cloud-0.1.7a1.dist-info}/METADATA +3 -1
- {llama_cloud-0.1.5.dist-info → llama_cloud-0.1.7a1.dist-info}/RECORD +129 -59
- {llama_cloud-0.1.5.dist-info → llama_cloud-0.1.7a1.dist-info}/WHEEL +1 -1
- {llama_cloud-0.1.5.dist-info → llama_cloud-0.1.7a1.dist-info}/LICENSE +0 -0
|
@@ -0,0 +1,39 @@
|
|
|
1
|
+
# This file was auto-generated by Fern from our API Definition.
|
|
2
|
+
|
|
3
|
+
import datetime as dt
|
|
4
|
+
import typing
|
|
5
|
+
|
|
6
|
+
from ..core.datetime_utils import serialize_datetime
|
|
7
|
+
from .report_block import ReportBlock
|
|
8
|
+
|
|
9
|
+
try:
|
|
10
|
+
import pydantic
|
|
11
|
+
if pydantic.__version__.startswith("1."):
|
|
12
|
+
raise ImportError
|
|
13
|
+
import pydantic.v1 as pydantic # type: ignore
|
|
14
|
+
except ImportError:
|
|
15
|
+
import pydantic # type: ignore
|
|
16
|
+
|
|
17
|
+
|
|
18
|
+
class EditSuggestion(pydantic.BaseModel):
|
|
19
|
+
"""
|
|
20
|
+
A suggestion for an edit to a report.
|
|
21
|
+
"""
|
|
22
|
+
|
|
23
|
+
justification: str
|
|
24
|
+
start_line: int
|
|
25
|
+
end_line: int
|
|
26
|
+
blocks: typing.List[ReportBlock]
|
|
27
|
+
|
|
28
|
+
def json(self, **kwargs: typing.Any) -> str:
|
|
29
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
30
|
+
return super().json(**kwargs_with_defaults)
|
|
31
|
+
|
|
32
|
+
def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
|
|
33
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
34
|
+
return super().dict(**kwargs_with_defaults)
|
|
35
|
+
|
|
36
|
+
class Config:
|
|
37
|
+
frozen = True
|
|
38
|
+
smart_union = True
|
|
39
|
+
json_encoders = {dt.datetime: serialize_datetime}
|
|
@@ -34,6 +34,7 @@ class EvalDatasetJobRecord(pydantic.BaseModel):
|
|
|
34
34
|
parent_job_execution_id: typing.Optional[str]
|
|
35
35
|
user_id: typing.Optional[str]
|
|
36
36
|
created_at: typing.Optional[dt.datetime] = pydantic.Field(description="Creation datetime")
|
|
37
|
+
project_id: typing.Optional[str]
|
|
37
38
|
id: typing.Optional[str] = pydantic.Field(description="Unique identifier")
|
|
38
39
|
status: StatusEnum
|
|
39
40
|
error_code: typing.Optional[str]
|
|
@@ -0,0 +1,45 @@
|
|
|
1
|
+
# This file was auto-generated by Fern from our API Definition.
|
|
2
|
+
|
|
3
|
+
import datetime as dt
|
|
4
|
+
import typing
|
|
5
|
+
|
|
6
|
+
from ..core.datetime_utils import serialize_datetime
|
|
7
|
+
from .extract_agent_data_schema_value import ExtractAgentDataSchemaValue
|
|
8
|
+
from .extract_config import ExtractConfig
|
|
9
|
+
|
|
10
|
+
try:
|
|
11
|
+
import pydantic
|
|
12
|
+
if pydantic.__version__.startswith("1."):
|
|
13
|
+
raise ImportError
|
|
14
|
+
import pydantic.v1 as pydantic # type: ignore
|
|
15
|
+
except ImportError:
|
|
16
|
+
import pydantic # type: ignore
|
|
17
|
+
|
|
18
|
+
|
|
19
|
+
class ExtractAgent(pydantic.BaseModel):
|
|
20
|
+
"""
|
|
21
|
+
Schema and configuration for creating an extraction agent.
|
|
22
|
+
"""
|
|
23
|
+
|
|
24
|
+
id: str = pydantic.Field(description="The id of the extraction agent.")
|
|
25
|
+
name: str = pydantic.Field(description="The name of the extraction agent.")
|
|
26
|
+
project_id: str = pydantic.Field(description="The ID of the project that the extraction agent belongs to.")
