llama-cloud 0.1.41__py3-none-any.whl → 0.1.42__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of llama-cloud might be problematic. Click here for more details.

@@ -228,6 +228,11 @@ class ParsingClient:
228
228
  high_res_ocr: bool,
229
229
  html_make_all_elements_visible: bool,
230
230
  layout_aware: bool,
231
+ specialized_chart_parsing_agentic: bool,
232
+ specialized_chart_parsing_plus: bool,
233
+ specialized_chart_parsing_efficient: bool,
234
+ specialized_image_parsing: bool,
235
+ precise_bounding_box: bool,
231
236
  html_remove_fixed_elements: bool,
232
237
  html_remove_navigation_elements: bool,
233
238
  http_proxy: str,
@@ -250,6 +255,8 @@ class ParsingClient:
250
255
  preserve_very_small_text: bool,
251
256
  skip_diagonal_text: bool,
252
257
  spreadsheet_extract_sub_tables: bool,
258
+ spreadsheet_force_formula_computation: bool,
259
+ inline_images_in_markdown: bool,
253
260
  structured_output: bool,
254
261
  structured_output_json_schema: str,
255
262
  structured_output_json_schema_name: str,
@@ -360,6 +367,16 @@ class ParsingClient:
360
367
 
361
368
  - layout_aware: bool.
362
369
 
370
+ - specialized_chart_parsing_agentic: bool.
371
+
372
+ - specialized_chart_parsing_plus: bool.
373
+
374
+ - specialized_chart_parsing_efficient: bool.
375
+
376
+ - specialized_image_parsing: bool.
377
+
378
+ - precise_bounding_box: bool.
379
+
363
380
  - html_remove_fixed_elements: bool.
364
381
 
365
382
  - html_remove_navigation_elements: bool.
@@ -404,6 +421,10 @@ class ParsingClient:
404
421
 
405
422
  - spreadsheet_extract_sub_tables: bool.
406
423
 
424
+ - spreadsheet_force_formula_computation: bool.
425
+
426
+ - inline_images_in_markdown: bool.
427
+
407
428
  - structured_output: bool.
408
429
 
409
430
  - structured_output_json_schema: str.
@@ -526,6 +547,11 @@ class ParsingClient:
526
547
  "high_res_ocr": high_res_ocr,
527
548
  "html_make_all_elements_visible": html_make_all_elements_visible,
528
549
  "layout_aware": layout_aware,
550
+ "specialized_chart_parsing_agentic": specialized_chart_parsing_agentic,
551
+ "specialized_chart_parsing_plus": specialized_chart_parsing_plus,
552
+ "specialized_chart_parsing_efficient": specialized_chart_parsing_efficient,
553
+ "specialized_image_parsing": specialized_image_parsing,
554
+ "precise_bounding_box": precise_bounding_box,
529
555
  "html_remove_fixed_elements": html_remove_fixed_elements,
530
556
  "html_remove_navigation_elements": html_remove_navigation_elements,
531
557
  "http_proxy": http_proxy,
@@ -547,6 +573,8 @@ class ParsingClient:
547
573
  "preserve_very_small_text": preserve_very_small_text,
548
574
  "skip_diagonal_text": skip_diagonal_text,
549
575
  "spreadsheet_extract_sub_tables": spreadsheet_extract_sub_tables,
576
+ "spreadsheet_force_formula_computation": spreadsheet_force_formula_computation,
577
+ "inline_images_in_markdown": inline_images_in_markdown,
550
578
  "structured_output": structured_output,
551
579
  "structured_output_json_schema": structured_output_json_schema,
552
580
  "structured_output_json_schema_name": structured_output_json_schema_name,
@@ -1404,6 +1432,11 @@ class AsyncParsingClient:
1404
1432
  high_res_ocr: bool,
1405
1433
  html_make_all_elements_visible: bool,
1406
1434
  layout_aware: bool,
1435
+ specialized_chart_parsing_agentic: bool,
1436
+ specialized_chart_parsing_plus: bool,
1437
+ specialized_chart_parsing_efficient: bool,
1438
+ specialized_image_parsing: bool,
1439
+ precise_bounding_box: bool,
1407
1440
  html_remove_fixed_elements: bool,
1408
1441
  html_remove_navigation_elements: bool,
1409
1442
  http_proxy: str,
@@ -1426,6 +1459,8 @@ class AsyncParsingClient:
1426
1459
  preserve_very_small_text: bool,
1427
1460
  skip_diagonal_text: bool,
1428
1461
  spreadsheet_extract_sub_tables: bool,
1462
+ spreadsheet_force_formula_computation: bool,
1463
+ inline_images_in_markdown: bool,
1429
1464
  structured_output: bool,
1430
1465
  structured_output_json_schema: str,
1431
1466
  structured_output_json_schema_name: str,
@@ -1536,6 +1571,16 @@ class AsyncParsingClient:
1536
1571
 
