llama-cloud 0.1.4__py3-none-any.whl → 0.1.6__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of llama-cloud might be problematic. Click here for more details.
- llama_cloud/__init__.py +76 -10
- llama_cloud/client.py +3 -0
- llama_cloud/environment.py +1 -1
- llama_cloud/resources/__init__.py +23 -1
- llama_cloud/resources/data_sinks/client.py +26 -20
- llama_cloud/resources/data_sources/client.py +16 -16
- llama_cloud/resources/embedding_model_configs/__init__.py +23 -0
- llama_cloud/resources/embedding_model_configs/client.py +416 -0
- llama_cloud/resources/embedding_model_configs/types/__init__.py +23 -0
- llama_cloud/resources/embedding_model_configs/types/embedding_model_config_create_embedding_config.py +89 -0
- llama_cloud/resources/evals/client.py +36 -26
- llama_cloud/resources/extraction/client.py +32 -32
- llama_cloud/resources/files/__init__.py +2 -2
- llama_cloud/resources/files/client.py +310 -54
- llama_cloud/resources/files/types/__init__.py +3 -1
- llama_cloud/resources/files/types/file_create_from_url_resource_info_value.py +7 -0
- llama_cloud/resources/files/types/file_create_permission_info_value.py +7 -0
- llama_cloud/resources/organizations/client.py +125 -56
- llama_cloud/resources/parsing/client.py +652 -264
- llama_cloud/resources/pipelines/client.py +617 -310
- llama_cloud/resources/projects/client.py +341 -136
- llama_cloud/types/__init__.py +58 -10
- llama_cloud/types/azure_open_ai_embedding.py +12 -6
- llama_cloud/types/base_prompt_template.py +6 -2
- llama_cloud/types/bedrock_embedding.py +12 -6
- llama_cloud/types/character_splitter.py +4 -2
- llama_cloud/types/chat_message.py +1 -1
- llama_cloud/types/cloud_az_storage_blob_data_source.py +16 -7
- llama_cloud/types/cloud_box_data_source.py +13 -6
- llama_cloud/types/cloud_confluence_data_source.py +7 -6
- llama_cloud/types/cloud_document.py +3 -1
- llama_cloud/types/cloud_document_create.py +3 -1
- llama_cloud/types/cloud_google_drive_data_source.py +1 -0
- llama_cloud/types/cloud_jira_data_source.py +7 -4
- llama_cloud/types/cloud_notion_page_data_source.py +3 -2
- llama_cloud/types/cloud_one_drive_data_source.py +6 -2
- llama_cloud/types/cloud_postgres_vector_store.py +1 -1
- llama_cloud/types/cloud_s_3_data_source.py +9 -4
- llama_cloud/types/cloud_sharepoint_data_source.py +9 -5
- llama_cloud/types/cloud_slack_data_source.py +7 -6
- llama_cloud/types/code_splitter.py +1 -1
- llama_cloud/types/cohere_embedding.py +7 -3
- llama_cloud/types/data_sink.py +4 -4
- llama_cloud/types/data_sink_create.py +1 -1
- llama_cloud/types/data_source.py +7 -5
- llama_cloud/types/data_source_create.py +4 -2
- llama_cloud/types/embedding_model_config.py +43 -0