|
|
27
|
+
data_schema: typing.Dict[str, typing.Optional[ExtractAgentDataSchemaValue]] = pydantic.Field(
|
|
28
|
+
description="The schema of the data."
|
|
29
|
+
)
|
|
30
|
+
config: ExtractConfig = pydantic.Field(description="The configuration parameters for the extraction agent.")
|
|
31
|
+
created_at: typing.Optional[dt.datetime]
|
|
32
|
+
updated_at: typing.Optional[dt.datetime]
|
|
33
|
+
|
|
34
|
+
def json(self, **kwargs: typing.Any) -> str:
|
|
35
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
36
|
+
return super().json(**kwargs_with_defaults)
|
|
37
|
+
|
|
38
|
+
def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
|
|
39
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
40
|
+
return super().dict(**kwargs_with_defaults)
|
|
41
|
+
|
|
42
|
+
class Config:
|
|
43
|
+
frozen = True
|
|
44
|
+
smart_union = True
|
|
45
|
+
json_encoders = {dt.datetime: serialize_datetime}
|
|
@@ -0,0 +1,40 @@
|
|
|
1
|
+
# This file was auto-generated by Fern from our API Definition.
|
|
2
|
+
|
|
3
|
+
import datetime as dt
|
|
4
|
+
import typing
|
|
5
|
+
|
|
6
|
+
from ..core.datetime_utils import serialize_datetime
|
|
7
|
+
from .extract_mode import ExtractMode
|
|
8
|
+
|
|
9
|
+
try:
|
|
10
|
+
import pydantic
|
|
11
|
+
if pydantic.__version__.startswith("1."):
|
|
12
|
+
raise ImportError
|
|
13
|
+
import pydantic.v1 as pydantic # type: ignore
|
|
14
|
+
except ImportError:
|
|
15
|
+
import pydantic # type: ignore
|
|
16
|
+
|
|
17
|
+
|
|
18
|
+
class ExtractConfig(pydantic.BaseModel):
|
|
19
|
+
"""
|
|
20
|
+
Additional parameters for the extraction agent.
|
|
21
|
+
"""
|
|
22
|
+
|
|
23
|
+
extraction_mode: typing.Optional[ExtractMode] = pydantic.Field(description="The extraction mode specified.")
|
|
24
|
+
handle_missing: typing.Optional[bool] = pydantic.Field(
|
|
25
|
+
description="Whether to handle missing fields in the schema."
|
|
26
|
+
)
|
|
27
|
+
system_prompt: typing.Optional[str]
|
|
28
|
+
|
|
29
|
+
def json(self, **kwargs: typing.Any) -> str:
|
|
30
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
31
|
+
return super().json(**kwargs_with_defaults)
|
|
32
|
+
|
|
33
|
+
def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
|
|
34
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
35
|
+
return super().dict(**kwargs_with_defaults)
|
|
36
|
+
|
|
37
|
+
class Config:
|
|
38
|
+
frozen = True
|
|
39
|
+
smart_union = True
|
|
40
|
+
json_encoders = {dt.datetime: serialize_datetime}
|
|
@@ -0,0 +1,35 @@
|
|
|
1
|
+
# This file was auto-generated by Fern from our API Definition.
|
|
2
|
+
|
|
3
|
+
import datetime as dt
|
|
4
|
+
import typing
|
|
5
|
+
|
|
6
|
+
from ..core.datetime_utils import serialize_datetime
|
|
7
|
+
from .file import File
|
|
8
|
+
from .status_enum import StatusEnum
|
|
9
|
+
|
|
10
|
+
try:
|
|
11
|
+
import pydantic
|
|
12
|
+
if pydantic.__version__.startswith("1."):
|
|
13
|
+
raise ImportError
|
|
14
|
+
import pydantic.v1 as pydantic # type: ignore
|
|
15
|
+
except ImportError:
|
|
16
|
+
import pydantic # type: ignore
|
|
17
|
+
|
|
18
|
+
|
|
19
|
+
class ExtractJob(pydantic.BaseModel):
|
|
20
|
+
id: str = pydantic.Field(description="The id of the extraction job")
|
|
21
|
+
status: StatusEnum = pydantic.Field(description="The status of the extraction job")
|
|
22
|
+
file: File = pydantic.Field(description="The file that the extract was extracted from")
|
|
23
|
+
|
|
24
|
+
def json(self, **kwargs: typing.Any) -> str:
|
|
25
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
26
|
+
return super().json(**kwargs_with_defaults)
|
|
27
|
+
|
|
28
|
+
def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
|
|
29
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
30
|
+
return super().dict(**kwargs_with_defaults)
|
|
31
|
+
|
|
32
|
+
class Config:
|
|
33
|
+
frozen = True
|
|
34
|
+
smart_union = True
|
|
35
|
+
json_encoders = {dt.datetime: serialize_datetime}
|
|
@@ -0,0 +1,40 @@
|
|
|
1
|
+
# This file was auto-generated by Fern from our API Definition.
|
|
2
|
+
|
|
3
|
+
import datetime as dt
|
|
4
|
+
import typing
|
|
5
|
+
|
|
6
|
+
from ..core.datetime_utils import serialize_datetime
|
|
7
|
+
from .extract_config import ExtractConfig
|
|
8
|
+
from .extract_job_create_data_schema_override_value import ExtractJobCreateDataSchemaOverrideValue
|
|
9
|
+
|
|
10
|
+
try:
|
|
11
|
+
import pydantic
|
|
12
|
+
if pydantic.__version__.startswith("1."):
|
|
13
|
+
raise ImportError
|
|
14
|
+
import pydantic.v1 as pydantic # type: ignore
|
|
15
|
+
except ImportError:
|
|
16
|
+
import pydantic # type: ignore
|
|
17
|
+
|
|
18
|
+
|
|
19
|
+
class ExtractJobCreate(pydantic.BaseModel):
|
|
20
|
+
"""
|
|
21
|
+
Schema for creating an extraction job.
|
|
22
|
+
"""
|
|
23
|
+
|
|
24
|
+
extraction_agent_id: str = pydantic.Field(description="The id of the extraction agent")
|
|
25
|
+
file_id: str = pydantic.Field(description="The id of the file")
|
|
26
|
+
data_schema_override: typing.Optional[typing.Dict[str, typing.Optional[ExtractJobCreateDataSchemaOverrideValue]]]
|
|
27
|
+
config_override: typing.Optional[ExtractConfig]
|
|
28
|
+
|
|
29
|
+
def json(self, **kwargs: typing.Any) -> str:
|
|
30
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
31
|
+
return super().json(**kwargs_with_defaults)
|
|
32
|
+
|
|
33
|
+
def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
|
|
34
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
35
|
+
return super().dict(**kwargs_with_defaults)
|
|
36
|
+
|
|
37
|
+
class Config:
|
|
38
|
+
frozen = True
|
|
39
|
+
smart_union = True
|
|
40
|
+
json_encoders = {dt.datetime: serialize_datetime}
|
|
@@ -0,0 +1,17 @@
|
|
|
1
|
+
# This file was auto-generated by Fern from our API Definition.
|
|
2
|
+
|
|
3
|
+
import enum
|
|
4
|
+
import typing
|
|
5
|
+
|
|
6
|
+
T_Result = typing.TypeVar("T_Result")
|
|
7
|
+
|
|
8
|
+
|
|
9
|
+
class ExtractMode(str, enum.Enum):
|
|
10
|
+
PER_DOC = "PER_DOC"
|
|
11
|
+
PER_PAGE = "PER_PAGE"
|
|
12
|
+
|
|
13
|
+
def visit(self, per_doc: typing.Callable[[], T_Result], per_page: typing.Callable[[], T_Result]) -> T_Result:
|
|
14
|
+
if self is ExtractMode.PER_DOC:
|
|
15
|
+
return per_doc()
|
|
16
|
+
if self is ExtractMode.PER_PAGE:
|
|
17
|
+
return per_page()
|
|
@@ -0,0 +1,46 @@
|
|
|
1
|
+
# This file was auto-generated by Fern from our API Definition.
|
|
2
|
+
|
|
3
|
+
import datetime as dt
|
|
4
|
+
import typing
|
|
5
|
+
|
|
6
|
+
from ..core.datetime_utils import serialize_datetime
|
|
7
|
+
from .extract_resultset_data import ExtractResultsetData
|
|
8
|
+
from .extract_resultset_extraction_metadata_value import ExtractResultsetExtractionMetadataValue
|
|
9
|
+
from .file import File
|
|
10
|
+
|
|
11
|
+
try:
|
|
12
|
+
import pydantic
|
|
13
|
+
if pydantic.__version__.startswith("1."):
|
|
14
|
+
raise ImportError
|
|
15
|
+
import pydantic.v1 as pydantic # type: ignore
|
|
16
|
+
except ImportError:
|
|
17
|
+
import pydantic # type: ignore
|
|
18
|
+
|
|
19
|
+
|
|
20
|
+
class ExtractResultset(pydantic.BaseModel):
|
|
21
|
+
"""
|
|
22
|
+
Schema for an extraction result.