1537
1572
  - layout_aware: bool.
1538
1573
 
1574
+ - specialized_chart_parsing_agentic: bool.
1575
+
1576
+ - specialized_chart_parsing_plus: bool.
1577
+
1578
+ - specialized_chart_parsing_efficient: bool.
1579
+
1580
+ - specialized_image_parsing: bool.
1581
+
1582
+ - precise_bounding_box: bool.
1583
+
1539
1584
  - html_remove_fixed_elements: bool.
1540
1585
 
1541
1586
  - html_remove_navigation_elements: bool.
@@ -1580,6 +1625,10 @@ class AsyncParsingClient:
1580
1625
 
1581
1626
  - spreadsheet_extract_sub_tables: bool.
1582
1627
 
1628
+ - spreadsheet_force_formula_computation: bool.
1629
+
1630
+ - inline_images_in_markdown: bool.
1631
+
1583
1632
  - structured_output: bool.
1584
1633
 
1585
1634
  - structured_output_json_schema: str.
@@ -1702,6 +1751,11 @@ class AsyncParsingClient:
1702
1751
  "high_res_ocr": high_res_ocr,
1703
1752
  "html_make_all_elements_visible": html_make_all_elements_visible,
1704
1753
  "layout_aware": layout_aware,
1754
+ "specialized_chart_parsing_agentic": specialized_chart_parsing_agentic,
1755
+ "specialized_chart_parsing_plus": specialized_chart_parsing_plus,
1756
+ "specialized_chart_parsing_efficient": specialized_chart_parsing_efficient,
1757
+ "specialized_image_parsing": specialized_image_parsing,
1758
+ "precise_bounding_box": precise_bounding_box,
1705
1759
  "html_remove_fixed_elements": html_remove_fixed_elements,
1706
1760
  "html_remove_navigation_elements": html_remove_navigation_elements,
1707
1761
  "http_proxy": http_proxy,
@@ -1723,6 +1777,8 @@ class AsyncParsingClient:
1723
1777
  "preserve_very_small_text": preserve_very_small_text,
1724
1778
  "skip_diagonal_text": skip_diagonal_text,
1725
1779
  "spreadsheet_extract_sub_tables": spreadsheet_extract_sub_tables,
1780
+ "spreadsheet_force_formula_computation": spreadsheet_force_formula_computation,
1781
+ "inline_images_in_markdown": inline_images_in_markdown,
1726
1782
  "structured_output": structured_output,
1727
1783
  "structured_output_json_schema": structured_output_json_schema,
1728
1784
  "structured_output_json_schema_name": structured_output_json_schema_name,
@@ -1706,6 +1706,44 @@ class PipelinesClient:
1706
1706
  raise ApiError(status_code=_response.status_code, body=_response.text)
1707
1707
  raise ApiError(status_code=_response.status_code, body=_response_json)
1708
1708
 