- llama_cloud/types/embedding_model_config_embedding_config.py +89 -0
- llama_cloud/types/embedding_model_config_update.py +35 -0
- llama_cloud/types/embedding_model_config_update_embedding_config.py +89 -0
- llama_cloud/types/eval_dataset.py +2 -2
- llama_cloud/types/eval_dataset_job_record.py +13 -7
- llama_cloud/types/eval_execution_params_override.py +6 -2
- llama_cloud/types/eval_question.py +2 -2
- llama_cloud/types/extraction_result.py +2 -2
- llama_cloud/types/extraction_schema.py +5 -3
- llama_cloud/types/file.py +15 -7
- llama_cloud/types/file_permission_info_value.py +5 -0
- llama_cloud/types/filter_operator.py +2 -2
- llama_cloud/types/gemini_embedding.py +10 -6
- llama_cloud/types/hugging_face_inference_api_embedding.py +27 -11
- llama_cloud/types/input_message.py +3 -1
- llama_cloud/types/interval_usage_and_plan.py +36 -0
- llama_cloud/types/job_name_mapping.py +4 -0
- llama_cloud/types/llama_parse_parameters.py +21 -0
- llama_cloud/types/llm.py +4 -2
- llama_cloud/types/llm_parameters.py +5 -2
- llama_cloud/types/local_eval.py +10 -8
- llama_cloud/types/local_eval_results.py +1 -1
- llama_cloud/types/managed_ingestion_status_response.py +5 -3
- llama_cloud/types/markdown_element_node_parser.py +5 -3
- llama_cloud/types/markdown_node_parser.py +3 -2
- llama_cloud/types/metadata_filter.py +2 -2
- llama_cloud/types/metric_result.py +3 -3
- llama_cloud/types/node_parser.py +1 -1
- llama_cloud/types/open_ai_embedding.py +12 -6
- llama_cloud/types/organization.py +2 -2
- llama_cloud/types/page_splitter_node_parser.py +2 -2
- llama_cloud/types/paginated_list_pipeline_files_response.py +35 -0
- llama_cloud/types/parsing_job_structured_result.py +32 -0
- llama_cloud/types/permission.py +3 -3
- llama_cloud/types/pipeline.py +17 -6
- llama_cloud/types/pipeline_configuration_hashes.py +3 -3
- llama_cloud/types/pipeline_create.py +15 -4
- llama_cloud/types/pipeline_data_source.py +13 -7
- llama_cloud/types/pipeline_data_source_create.py +3 -1
- llama_cloud/types/pipeline_deployment.py +4 -4
- llama_cloud/types/pipeline_file.py +25 -10
- llama_cloud/types/pipeline_file_create.py +3 -1
- llama_cloud/types/pipeline_file_permission_info_value.py +7 -0
- llama_cloud/types/plan.py +40 -0
- llama_cloud/types/playground_session.py +2 -2
- llama_cloud/types/preset_retrieval_params.py +14 -7
- llama_cloud/types/presigned_url.py +3 -1
- llama_cloud/types/project.py +2 -2
- llama_cloud/types/prompt_mixin_prompts.py +1 -1
- llama_cloud/types/prompt_spec.py +4 -2
- llama_cloud/types/role.py +3 -3
- llama_cloud/types/sentence_splitter.py +4 -2
- llama_cloud/types/text_node.py +3 -3
- llama_cloud/types/{hugging_face_inference_api_embedding_token.py → token.py} +1 -1