|
|
23
|
+
"""
|
|
24
|
+
|
|
25
|
+
id: str = pydantic.Field(description="Unique identifier")
|
|
26
|
+
created_at: typing.Optional[dt.datetime]
|
|
27
|
+
updated_at: typing.Optional[dt.datetime]
|
|
28
|
+
extraction_agent_id: str = pydantic.Field(description="The id of the extraction agent")
|
|
29
|
+
data: typing.Optional[ExtractResultsetData] = pydantic.Field(description="The data extracted from the file")
|
|
30
|
+
extraction_metadata: typing.Dict[str, typing.Optional[ExtractResultsetExtractionMetadataValue]] = pydantic.Field(
|
|
31
|
+
description="The metadata extracted from the file"
|
|
32
|
+
)
|
|
33
|
+
file: File = pydantic.Field(description="The file that the extract was extracted from")
|
|
34
|
+
|
|
35
|
+
def json(self, **kwargs: typing.Any) -> str:
|
|
36
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
37
|
+
return super().json(**kwargs_with_defaults)
|
|
38
|
+
|
|
39
|
+
def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
|
|
40
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
41
|
+
return super().dict(**kwargs_with_defaults)
|
|
42
|
+
|
|
43
|
+
class Config:
|
|
44
|
+
frozen = True
|
|
45
|
+
smart_union = True
|
|
46
|
+
json_encoders = {dt.datetime: serialize_datetime}
|
|
@@ -0,0 +1,11 @@
|
|
|
1
|
+
# This file was auto-generated by Fern from our API Definition.
|
|
2
|
+
|
|
3
|
+
import typing
|
|
4
|
+
|
|
5
|
+
from .extract_resultset_data_item_value import ExtractResultsetDataItemValue
|
|
6
|
+
from .extract_resultset_data_zero_value import ExtractResultsetDataZeroValue
|
|
7
|
+
|
|
8
|
+
ExtractResultsetData = typing.Union[
|
|
9
|
+
typing.Dict[str, typing.Optional[ExtractResultsetDataZeroValue]],
|
|
10
|
+
typing.List[typing.Dict[str, typing.Optional[ExtractResultsetDataItemValue]]],
|
|
11
|
+
]
|
llama_cloud/types/file.py
CHANGED
|
@@ -4,6 +4,7 @@ import datetime as dt
|
|
|
4
4
|
import typing
|
|
5
5
|
|
|
6
6
|
from ..core.datetime_utils import serialize_datetime
|
|
7
|
+
from .file_permission_info_value import FilePermissionInfoValue
|
|
7
8
|
from .file_resource_info_value import FileResourceInfoValue
|
|
8
9
|
|
|
9
10
|
try:
|
|
@@ -24,11 +25,13 @@ class File(pydantic.BaseModel):
|
|
|
24
25
|
created_at: typing.Optional[dt.datetime]
|
|
25
26
|
updated_at: typing.Optional[dt.datetime]
|
|
26
27
|
name: str
|
|
28
|
+
external_file_id: str = pydantic.Field(description="The ID of the file in the external system")
|
|
27
29
|
file_size: typing.Optional[int]
|
|
28
30
|
file_type: typing.Optional[str]
|
|
29
31
|
project_id: str = pydantic.Field(description="The ID of the project that the file belongs to")
|
|
30
32
|
last_modified_at: typing.Optional[dt.datetime]
|
|
31
33
|
resource_info: typing.Optional[typing.Dict[str, typing.Optional[FileResourceInfoValue]]]
|
|
34
|
+
permission_info: typing.Optional[typing.Dict[str, typing.Optional[FilePermissionInfoValue]]]
|
|
32
35
|
data_source_id: typing.Optional[str]
|
|
33
36
|
|
|
34
37
|
def json(self, **kwargs: typing.Any) -> str:
|
|
@@ -13,9 +13,17 @@ class FilterCondition(str, enum.Enum):
|
|
|
13
13
|
|
|
14
14
|
AND = "and"
|
|
15
15
|
OR = "or"
|
|
16
|
+
NOT = "not"
|
|
16
17
|
|
|
17
|
-
def visit(
|
|
18
|
+