1709
+ def sync_pipeline_document(self, document_id: str, pipeline_id: str) -> typing.Any:
1710
+ """
1711
+ Sync a specific document for a pipeline.
1712
+
1713
+ Parameters:
1714
+ - document_id: str.
1715
+
1716
+ - pipeline_id: str.
1717
+ ---
1718
+ from llama_cloud.client import LlamaCloud
1719
+
1720
+ client = LlamaCloud(
1721
+ token="YOUR_TOKEN",
1722
+ )
1723
+ client.pipelines.sync_pipeline_document(
1724
+ document_id="string",
1725
+ pipeline_id="string",
1726
+ )
1727
+ """
1728
+ _response = self._client_wrapper.httpx_client.request(
1729
+ "POST",
1730
+ urllib.parse.urljoin(
1731
+ f"{self._client_wrapper.get_base_url()}/",
1732
+ f"api/v1/pipelines/{pipeline_id}/documents/{document_id}/sync",
1733
+ ),
1734
+ headers=self._client_wrapper.get_headers(),
1735
+ timeout=60,
1736
+ )
1737
+ if 200 <= _response.status_code < 300:
1738
+ return pydantic.parse_obj_as(typing.Any, _response.json()) # type: ignore
1739
+ if _response.status_code == 422:
1740
+ raise UnprocessableEntityError(pydantic.parse_obj_as(HttpValidationError, _response.json())) # type: ignore
1741
+ try:
1742
+ _response_json = _response.json()
1743
+ except JSONDecodeError:
1744
+ raise ApiError(status_code=_response.status_code, body=_response.text)
1745
+ raise ApiError(status_code=_response.status_code, body=_response_json)
1746
+
1709
1747
  def list_pipeline_document_chunks(self, document_id: str, pipeline_id: str) -> typing.List[TextNode]:
1710
1748
  """
1711
1749
  Return a list of chunks for a pipeline document.
@@ -1744,6 +1782,50 @@ class PipelinesClient:
1744
1782
  raise ApiError(status_code=_response.status_code, body=_response.text)
1745
1783
  raise ApiError(status_code=_response.status_code, body=_response_json)
1746
1784
 
1785
+ def force_sync_all_pipeline_documents(
1786
+ self, pipeline_id: str, *, batch_size: typing.Optional[int] = None, only_failed: typing.Optional[bool] = None
1787
+ ) -> None:
1788
+ """
1789
+ Force sync all documents in a pipeline by batching document ingestion jobs.
1790
+
1791
+ - Iterates all document refs for the pipeline
1792
+ - Enqueues document ingestion jobs in batches of `batch_size`
1793
+
1794
+ Parameters:
1795
+ - pipeline_id: str.
1796
+
1797
+ - batch_size: typing.Optional[int].
1798
+
1799
+ - only_failed: typing.Optional[bool]. Only sync retriable documents (failed/cancelled/not-started/stalled-in-progress)
1800
+ ---
1801
+ from llama_cloud.client import LlamaCloud
1802
+
1803
+ client = LlamaCloud(
1804
+ token="YOUR_TOKEN",
1805
+ )
1806
+ client.pipelines.force_sync_all_pipeline_documents(
1807
+ pipeline_id="string",
1808
+ )
1809
+ """
1810
+ _response = self._client_wrapper.httpx_client.request(
1811
+ "POST",
1812
+ urllib.parse.urljoin(
1813
+ f"{self._client_wrapper.get_base_url()}/", f"api/v1/pipelines/{pipeline_id}/documents/force-sync-all"
1814
+ ),
1815
+ params=remove_none_from_dict({"batch_size": batch_size, "only_failed": only_failed}),
1816
+ headers=self._client_wrapper.get_headers(),
1817
+ timeout=60,
1818
+ )
1819
+ if 200 <= _response.status_code < 300:
1820
+ return
1821
+ if _response.status_code == 422:
1822
+ raise UnprocessableEntityError(pydantic.parse_obj_as(HttpValidationError, _response.json())) # type: ignore
1823
+ try:
1824
+ _response_json = _response.json()
1825
+ except JSONDecodeError:
1826
+ raise ApiError(status_code=_response.status_code, body=_response.text)
1827
+ raise ApiError(status_code=_response.status_code, body=_response_json)
1828
+
1747
1829
 
1748
1830
  class AsyncPipelinesClient:
1749
1831
  def __init__(self, *, client_wrapper: AsyncClientWrapper):
@@ -3397,6 +3479,44 @@ class AsyncPipelinesClient:
3397
3479
  raise ApiError(status_code=_response.status_code, body=_response.text)
3398
3480
  raise ApiError(status_code=_response.status_code, body=_response_json)
3399
3481
 