- llama_cloud/types/token_text_splitter.py +1 -1
- llama_cloud/types/usage.py +41 -0
- llama_cloud/types/user_organization.py +9 -5
- llama_cloud/types/user_organization_create.py +4 -4
- llama_cloud/types/user_organization_delete.py +2 -2
- llama_cloud/types/user_organization_role.py +2 -2
- llama_cloud/types/value.py +5 -0
- llama_cloud/types/vertex_text_embedding.py +9 -5
- {llama_cloud-0.1.4.dist-info → llama_cloud-0.1.6.dist-info}/METADATA +1 -1
- {llama_cloud-0.1.4.dist-info → llama_cloud-0.1.6.dist-info}/RECORD +113 -99
- llama_cloud/types/data_sink_component.py +0 -20
- llama_cloud/types/data_source_component.py +0 -28
- llama_cloud/types/metadata_filter_value.py +0 -5
- llama_cloud/types/pipeline_data_source_component.py +0 -28
- {llama_cloud-0.1.4.dist-info → llama_cloud-0.1.6.dist-info}/LICENSE +0 -0
- {llama_cloud-0.1.4.dist-info → llama_cloud-0.1.6.dist-info}/WHEEL +0 -0
|
@@ -0,0 +1,40 @@
|
|
|
1
|
+
# This file was auto-generated by Fern from our API Definition.
|
|
2
|
+
|
|
3
|
+
import datetime as dt
|
|
4
|
+
import typing
|
|
5
|
+
|
|
6
|
+
from ..core.datetime_utils import serialize_datetime
|
|
7
|
+
|
|
8
|
+
try:
|
|
9
|
+
import pydantic
|
|
10
|
+
if pydantic.__version__.startswith("1."):
|
|
11
|
+
raise ImportError
|
|
12
|
+
import pydantic.v1 as pydantic # type: ignore
|
|
13
|
+
except ImportError:
|
|
14
|
+
import pydantic # type: ignore
|
|
15
|
+
|
|
16
|
+
|
|
17
|
+
class Plan(pydantic.BaseModel):
|
|
18
|
+
total_users: typing.Optional[int]
|
|
19
|
+
total_indexes: typing.Optional[int]
|
|
20
|
+
total_indexed_pages: typing.Optional[int]
|
|
21
|
+
credits: typing.Optional[int]
|
|
22
|
+
has_payment_method: typing.Optional[bool]
|
|
23
|
+
free: typing.Optional[bool] = pydantic.Field(description="If is a free plan")
|
|
24
|
+
allowed_index: typing.Optional[bool] = pydantic.Field(description="If is allowed to use indexes")
|
|
25
|
+
allowed_external_index: typing.Optional[bool] = pydantic.Field(
|
|
26
|
+
description="If is allowed to use external data sources or sinks in indexes"
|
|
27
|
+
)
|
|
28
|
+
|
|
29
|
+
def json(self, **kwargs: typing.Any) -> str:
|
|
30
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
31
|
+
return super().json(**kwargs_with_defaults)
|
|
32
|
+
|
|
33
|
+
def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
|
|
34
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
35
|
+
return super().dict(**kwargs_with_defaults)
|
|
36
|
+
|
|
37
|
+
class Config:
|
|
38
|
+
frozen = True
|
|
39
|
+
smart_union = True
|
|
40
|
+
json_encoders = {dt.datetime: serialize_datetime}
|
|
@@ -23,8 +23,8 @@ class PlaygroundSession(pydantic.BaseModel):
|
|
|
23
23
|
"""
|
|
24
24
|
|
|
25
25
|
id: str = pydantic.Field(description="Unique identifier")
|
|
26
|
-
created_at: typing.Optional[dt.datetime]
|
|
27
|
-
updated_at: typing.Optional[dt.datetime]
|
|
26
|
+
created_at: typing.Optional[dt.datetime] = pydantic.Field(description="Creation datetime")
|
|
27
|
+
updated_at: typing.Optional[dt.datetime] = pydantic.Field(description="Update datetime")
|
|
28
28
|
pipeline_id: str
|
|
29
29
|
user_id: str
|
|
30
30
|
llm_params_id: str
|
|
@@ -21,13 +21,20 @@ class PresetRetrievalParams(pydantic.BaseModel):
|
|
|
21
21
|
Schema for the search params for an retrieval execution that can be preset for a pipeline.
|
|
22
22
|
"""
|
|
23
23
|
|
|
24
|
-
dense_similarity_top_k: typing.Optional[int]
|
|
25
|
-
|
|
26
|
-
|
|
27
|
-
|
|
28
|
-
|
|
29
|
-
|
|
30
|
-
|
|
24
|
+
dense_similarity_top_k: typing.Optional[int] = pydantic.Field(description="Number of nodes for dense retrieval.")
|
|
25
|
+
dense_similarity_cutoff: typing.Optional[float] = pydantic.Field(
|
|
26
|
+
description="Minimum similarity score wrt query for retrieval"
|
|
27
|
+
)
|
|
28
|
+
sparse_similarity_top_k: typing.Optional[int] = pydantic.Field(description="Number of nodes for sparse retrieval.")
|
|
29
|
+
enable_reranking: typing.Optional[bool] = pydantic.Field(description="Enable reranking for retrieval")
|
|
30
|
+
rerank_top_n: typing.Optional[int] = pydantic.Field(description="Number of reranked nodes for returning.")
|
|
31
|
+
alpha: typing.Optional[float] = pydantic.Field(
|
|
32
|
+
description="Alpha value for hybrid retrieval to determine the weights between dense and sparse retrieval. 0 is sparse retrieval and 1 is dense retrieval."
|
|
33
|
+
)
|
|
34
|
+
search_filters: typing.Optional[MetadataFilters] = pydantic.Field(description="Search filters for retrieval.")
|
|
35
|
+
files_top_k: typing.Optional[int] = pydantic.Field(
|
|
36
|
+
description="Number of files to retrieve (only for retrieval mode files_via_metadata and files_via_content)."
|
|
37
|
+
)
|
|
31
38
|
retrieval_mode: typing.Optional[RetrievalMode] = pydantic.Field(description="The retrieval mode for the query.")
|
|
32
39
|
retrieve_image_nodes: typing.Optional[bool] = pydantic.Field(description="Whether to retrieve image nodes.")