def visit(
|
|
19
|
+
self,
|
|
20
|
+
and_: typing.Callable[[], T_Result],
|
|
21
|
+
or_: typing.Callable[[], T_Result],
|
|
22
|
+
not_: typing.Callable[[], T_Result],
|
|
23
|
+
) -> T_Result:
|
|
18
24
|
if self is FilterCondition.AND:
|
|
19
25
|
return and_()
|
|
20
26
|
if self is FilterCondition.OR:
|
|
21
27
|
return or_()
|
|
28
|
+
if self is FilterCondition.NOT:
|
|
29
|
+
return not_()
|
|
@@ -22,6 +22,7 @@ class FilterOperator(str, enum.Enum):
|
|
|
22
22
|
ANY = "any"
|
|
23
23
|
ALL = "all"
|
|
24
24
|
TEXT_MATCH = "text_match"
|
|
25
|
+
TEXT_MATCH_INSENSITIVE = "text_match_insensitive"
|
|
25
26
|
CONTAINS = "contains"
|
|
26
27
|
IS_EMPTY = "is_empty"
|
|
27
28
|
|
|
@@ -38,6 +39,7 @@ class FilterOperator(str, enum.Enum):
|
|
|
38
39
|
any: typing.Callable[[], T_Result],
|
|
39
40
|
all: typing.Callable[[], T_Result],
|
|
40
41
|
text_match: typing.Callable[[], T_Result],
|
|
42
|
+
text_match_insensitive: typing.Callable[[], T_Result],
|
|
41
43
|
contains: typing.Callable[[], T_Result],
|
|
42
44
|
is_empty: typing.Callable[[], T_Result],
|
|
43
45
|
) -> T_Result:
|
|
@@ -63,6 +65,8 @@ class FilterOperator(str, enum.Enum):
|
|
|
63
65
|
return all()
|
|
64
66
|
if self is FilterOperator.TEXT_MATCH:
|
|
65
67
|
return text_match()
|
|
68
|
+
if self is FilterOperator.TEXT_MATCH_INSENSITIVE:
|
|
69
|
+
return text_match_insensitive()
|
|
66
70
|
if self is FilterOperator.CONTAINS:
|
|
67
71
|
return contains()
|
|
68
72
|
if self is FilterOperator.IS_EMPTY:
|
|
@@ -0,0 +1,35 @@
|
|
|
1
|
+
# This file was auto-generated by Fern from our API Definition.
|
|
2
|
+
|
|
3
|
+
import datetime as dt
|
|
4
|
+
import typing
|
|
5
|
+
|
|
6
|
+
from ..core.datetime_utils import serialize_datetime
|
|
7
|
+
|
|
8
|
+
try:
|
|
9
|
+
import pydantic
|
|
10
|
+
if pydantic.__version__.startswith("1."):
|
|
11
|
+
raise ImportError
|
|
12
|
+
import pydantic.v1 as pydantic # type: ignore
|
|
13
|
+
except ImportError:
|
|
14
|
+
import pydantic # type: ignore
|
|
15
|
+
|
|
16
|
+
|
|
17
|
+
class ImageBlock(pydantic.BaseModel):
|
|
18
|
+
image: typing.Optional[str]
|
|
19
|
+
path: typing.Optional[str]
|
|
20
|
+
url: typing.Optional[str]
|
|
21
|
+
image_mimetype: typing.Optional[str]
|
|
22
|
+
detail: typing.Optional[str]
|
|
23
|
+
|
|
24
|
+
def json(self, **kwargs: typing.Any) -> str:
|
|
25
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
26
|
+
return super().json(**kwargs_with_defaults)
|
|
27
|
+
|
|
28
|
+
def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
|
|
29
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
30
|
+
return super().dict(**kwargs_with_defaults)
|
|
31
|
+
|
|
32
|
+
class Config:
|
|
33
|
+
frozen = True
|
|
34
|
+
smart_union = True
|
|
35
|
+
json_encoders = {dt.datetime: serialize_datetime}
|
|
@@ -20,7 +20,7 @@ class InputMessage(pydantic.BaseModel):
|
|
|
20
20
|
This is distinct from a ChatMessage because this schema is enforced by the AI Chat library used in the frontend
|
|
21
21
|
"""
|
|
22
22
|
|
|
23
|
-
id: str = pydantic.Field(description="ID of the message, if any. a UUID.")
|
|
23
|
+
id: typing.Optional[str] = pydantic.Field(description="ID of the message, if any. a UUID.")