3482
+ async def sync_pipeline_document(self, document_id: str, pipeline_id: str) -> typing.Any:
3483
+ """
3484
+ Sync a specific document for a pipeline.
3485
+
3486
+ Parameters:
3487
+ - document_id: str.
3488
+
3489
+ - pipeline_id: str.
3490
+ ---
3491
+ from llama_cloud.client import AsyncLlamaCloud
3492
+
3493
+ client = AsyncLlamaCloud(
3494
+ token="YOUR_TOKEN",
3495
+ )
3496
+ await client.pipelines.sync_pipeline_document(
3497
+ document_id="string",
3498
+ pipeline_id="string",
3499
+ )
3500
+ """
3501
+ _response = await self._client_wrapper.httpx_client.request(
3502
+ "POST",
3503
+ urllib.parse.urljoin(
3504
+ f"{self._client_wrapper.get_base_url()}/",
3505
+ f"api/v1/pipelines/{pipeline_id}/documents/{document_id}/sync",
3506
+ ),
3507
+ headers=self._client_wrapper.get_headers(),
3508
+ timeout=60,
3509
+ )
3510
+ if 200 <= _response.status_code < 300:
3511
+ return pydantic.parse_obj_as(typing.Any, _response.json()) # type: ignore
3512
+ if _response.status_code == 422:
3513
+ raise UnprocessableEntityError(pydantic.parse_obj_as(HttpValidationError, _response.json())) # type: ignore
3514
+ try:
3515
+ _response_json = _response.json()
3516
+ except JSONDecodeError:
3517
+ raise ApiError(status_code=_response.status_code, body=_response.text)
3518
+ raise ApiError(status_code=_response.status_code, body=_response_json)
3519
+
3400
3520
  async def list_pipeline_document_chunks(self, document_id: str, pipeline_id: str) -> typing.List[TextNode]:
3401
3521
  """
3402
3522
  Return a list of chunks for a pipeline document.
@@ -3434,3 +3554,47 @@ class AsyncPipelinesClient:
3434
3554
  except JSONDecodeError:
3435
3555
  raise ApiError(status_code=_response.status_code, body=_response.text)
3436
3556
  raise ApiError(status_code=_response.status_code, body=_response_json)
3557
+
3558
+ async def force_sync_all_pipeline_documents(
3559
+ self, pipeline_id: str, *, batch_size: typing.Optional[int] = None, only_failed: typing.Optional[bool] = None
3560
+ ) -> None:
3561
+ """
3562
+ Force sync all documents in a pipeline by batching document ingestion jobs.
3563
+
3564
+ - Iterates all document refs for the pipeline
3565
+ - Enqueues document ingestion jobs in batches of `batch_size`
3566
+
3567
+ Parameters:
3568
+ - pipeline_id: str.
3569
+
3570
+ - batch_size: typing.Optional[int].
3571
+
3572
+ - only_failed: typing.Optional[bool]. Only sync retriable documents (failed/cancelled/not-started/stalled-in-progress)
3573
+ ---
3574
+ from llama_cloud.client import AsyncLlamaCloud
3575
+
3576
+ client = AsyncLlamaCloud(
3577
+ token="YOUR_TOKEN",
3578
+ )
3579
+ await client.pipelines.force_sync_all_pipeline_documents(
3580
+ pipeline_id="string",
3581
+ )
3582
+ """
3583
+ _response = await self._client_wrapper.httpx_client.request(
3584
+ "POST",
3585
+ urllib.parse.urljoin(
3586
+ f"{self._client_wrapper.get_base_url()}/", f"api/v1/pipelines/{pipeline_id}/documents/force-sync-all"
3587
+ ),
3588
+ params=remove_none_from_dict({"batch_size": batch_size, "only_failed": only_failed}),
3589
+ headers=self._client_wrapper.get_headers(),
3590
+ timeout=60,
3591
+ )
3592
+ if 200 <= _response.status_code < 300:
3593
+ return
3594
+ if _response.status_code == 422:
3595
+ raise UnprocessableEntityError(pydantic.parse_obj_as(HttpValidationError, _response.json())) # type: ignore
3596
+ try:
3597
+ _response_json = _response.json()
3598
+ except JSONDecodeError:
3599
+ raise ApiError(status_code=_response.status_code, body=_response.text)
3600
+ raise ApiError(status_code=_response.status_code, body=_response_json)
@@ -19,6 +19,9 @@ from .agent_data import AgentData
19
19
  from .agent_deployment_list import AgentDeploymentList
20
20
  from .agent_deployment_summary import AgentDeploymentSummary
21
21
  from .aggregate_group import AggregateGroup
22
+ from .api_key import ApiKey
23
+ from .api_key_query_response import ApiKeyQueryResponse
24
+ from .api_key_type import ApiKeyType
22
25
  from .auto_transform_config import AutoTransformConfig
23
26
  from .azure_open_ai_embedding import AzureOpenAiEmbedding
24
27
  from .azure_open_ai_embedding_config import AzureOpenAiEmbeddingConfig
@@ -388,6 +391,9 @@ __all__ = [
388
391
  "AgentDeploymentList",
389
392
  "AgentDeploymentSummary",
390
393
  "AggregateGroup",
394
+ "ApiKey",
395
+ "ApiKeyQueryResponse",
396
+ "ApiKeyType",
391
397
  "AutoTransformConfig",
392
398
  "AzureOpenAiEmbedding",
393
399
  "AzureOpenAiEmbeddingConfig",
@@ -20,7 +20,7 @@ class AgentData(pydantic.BaseModel):
20
20
  """
21
21
 