|
|
33
40
|
class_name: typing.Optional[str]
|
|
@@ -21,7 +21,9 @@ class PresignedUrl(pydantic.BaseModel):
|
|
|
21
21
|
|
|
22
22
|
url: str = pydantic.Field(description="A presigned URL for IO operations against a private file")
|
|
23
23
|
expires_at: dt.datetime = pydantic.Field(description="The time at which the presigned URL expires")
|
|
24
|
-
form_fields: typing.Optional[typing.Dict[str, typing.Optional[str]]]
|
|
24
|
+
form_fields: typing.Optional[typing.Dict[str, typing.Optional[str]]] = pydantic.Field(
|
|
25
|
+
description="Form fields for a presigned POST request"
|
|
26
|
+
)
|
|
25
27
|
|
|
26
28
|
def json(self, **kwargs: typing.Any) -> str:
|
|
27
29
|
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
llama_cloud/types/project.py
CHANGED
|
@@ -21,8 +21,8 @@ class Project(pydantic.BaseModel):
|
|
|
21
21
|
|
|
22
22
|
name: str
|
|
23
23
|
id: str = pydantic.Field(description="Unique identifier")
|
|
24
|
-
created_at: typing.Optional[dt.datetime]
|
|
25
|
-
updated_at: typing.Optional[dt.datetime]
|
|
24
|
+
created_at: typing.Optional[dt.datetime] = pydantic.Field(description="Creation datetime")
|
|
25
|
+
updated_at: typing.Optional[dt.datetime] = pydantic.Field(description="Update datetime")
|
|
26
26
|
ad_hoc_eval_dataset_id: typing.Optional[str]
|
|
27
27
|
organization_id: str = pydantic.Field(description="The Organization ID the project is under.")
|
|
28
28
|
is_default: typing.Optional[bool] = pydantic.Field(
|
|
@@ -21,7 +21,7 @@ class PromptMixinPrompts(pydantic.BaseModel):
|
|
|
21
21
|
"""
|
|
22
22
|
|
|
23
23
|
project_id: str = pydantic.Field(description="The ID of the project.")
|
|
24
|
-
id: typing.Optional[str]
|
|
24
|
+
id: typing.Optional[str] = pydantic.Field(description="The ID of the prompt set.")
|
|
25
25
|
name: str = pydantic.Field(description="The name of the prompt set.")
|
|
26
26
|
prompts: typing.List[PromptSpec] = pydantic.Field(description="The prompts.")
|
|
27
27
|
|
llama_cloud/types/prompt_spec.py
CHANGED
|
@@ -19,8 +19,10 @@ class PromptSpec(pydantic.BaseModel):
|
|
|
19
19
|
prompt_key: str = pydantic.Field(description="The key of the prompt in the PromptMixin.")
|
|
20
20
|
prompt_class: str = pydantic.Field(description="The class of the prompt (PromptTemplate or ChatPromptTemplate).")
|
|
21
21
|
prompt_type: str = pydantic.Field(description="The type of prompt.")
|
|
22
|
-
template: typing.Optional[str]
|
|
23
|
-
message_templates: typing.Optional[typing.List[ChatMessage]]
|
|
22
|
+
template: typing.Optional[str] = pydantic.Field(description="The template of the prompt.")
|
|
23
|
+
message_templates: typing.Optional[typing.List[ChatMessage]] = pydantic.Field(
|
|
24
|
+
description="The chat message templates of the prompt."
|
|
25
|
+
)
|
|
24
26
|
|
|
25
27
|
def json(self, **kwargs: typing.Any) -> str:
|
|
26
28
|
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
llama_cloud/types/role.py
CHANGED
|
@@ -21,10 +21,10 @@ class Role(pydantic.BaseModel):
|
|
|
21
21
|
"""
|
|
22
22
|
|
|
23
23
|
id: str = pydantic.Field(description="Unique identifier")
|
|
24
|
-
created_at: typing.Optional[dt.datetime]
|
|
25
|
-
updated_at: typing.Optional[dt.datetime]
|
|
24
|
+
created_at: typing.Optional[dt.datetime] = pydantic.Field(description="Creation datetime")
|
|
25
|
+
updated_at: typing.Optional[dt.datetime] = pydantic.Field(description="Update datetime")
|
|
26
26
|
name: str = pydantic.Field(description="A name for the role.")
|
|
27
|
-
organization_id: typing.Optional[str]
|
|
27
|
+
organization_id: typing.Optional[str] = pydantic.Field(description="The organization's ID.")