|
|
24
24
|
role: MessageRole
|
|
25
25
|
content: str
|
|
26
26
|
data: typing.Optional[typing.Dict[str, typing.Any]]
|
|
@@ -18,6 +18,7 @@ class JobNameMapping(str, enum.Enum):
|
|
|
18
18
|
PARSE = "PARSE"
|
|
19
19
|
TRANSFORM = "TRANSFORM"
|
|
20
20
|
INGESTION = "INGESTION"
|
|
21
|
+
METADATA_UPDATE = "METADATA_UPDATE"
|
|
21
22
|
|
|
22
23
|
def visit(
|
|
23
24
|
self,
|
|
@@ -28,6 +29,7 @@ class JobNameMapping(str, enum.Enum):
|
|
|
28
29
|
parse: typing.Callable[[], T_Result],
|
|
29
30
|
transform: typing.Callable[[], T_Result],
|
|
30
31
|
ingestion: typing.Callable[[], T_Result],
|
|
32
|
+
metadata_update: typing.Callable[[], T_Result],
|
|
31
33
|
) -> T_Result:
|
|
32
34
|
if self is JobNameMapping.MANAGED_INGESTION:
|
|
33
35
|
return managed_ingestion()
|
|
@@ -43,3 +45,5 @@ class JobNameMapping(str, enum.Enum):
|
|
|
43
45
|
return transform()
|
|
44
46
|
if self is JobNameMapping.INGESTION:
|
|
45
47
|
return ingestion()
|
|
48
|
+
if self is JobNameMapping.METADATA_UPDATE:
|
|
49
|
+
return metadata_update()
|
|
@@ -0,0 +1,89 @@
|
|
|
1
|
+
# This file was auto-generated by Fern from our API Definition.
|
|
2
|
+
|
|
3
|
+
import enum
|
|
4
|
+
import typing
|
|
5
|
+
|
|
6
|
+
T_Result = typing.TypeVar("T_Result")
|
|
7
|
+
|
|
8
|
+
|
|
9
|
+
class JobNames(str, enum.Enum):
|
|
10
|
+
"""
|
|
11
|
+
Enum for executable pipeline job names.
|
|
12
|
+
"""
|
|
13
|
+
|
|
14
|
+
LOAD_DOCUMENTS_JOB = "load_documents_job"
|
|
15
|
+
LOAD_FILES_JOB = "load_files_job"
|
|
16
|
+
PLAYGROUND_JOB = "playground_job"
|
|
17
|
+
EVAL_DATASET_JOB = "eval_dataset_job"
|
|
18
|
+
PIPELINE_MANAGED_INGESTION_JOB = "pipeline_managed_ingestion_job"
|
|
19
|
+
DATA_SOURCE_MANAGED_INGESTION_JOB = "data_source_managed_ingestion_job"
|
|
20
|
+
DATA_SOURCE_UPDATE_DISPATCHER_JOB = "data_source_update_dispatcher_job"
|
|
21
|
+
PIPELINE_FILE_UPDATE_DISPATCHER_JOB = "pipeline_file_update_dispatcher_job"
|
|
22
|
+
PIPELINE_FILE_UPDATER_JOB = "pipeline_file_updater_job"
|
|
23
|
+
FILE_MANAGED_INGESTION_JOB = "file_managed_ingestion_job"
|
|
24
|
+
DOCUMENT_INGESTION_JOB = "document_ingestion_job"
|
|
25
|
+
PARSE_RAW_FILE_JOB = "parse_raw_file_job"
|
|
26
|
+
LLAMA_PARSE_TRANSFORM_JOB = "llama_parse_transform_job"
|
|
27
|
+
METADATA_UPDATE_JOB = "metadata_update_job"
|
|
28
|
+
PARSE_RAW_FILE_JOB_CACHED = "parse_raw_file_job_cached"
|
|
29
|
+
EXTRACTION_JOB = "extraction_job"
|
|
30
|
+
EXTRACT_JOB = "extract_job"
|
|
31
|
+
ASYNCIO_TEST_JOB = "asyncio_test_job"
|
|
32
|
+
|
|
33
|
+
def visit(
|
|
34
|
+
self,
|
|
35
|
+
load_documents_job: typing.Callable[[], T_Result],
|
|
36
|
+
load_files_job: typing.Callable[[], T_Result],
|
|
37
|
+
playground_job: typing.Callable[[], T_Result],
|
|
38
|
+
eval_dataset_job: typing.Callable[[], T_Result],
|
|
39
|
+
pipeline_managed_ingestion_job: typing.Callable[[], T_Result],
|
|
40
|
+
data_source_managed_ingestion_job: typing.Callable[[], T_Result],
|
|
41
|
+
data_source_update_dispatcher_job: typing.Callable[[], T_Result],
|
|
42
|
+
pipeline_file_update_dispatcher_job: typing.Callable[[], T_Result],
|
|
43
|
+