22
22
  id: typing.Optional[str]
23
- agent_slug: str
23
+ deployment_name: str
24
24
  collection: typing.Optional[str]
25
25
  data: typing.Dict[str, typing.Any]
26
26
  created_at: typing.Optional[dt.datetime]
@@ -17,10 +17,9 @@ except ImportError:
17
17
  class AgentDeploymentSummary(pydantic.BaseModel):
18
18
  id: str = pydantic.Field(description="Deployment ID. Prefixed with dpl-")
19
19
  project_id: str = pydantic.Field(description="Project ID")
20
- agent_slug: str = pydantic.Field(description="readable ID of the deployed app")
20
+ deployment_name: str = pydantic.Field(description="Identifier of the deployed app")
21
21
  thumbnail_url: typing.Optional[str]
22
22
  base_url: str = pydantic.Field(description="Base URL of the deployed app")
23
- display_name: str = pydantic.Field(description="Display name of the deployed app")
24
23
  created_at: dt.datetime = pydantic.Field(description="Timestamp when the app deployment was created")
25
24
  updated_at: dt.datetime = pydantic.Field(description="Timestamp when the app deployment was last updated")
26
25
  api_key_id: typing.Optional[str]
@@ -0,0 +1,43 @@
1
+ # This file was auto-generated by Fern from our API Definition.
2
+
3
+ import datetime as dt
4
+ import typing
5
+
6
+ from ..core.datetime_utils import serialize_datetime
7
+ from .api_key_type import ApiKeyType
8
+
9
+ try:
10
+ import pydantic
11
+ if pydantic.__version__.startswith("1."):
12
+ raise ImportError
13
+ import pydantic.v1 as pydantic # type: ignore
14
+ except ImportError:
15
+ import pydantic # type: ignore
16
+
17
+
18
+ class ApiKey(pydantic.BaseModel):
19
+ """
20
+ Schema for an API Key.
21
+ """
22
+
23
+ id: str = pydantic.Field(description="Unique identifier")
24
+ created_at: typing.Optional[dt.datetime]
25
+ updated_at: typing.Optional[dt.datetime]
26
+ name: typing.Optional[str]
27
+ project_id: typing.Optional[str]
28
+ key_type: typing.Optional[ApiKeyType]
29
+ user_id: str
30
+ redacted_api_key: str
31
+
32
+ def json(self, **kwargs: typing.Any) -> str:
33
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
34
+ return super().json(**kwargs_with_defaults)
35
+
36
+ def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
37
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
38
+ return super().dict(**kwargs_with_defaults)
39
+
40
+ class Config:
41
+ frozen = True
42
+ smart_union = True
43
+ json_encoders = {dt.datetime: serialize_datetime}
@@ -0,0 +1,38 @@
1
+ # This file was auto-generated by Fern from our API Definition.
2
+
3
+ import datetime as dt
4
+ import typing
5
+
6
+ from ..core.datetime_utils import serialize_datetime
7
+ from .api_key import ApiKey
8
+
9
+ try:
10
+ import pydantic
11
+ if pydantic.__version__.startswith("1."):
12
+ raise ImportError
13
+ import pydantic.v1 as pydantic # type: ignore
14
+ except ImportError:
15
+ import pydantic # type: ignore
16
+
17
+
18
+ class ApiKeyQueryResponse(pydantic.BaseModel):
19
+ """
20
+ Response schema for paginated API key queries.
21
+ """
22
+
23
+ items: typing.List[ApiKey] = pydantic.Field(description="The list of items.")
24
+ next_page_token: typing.Optional[str]
25
+ total_size: typing.Optional[int]
26
+
27
+ def json(self, **kwargs: typing.Any) -> str:
28
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
29
+ return super().json(**kwargs_with_defaults)
30
+
31
+ def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
32
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
33
+ return super().dict(**kwargs_with_defaults)
34
+
35
+ class Config:
36
+ frozen = True
37
+ smart_union = True
38
+ json_encoders = {dt.datetime: serialize_datetime}
@@ -0,0 +1,17 @@
1
+ # This file was auto-generated by Fern from our API Definition.
2
+
3
+ import enum
4
+ import typing
5
+
6
+ T_Result = typing.TypeVar("T_Result")
7
+
8
+
9
+ class ApiKeyType(str, enum.Enum):
10
+ USER = "user"
11
+ AGENT = "agent"
12
+
13
+ def visit(self, user: typing.Callable[[], T_Result], agent: typing.Callable[[], T_Result]) -> T_Result:
14
+ if self is ApiKeyType.USER:
15
+ return user()
16
+ if self is ApiKeyType.AGENT:
17
+ return agent()
@@ -59,6 +59,9 @@ class LegacyParseJobConfig(pydantic.BaseModel):
59
59
  alias="doNotUnrollColumns", description="Whether to unroll columns."
60
60
  )
61
61
  spread_sheet_extract_sub_tables: typing.Optional[bool] = pydantic.Field(alias="spreadSheetExtractSubTables")
62
+ spread_sheet_force_formula_computation: typing.Optional[bool] = pydantic.Field(
63
+ alias="spreadSheetForceFormulaComputation"
64
+ )
62
65
  extract_layout: typing.Optional[bool] = pydantic.Field(alias="extractLayout")
63
66
  high_res_ocr: typing.Optional[bool] = pydantic.Field(alias="highResOcr")
64
67
  html_make_all_elements_visible: typing.Optional[bool] = pydantic.Field(alias="htmlMakeAllElementsVisible")
@@ -50,6 +50,11 @@ class LlamaParseParameters(pydantic.BaseModel):
50
50
  high_res_ocr: typing.Optional[bool]
51
51
  html_make_all_elements_visible: typing.Optional[bool]
52
52
  layout_aware: typing.Optional[bool]
53
+ specialized_chart_parsing_agentic: typing.Optional[bool]
54
+ specialized_chart_parsing_plus: typing.Optional[bool]
55
+ specialized_chart_parsing_efficient: typing.Optional[bool]
56
+ specialized_image_parsing: typing.Optional[bool]
57
+ precise_bounding_box: typing.Optional[bool]
53
58
  html_remove_navigation_elements: typing.Optional[bool]
54
59
  html_remove_fixed_elements: typing.Optional[bool]
55
60
  guess_xlsx_sheet_name: typing.Optional[bool]
@@ -99,6 +104,8 @@ class LlamaParseParameters(pydantic.BaseModel):
99
104
  complemental_formatting_instruction: typing.Optional[str]
100
105
  content_guideline_instruction: typing.Optional[str]
101
106
  spreadsheet_extract_sub_tables: typing.Optional[bool]
107
+ spreadsheet_force_formula_computation: typing.Optional[bool]
108
+ inline_images_in_markdown: typing.Optional[bool]
102
109
  job_timeout_in_seconds: typing.Optional[float]
103
110
  job_timeout_extra_time_per_page_in_seconds: typing.Optional[float]
104
111
  strict_mode_image_extraction: typing.Optional[bool]
@@ -28,6 +28,7 @@ class Organization(pydantic.BaseModel):
28
28
  parse_plan_level: typing.Optional[ParsePlanLevel] = pydantic.Field(
29
29
  description="Whether the organization is a Parse Premium customer."
30
30
  )
31
+ feature_flags: typing.Optional[typing.Dict[str, typing.Any]]
31
32
 