|
|
28
28
|
permissions: typing.List[Permission] = pydantic.Field(description="The actual permissions of the role.")
|
|
29
29
|
|
|
30
30
|
def json(self, **kwargs: typing.Any) -> str:
|
|
@@ -28,12 +28,14 @@ class SentenceSplitter(pydantic.BaseModel):
|
|
|
28
28
|
)
|
|
29
29
|
include_prev_next_rel: typing.Optional[bool] = pydantic.Field(description="Include prev/next node relationships.")
|
|
30
30
|
callback_manager: typing.Optional[typing.Any]
|
|
31
|
-
id_func: typing.Optional[str]
|
|
31
|
+
id_func: typing.Optional[str] = pydantic.Field(description="Function to generate node IDs.")
|
|
32
32
|
chunk_size: typing.Optional[int] = pydantic.Field(description="The token chunk size for each chunk.")
|
|
33
33
|
chunk_overlap: typing.Optional[int] = pydantic.Field(description="The token overlap of each chunk when splitting.")
|
|
34
34
|
separator: typing.Optional[str] = pydantic.Field(description="Default separator for splitting into words")
|
|
35
35
|
paragraph_separator: typing.Optional[str] = pydantic.Field(description="Separator between paragraphs.")
|
|
36
|
-
secondary_chunking_regex: typing.Optional[str]
|
|
36
|
+
secondary_chunking_regex: typing.Optional[str] = pydantic.Field(
|
|
37
|
+
description="Backup regex for splitting into sentences."
|
|
38
|
+
)
|
|
37
39
|
class_name: typing.Optional[str]
|
|
38
40
|
|
|
39
41
|
def json(self, **kwargs: typing.Any) -> str:
|
llama_cloud/types/text_node.py
CHANGED
|
@@ -17,7 +17,7 @@ except ImportError:
|
|
|
17
17
|
|
|
18
18
|
class TextNode(pydantic.BaseModel):
|
|
19
19
|
id: typing.Optional[str] = pydantic.Field(alias="id_", description="Unique ID of the node.")
|
|
20
|
-
embedding: typing.Optional[typing.List[float]]
|
|
20
|
+
embedding: typing.Optional[typing.List[float]] = pydantic.Field(description="Embedding of the node.")
|
|
21
21
|
extra_info: typing.Optional[typing.Dict[str, typing.Any]] = pydantic.Field(
|
|
22
22
|
description="A flat dictionary of metadata fields"
|
|
23
23
|
)
|
|
@@ -32,8 +32,8 @@ class TextNode(pydantic.BaseModel):
|
|
|
32
32
|
)
|
|
33
33
|
text: typing.Optional[str] = pydantic.Field(description="Text content of the node.")
|
|
34
34
|
mimetype: typing.Optional[str] = pydantic.Field(description="MIME type of the node content.")
|
|
35
|
-
start_char_idx: typing.Optional[int]
|
|
36
|
-
end_char_idx: typing.Optional[int]
|
|
35
|
+
start_char_idx: typing.Optional[int] = pydantic.Field(description="Start char index of the node.")
|
|
36
|
+
end_char_idx: typing.Optional[int] = pydantic.Field(description="End char index of the node.")
|
|
37
37
|
text_template: typing.Optional[str] = pydantic.Field(
|
|
38
38
|
description="Template for how text is formatted, with {content} and {metadata_str} placeholders."
|
|
39
39
|
)
|
|
@@ -24,7 +24,7 @@ class TokenTextSplitter(pydantic.BaseModel):
|
|
|
24
24
|
)
|
|
25
25
|
include_prev_next_rel: typing.Optional[bool] = pydantic.Field(description="Include prev/next node relationships.")
|
|
26
26
|
callback_manager: typing.Optional[typing.Any]
|
|
27
|
-
id_func: typing.Optional[str]
|
|
27
|
+
id_func: typing.Optional[str] = pydantic.Field(description="Function to generate node IDs.")
|
|
28
28
|
chunk_size: typing.Optional[int] = pydantic.Field(description="The token chunk size for each chunk.")
|
|
29
29
|
chunk_overlap: typing.Optional[int] = pydantic.Field(description="The token overlap of each chunk when splitting.")