pipeline_file_updater_job: typing.Callable[[], T_Result],
|
|
44
|
+
file_managed_ingestion_job: typing.Callable[[], T_Result],
|
|
45
|
+
document_ingestion_job: typing.Callable[[], T_Result],
|
|
46
|
+
parse_raw_file_job: typing.Callable[[], T_Result],
|
|
47
|
+
llama_parse_transform_job: typing.Callable[[], T_Result],
|
|
48
|
+
metadata_update_job: typing.Callable[[], T_Result],
|
|
49
|
+
parse_raw_file_job_cached: typing.Callable[[], T_Result],
|
|
50
|
+
extraction_job: typing.Callable[[], T_Result],
|
|
51
|
+
extract_job: typing.Callable[[], T_Result],
|
|
52
|
+
asyncio_test_job: typing.Callable[[], T_Result],
|
|
53
|
+
) -> T_Result:
|
|
54
|
+
if self is JobNames.LOAD_DOCUMENTS_JOB:
|
|
55
|
+
return load_documents_job()
|
|
56
|
+
if self is JobNames.LOAD_FILES_JOB:
|
|
57
|
+
return load_files_job()
|
|
58
|
+
if self is JobNames.PLAYGROUND_JOB:
|
|
59
|
+
return playground_job()
|
|
60
|
+
if self is JobNames.EVAL_DATASET_JOB:
|
|
61
|
+
return eval_dataset_job()
|
|
62
|
+
if self is JobNames.PIPELINE_MANAGED_INGESTION_JOB:
|
|
63
|
+
return pipeline_managed_ingestion_job()
|
|
64
|
+
if self is JobNames.DATA_SOURCE_MANAGED_INGESTION_JOB:
|
|
65
|
+
return data_source_managed_ingestion_job()
|
|
66
|
+
if self is JobNames.DATA_SOURCE_UPDATE_DISPATCHER_JOB:
|
|
67
|
+
return data_source_update_dispatcher_job()
|
|
68
|
+
if self is JobNames.PIPELINE_FILE_UPDATE_DISPATCHER_JOB:
|
|
69
|
+
return pipeline_file_update_dispatcher_job()
|
|
70
|
+
if self is JobNames.PIPELINE_FILE_UPDATER_JOB:
|
|
71
|
+
return pipeline_file_updater_job()
|
|
72
|
+
if self is JobNames.FILE_MANAGED_INGESTION_JOB:
|
|
73
|
+
return file_managed_ingestion_job()
|
|
74
|
+
if self is JobNames.DOCUMENT_INGESTION_JOB:
|
|
75
|
+
return document_ingestion_job()
|
|
76
|
+
if self is JobNames.PARSE_RAW_FILE_JOB:
|
|
77
|
+
return parse_raw_file_job()
|
|
78
|
+
if self is JobNames.LLAMA_PARSE_TRANSFORM_JOB:
|
|
79
|
+
return llama_parse_transform_job()
|
|
80
|
+
if self is JobNames.METADATA_UPDATE_JOB:
|
|
81
|
+
return metadata_update_job()
|
|
82
|
+
if self is JobNames.PARSE_RAW_FILE_JOB_CACHED:
|
|
83
|
+
return parse_raw_file_job_cached()
|
|
84
|
+
if self is JobNames.EXTRACTION_JOB:
|
|
85
|
+
return extraction_job()
|
|
86
|
+
if self is JobNames.EXTRACT_JOB:
|
|
87
|
+
return extract_job()
|
|
88
|
+
if self is JobNames.ASYNCIO_TEST_JOB:
|
|
89
|
+
return asyncio_test_job()
|
|
@@ -0,0 +1,57 @@
|
|
|
1
|
+
# This file was auto-generated by Fern from our API Definition.
|
|
2
|
+
|
|
3
|
+
import datetime as dt
|
|
4
|
+
import typing
|
|
5
|
+
|
|
6
|
+
from ..core.datetime_utils import serialize_datetime
|
|
7
|
+
from .base import Base
|
|
8
|
+
from .job_names import JobNames
|
|
9
|
+
from .status_enum import StatusEnum
|
|
10
|
+
|
|
11
|
+
try:
|
|
12
|
+
import pydantic
|
|
13
|
+
if pydantic.__version__.startswith("1."):
|
|
14
|
+
raise ImportError
|
|
15
|
+
import pydantic.v1 as pydantic # type: ignore
|
|
16
|
+
except ImportError:
|
|
17
|
+
import pydantic # type: ignore
|
|
18
|
+
|
|
19
|
+
|
|
20
|
+
class JobRecord(pydantic.BaseModel):
|
|
21
|
+
"""
|
|
22
|
+
Schema for a job's metadata.