32
33
  def json(self, **kwargs: typing.Any) -> str:
33
34
  kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
@@ -52,6 +52,11 @@ class ParseJobConfig(pydantic.BaseModel):
52
52
  high_res_ocr: typing.Optional[bool]
53
53
  html_make_all_elements_visible: typing.Optional[bool]
54
54
  layout_aware: typing.Optional[bool]
55
+ specialized_chart_parsing_agentic: typing.Optional[bool]
56
+ specialized_chart_parsing_plus: typing.Optional[bool]
57
+ specialized_chart_parsing_efficient: typing.Optional[bool]
58
+ specialized_image_parsing: typing.Optional[bool]
59
+ precise_bounding_box: typing.Optional[bool]
55
60
  html_remove_navigation_elements: typing.Optional[bool]
56
61
  html_remove_fixed_elements: typing.Optional[bool]
57
62
  guess_xlsx_sheet_name: typing.Optional[bool]
@@ -101,6 +106,8 @@ class ParseJobConfig(pydantic.BaseModel):
101
106
  complemental_formatting_instruction: typing.Optional[str]
102
107
  content_guideline_instruction: typing.Optional[str]
103
108
  spreadsheet_extract_sub_tables: typing.Optional[bool]
109
+ spreadsheet_force_formula_computation: typing.Optional[bool]
110
+ inline_images_in_markdown: typing.Optional[bool]
104
111
  job_timeout_in_seconds: typing.Optional[float]
105
112
  job_timeout_extra_time_per_page_in_seconds: typing.Optional[float]
106
113
  strict_mode_image_extraction: typing.Optional[bool]
@@ -15,6 +15,7 @@ class QuotaConfigurationConfigurationType(str, enum.Enum):
15
15
  RATE_LIMIT_PARSE_CONCURRENT_DEFAULT = "rate_limit_parse_concurrent_default"
16
16
  RATE_LIMIT_CONCURRENT_JOBS_IN_EXECUTION_DEFAULT = "rate_limit_concurrent_jobs_in_execution_default"
17
17
  RATE_LIMIT_CONCURRENT_JOBS_IN_EXECUTION_DOC_INGEST = "rate_limit_concurrent_jobs_in_execution_doc_ingest"
18
+ LIMIT_EMBEDDING_CHARACTER = "limit_embedding_character"
18
19
 