|
|
30
30
|
separator: typing.Optional[str] = pydantic.Field(description="Default separator for splitting into words")
|
|
@@ -0,0 +1,41 @@
|
|
|
1
|
+
# This file was auto-generated by Fern from our API Definition.
|
|
2
|
+
|
|
3
|
+
import datetime as dt
|
|
4
|
+
import typing
|
|
5
|
+
|
|
6
|
+
from ..core.datetime_utils import serialize_datetime
|
|
7
|
+
|
|
8
|
+
try:
|
|
9
|
+
import pydantic
|
|
10
|
+
if pydantic.__version__.startswith("1."):
|
|
11
|
+
raise ImportError
|
|
12
|
+
import pydantic.v1 as pydantic # type: ignore
|
|
13
|
+
except ImportError:
|
|
14
|
+
import pydantic # type: ignore
|
|
15
|
+
|
|
16
|
+
|
|
17
|
+
class Usage(pydantic.BaseModel):
|
|
18
|
+
"""
|
|
19
|
+
Response model; use UsageSubmission for tracking
|
|
20
|
+
"""
|
|
21
|
+
|
|
22
|
+
total_users: typing.Optional[int]
|
|
23
|
+
total_indexes: typing.Optional[int]
|
|
24
|
+
total_indexed_pages: typing.Optional[int]
|
|
25
|
+
extract_pages: typing.Optional[int]
|
|
26
|
+
parse_pages: typing.Optional[int]
|
|
27
|
+
index_pages: typing.Optional[int]
|
|
28
|
+
credits: typing.Optional[int]
|
|
29
|
+
|
|
30
|
+
def json(self, **kwargs: typing.Any) -> str:
|
|
31
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
32
|
+
return super().json(**kwargs_with_defaults)
|
|
33
|
+
|
|
34
|
+
def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
|
|
35
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
36
|
+
return super().dict(**kwargs_with_defaults)
|
|
37
|
+
|
|
38
|
+
class Config:
|
|
39
|
+
frozen = True
|
|
40
|
+
smart_union = True
|
|
41
|
+
json_encoders = {dt.datetime: serialize_datetime}
|
|
@@ -21,16 +21,20 @@ class UserOrganization(pydantic.BaseModel):
|
|
|
21
21
|
"""
|
|
22
22
|
|
|
23
23
|
id: str = pydantic.Field(description="Unique identifier")
|
|
24
|
-
created_at: typing.Optional[dt.datetime]
|
|
25
|
-
updated_at: typing.Optional[dt.datetime]
|
|
24
|
+
created_at: typing.Optional[dt.datetime] = pydantic.Field(description="Creation datetime")
|
|
25
|
+
updated_at: typing.Optional[dt.datetime] = pydantic.Field(description="Update datetime")
|
|
26
26
|
email: str = pydantic.Field(description="The user's email address.")
|
|
27
|
-
user_id: typing.Optional[str]
|
|
27
|
+
user_id: typing.Optional[str] = pydantic.Field(description="The user's ID.")
|
|
28
28
|
organization_id: str = pydantic.Field(description="The organization's ID.")
|
|
29
29
|
pending: typing.Optional[bool] = pydantic.Field(
|
|
30
30
|
description="Whether the user's membership is pending account signup."
|
|
31
31
|
)
|
|
32
|
-
invited_by_user_id: typing.Optional[str]
|
|
33
|
-
|
|
32
|
+
invited_by_user_id: typing.Optional[str] = pydantic.Field(
|
|
33
|
+
description="The user ID of the user who added the user to the organization."
|
|
34
|
+
)
|
|
35
|
+
invited_by_user_email: typing.Optional[str] = pydantic.Field(
|
|
36
|
+
description="The email address of the user who added the user to the organization."
|
|
37
|
+
)
|
|
34
38
|
roles: typing.List[UserOrganizationRole] = pydantic.Field(description="The roles of the user in the organization.")
|
|
35
39
|
|
|
36
40
|
def json(self, **kwargs: typing.Any) -> str:
|
|
@@ -19,10 +19,10 @@ class UserOrganizationCreate(pydantic.BaseModel):
|
|
|
19
19
|
Schema for creating a user's membership to an organization.
|
|
20
20
|
"""
|
|
21
21
|
|
|
22
|
-
user_id: typing.Optional[str]
|
|
23
|
-
email: typing.Optional[str]
|
|
24
|
-
project_ids: typing.Optional[typing.List[str]]
|
|
25
|
-
role_id: typing.Optional[str]
|
|
22
|
+
user_id: typing.Optional[str] = pydantic.Field(description="The user's ID.")