|
|
23
|
+
"""
|
|
24
|
+
|
|
25
|
+
job_name: JobNames = pydantic.Field(description="The name of the job.")
|
|
26
|
+
partitions: typing.Dict[str, str] = pydantic.Field(
|
|
27
|
+
description="The partitions for this execution. Used for determining where to save job output."
|
|
28
|
+
)
|
|
29
|
+
parameters: typing.Optional[Base]
|
|
30
|
+
session_id: typing.Optional[str]
|
|
31
|
+
correlation_id: typing.Optional[str]
|
|
32
|
+
parent_job_execution_id: typing.Optional[str]
|
|
33
|
+
user_id: typing.Optional[str]
|
|
34
|
+
created_at: dt.datetime = pydantic.Field(description="Creation datetime")
|
|
35
|
+
project_id: typing.Optional[str]
|
|
36
|
+
id: typing.Optional[str] = pydantic.Field(description="Unique identifier")
|
|
37
|
+
status: StatusEnum
|
|
38
|
+
error_code: typing.Optional[str]
|
|
39
|
+
error_message: typing.Optional[str]
|
|
40
|
+
attempts: typing.Optional[int]
|
|
41
|
+
started_at: typing.Optional[dt.datetime]
|
|
42
|
+
ended_at: typing.Optional[dt.datetime]
|
|
43
|
+
updated_at: typing.Optional[dt.datetime] = pydantic.Field(description="Update datetime")
|
|
44
|
+
data: typing.Optional[Base]
|
|
45
|
+
|
|
46
|
+
def json(self, **kwargs: typing.Any) -> str:
|
|
47
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
48
|
+
return super().json(**kwargs_with_defaults)
|
|
49
|
+
|
|
50
|
+
def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
|
|
51
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
52
|
+
return super().dict(**kwargs_with_defaults)
|
|
53
|
+
|
|
54
|
+
class Config:
|
|
55
|
+
frozen = True
|
|
56
|
+
smart_union = True
|
|
57
|
+
json_encoders = {dt.datetime: serialize_datetime}
|
|
@@ -0,0 +1,36 @@
|
|
|
1
|
+
# This file was auto-generated by Fern from our API Definition.
|
|
2
|
+
|
|
3
|
+
import datetime as dt
|
|
4
|
+
import typing
|
|
5
|
+
|
|
6
|
+
from ..core.datetime_utils import serialize_datetime
|
|
7
|
+
from .job_record import JobRecord
|
|
8
|
+
from .usage_metric_response import UsageMetricResponse
|
|
9
|
+
from .user_job_record import UserJobRecord
|
|
10
|
+
|
|
11
|
+
try:
|
|
12
|
+
import pydantic
|
|
13
|
+
if pydantic.__version__.startswith("1."):
|
|
14
|
+
raise ImportError
|
|
15
|
+
import pydantic.v1 as pydantic # type: ignore
|
|
16
|
+
except ImportError:
|
|
17
|
+
import pydantic # type: ignore
|
|
18
|
+
|
|
19
|
+
|
|
20
|
+
class JobRecordWithUsageMetrics(pydantic.BaseModel):
|
|
21
|
+
job_record: JobRecord
|
|
22
|
+
usage_metrics: typing.Optional[UsageMetricResponse]
|
|
23
|
+
user: UserJobRecord
|
|
24
|
+
|
|
25
|
+
def json(self, **kwargs: typing.Any) -> str:
|
|
26
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
27
|
+
return super().json(**kwargs_with_defaults)
|
|
28
|
+
|
|
29
|
+
def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
|
|
30
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
31
|
+
return super().dict(**kwargs_with_defaults)
|
|
32
|
+
|
|
33
|
+
class Config:
|
|
34
|
+
frozen = True
|
|
35
|
+
smart_union = True
|
|
36
|
+
json_encoders = {dt.datetime: serialize_datetime}
|