19
20
  def visit(
20
21
  self,
@@ -22,6 +23,7 @@ class QuotaConfigurationConfigurationType(str, enum.Enum):
22
23
  rate_limit_parse_concurrent_default: typing.Callable[[], T_Result],
23
24
  rate_limit_concurrent_jobs_in_execution_default: typing.Callable[[], T_Result],
24
25
  rate_limit_concurrent_jobs_in_execution_doc_ingest: typing.Callable[[], T_Result],
26
+ limit_embedding_character: typing.Callable[[], T_Result],
25
27
  ) -> T_Result:
26
28
  if self is QuotaConfigurationConfigurationType.RATE_LIMIT_PARSE_CONCURRENT_PREMIUM:
27
29
  return rate_limit_parse_concurrent_premium()
@@ -31,3 +33,5 @@ class QuotaConfigurationConfigurationType(str, enum.Enum):
31
33
  return rate_limit_concurrent_jobs_in_execution_default()
32
34
  if self is QuotaConfigurationConfigurationType.RATE_LIMIT_CONCURRENT_JOBS_IN_EXECUTION_DOC_INGEST:
33
35
  return rate_limit_concurrent_jobs_in_execution_doc_ingest()
36
+ if self is QuotaConfigurationConfigurationType.LIMIT_EMBEDDING_CHARACTER:
37
+ return limit_embedding_character()
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.3
2
2
  Name: llama-cloud
3
- Version: 0.1.41
3
+ Version: 0.1.42
4
4
  Summary:
5
5
  License: MIT
6
6
  Author: Logan Markewich