|
|
23
|
+
email: typing.Optional[str] = pydantic.Field(description="The user's email address.")
|
|
24
|
+
project_ids: typing.Optional[typing.List[str]] = pydantic.Field(description="The project IDs to add the user to.")
|
|
25
|
+
role_id: typing.Optional[str] = pydantic.Field(description="The role ID to assign to the user.")
|
|
26
26
|
|
|
27
27
|
def json(self, **kwargs: typing.Any) -> str:
|
|
28
28
|
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
@@ -19,8 +19,8 @@ class UserOrganizationDelete(pydantic.BaseModel):
|
|
|
19
19
|
Schema for deleting a user's membership to an organization.
|
|
20
20
|
"""
|
|
21
21
|
|
|
22
|
-
user_id: typing.Optional[str]
|
|
23
|
-
email: typing.Optional[str]
|
|
22
|
+
user_id: typing.Optional[str] = pydantic.Field(description="The user's ID.")
|
|
23
|
+
email: typing.Optional[str] = pydantic.Field(description="The user's email address.")
|
|
24
24
|
|
|
25
25
|
def json(self, **kwargs: typing.Any) -> str:
|
|
26
26
|
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
@@ -21,8 +21,8 @@ class UserOrganizationRole(pydantic.BaseModel):
|
|
|
21
21
|
"""
|
|
22
22
|
|
|
23
23
|
id: str = pydantic.Field(description="Unique identifier")
|
|
24
|
-
created_at: typing.Optional[dt.datetime]
|
|
25
|
-
updated_at: typing.Optional[dt.datetime]
|
|
24
|
+
created_at: typing.Optional[dt.datetime] = pydantic.Field(description="Creation datetime")
|
|
25
|
+
updated_at: typing.Optional[dt.datetime] = pydantic.Field(description="Update datetime")
|
|
26
26
|
user_id: str = pydantic.Field(description="The user's ID.")
|
|
27
27
|
organization_id: str = pydantic.Field(description="The organization's ID.")
|
|
28
28
|
role_id: str = pydantic.Field(description="The role's ID.")
|
|
@@ -18,17 +18,21 @@ except ImportError:
|
|
|
18
18
|
class VertexTextEmbedding(pydantic.BaseModel):
|
|
19
19
|
model_name: typing.Optional[str] = pydantic.Field(description="The modelId of the VertexAI model to use.")
|
|
20
20
|
embed_batch_size: typing.Optional[int] = pydantic.Field(description="The batch size for embedding calls.")
|
|
21
|
-
num_workers: typing.Optional[int]
|
|
21
|
+
num_workers: typing.Optional[int] = pydantic.Field(
|
|
22
|
+
description="The number of workers to use for async embedding calls."
|
|
23
|
+
)
|
|
22
24
|
location: str = pydantic.Field(description="The default location to use when making API calls.")
|
|
23
25
|
project: str = pydantic.Field(description="The default GCP project to use when making Vertex API calls.")
|
|
24
26
|
embed_mode: typing.Optional[VertexEmbeddingMode] = pydantic.Field(description="The embedding mode to use.")
|
|
25
27
|
additional_kwargs: typing.Optional[typing.Dict[str, typing.Any]] = pydantic.Field(
|
|
26
28
|
description="Additional kwargs for the Vertex."
|
|
27
29
|
)
|
|
28
|
-
client_email: typing.Optional[str]
|
|
29
|
-
token_uri: typing.Optional[str]
|
|
30
|
-
private_key_id: typing.Optional[str]
|
|
31
|
-
|
|
30
|
+
client_email: typing.Optional[str] = pydantic.Field(description="The client email for the VertexAI credentials.")
|
|
31
|
+
token_uri: typing.Optional[str] = pydantic.Field(description="The token URI for the VertexAI credentials.")
|
|
32
|
+
private_key_id: typing.Optional[str] = pydantic.Field(
|
|
33
|
+
description="The private key ID for the VertexAI credentials."
|
|
34
|
+
)
|
|
35
|
+
private_key: typing.Optional[str] = pydantic.Field(description="The private key for the VertexAI credentials.")
|
|
32
36
|
class_name: typing.Optional[str]
|
|
33
37
|
|
|
34
38
|
def json(self, **kwargs: typing.Any) -> str:
|