llama-cloud 0.1.38__py3-none-any.whl → 0.1.40__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of llama-cloud might be problematic. Click here for more details.
- llama_cloud/__init__.py +12 -0
- llama_cloud/resources/admin/client.py +5 -5
- llama_cloud/resources/alpha/client.py +2 -8
- llama_cloud/resources/beta/client.py +30 -126
- llama_cloud/resources/chat_apps/client.py +8 -32
- llama_cloud/resources/classifier/client.py +8 -32
- llama_cloud/resources/data_sinks/client.py +8 -32
- llama_cloud/resources/data_sources/client.py +8 -32
- llama_cloud/resources/embedding_model_configs/client.py +12 -48
- llama_cloud/resources/files/client.py +42 -176
- llama_cloud/resources/jobs/client.py +2 -8
- llama_cloud/resources/llama_extract/client.py +40 -138
- llama_cloud/resources/organizations/client.py +4 -18
- llama_cloud/resources/parsing/client.py +12 -16
- llama_cloud/resources/pipelines/client.py +45 -32
- llama_cloud/resources/projects/client.py +18 -78
- llama_cloud/resources/reports/client.py +30 -126
- llama_cloud/resources/retrievers/client.py +12 -48
- llama_cloud/types/__init__.py +12 -0
- llama_cloud/types/extract_job_create.py +2 -0
- llama_cloud/types/extract_job_create_priority.py +29 -0
- llama_cloud/types/file.py +1 -1
- llama_cloud/types/job_names.py +0 -4
- llama_cloud/types/llama_extract_feature_availability.py +34 -0
- llama_cloud/types/llama_parse_parameters.py +1 -0
- llama_cloud/types/parse_job_config.py +1 -0
- llama_cloud/types/pipeline.py +4 -0
- llama_cloud/types/pipeline_create.py +2 -0
- llama_cloud/types/pipeline_file.py +4 -4
- llama_cloud/types/schema_generation_availability.py +33 -0
- llama_cloud/types/schema_generation_availability_status.py +17 -0
- llama_cloud/types/sparse_model_config.py +42 -0
- llama_cloud/types/sparse_model_type.py +33 -0
- llama_cloud/types/webhook_configuration.py +1 -0
- llama_cloud-0.1.40.dist-info/METADATA +106 -0
- {llama_cloud-0.1.38.dist-info → llama_cloud-0.1.40.dist-info}/RECORD +38 -32
- {llama_cloud-0.1.38.dist-info → llama_cloud-0.1.40.dist-info}/WHEEL +1 -1
- llama_cloud-0.1.38.dist-info/METADATA +0 -32
- {llama_cloud-0.1.38.dist-info → llama_cloud-0.1.40.dist-info}/LICENSE +0 -0
|
@@ -39,7 +39,6 @@ class RetrieversClient:
|
|
|
39
39
|
name: typing.Optional[str] = None,
|
|
40
40
|
project_id: typing.Optional[str] = None,
|
|
41
41
|
organization_id: typing.Optional[str] = None,
|
|
42
|
-
project_id: typing.Optional[str] = None,
|
|
43
42
|
) -> typing.List[Retriever]:
|
|
44
43
|
"""
|
|
45
44
|
List Retrievers for a project.
|
|
@@ -50,8 +49,6 @@ class RetrieversClient:
|
|
|
50
49
|
- project_id: typing.Optional[str].
|
|
51
50
|
|
|
52
51
|
- organization_id: typing.Optional[str].
|
|
53
|
-
|
|
54
|
-
- project_id: typing.Optional[str].
|
|
55
52
|
---
|
|
56
53
|
from llama_cloud.client import LlamaCloud
|
|
57
54
|
|
|
@@ -64,7 +61,7 @@ class RetrieversClient:
|
|
|
64
61
|
"GET",
|
|
65
62
|
urllib.parse.urljoin(f"{self._client_wrapper.get_base_url()}/", "api/v1/retrievers"),
|
|
66
63
|
params=remove_none_from_dict({"name": name, "project_id": project_id, "organization_id": organization_id}),
|
|
67
|
-
headers=
|
|
64
|
+
headers=self._client_wrapper.get_headers(),
|
|
68
65
|
timeout=60,
|
|
69
66
|
)
|
|
70
67
|
if 200 <= _response.status_code < 300:
|
|
@@ -83,7 +80,6 @@ class RetrieversClient:
|
|
|
83
80
|
project_id: typing.Optional[str] = None,
|
|
84
81
|
organization_id: typing.Optional[str] = None,
|
|
85
82
|
request: RetrieverCreate,
|
|
86
|
-
project_id: typing.Optional[str] = None,
|
|
87
83
|
) -> Retriever:
|
|
88
84
|
"""
|
|
89
85
|
Create a new Retriever.
|
|
@@ -94,8 +90,6 @@ class RetrieversClient:
|
|
|
94
90
|
- organization_id: typing.Optional[str].
|
|
95
91
|
|
|
96
92
|
- request: RetrieverCreate.
|
|
97
|
-
|
|
98
|
-
- project_id: typing.Optional[str].
|
|
99
93
|
---
|
|
100
94
|
from llama_cloud import RetrieverCreate
|
|
101
95
|
from llama_cloud.client import LlamaCloud
|
|
@@ -114,7 +108,7 @@ class RetrieversClient:
|
|
|
114
108
|
urllib.parse.urljoin(f"{self._client_wrapper.get_base_url()}/", "api/v1/retrievers"),
|
|
115
109
|
params=remove_none_from_dict({"project_id": project_id, "organization_id": organization_id}),
|
|
116
110
|
json=jsonable_encoder(request),
|
|
117
|
-
headers=
|
|
111
|
+
headers=self._client_wrapper.get_headers(),
|
|
118
112
|
timeout=60,
|
|
119
113
|
)
|
|
120
114
|
if 200 <= _response.status_code < 300:
|
|
@@ -133,7 +127,6 @@ class RetrieversClient:
|
|
|
133
127
|
project_id: typing.Optional[str] = None,
|
|
134
128
|
organization_id: typing.Optional[str] = None,
|
|
135
129
|
request: RetrieverCreate,
|
|
136
|
-
project_id: typing.Optional[str] = None,
|
|
137
130
|
) -> Retriever:
|
|
138
131
|
"""
|
|
139
132
|
Upsert a new Retriever.
|
|
@@ -144,8 +137,6 @@ class RetrieversClient:
|
|
|
144
137
|
- organization_id: typing.Optional[str].
|
|
145
138
|
|
|
146
139
|
- request: RetrieverCreate.
|
|
147
|
-
|
|
148
|
-
- project_id: typing.Optional[str].
|
|
149
140
|
---
|
|
150
141
|
from llama_cloud import RetrieverCreate
|
|
151
142
|
from llama_cloud.client import LlamaCloud
|
|
@@ -164,7 +155,7 @@ class RetrieversClient:
|
|
|
164
155
|
urllib.parse.urljoin(f"{self._client_wrapper.get_base_url()}/", "api/v1/retrievers"),
|
|
165
156
|
params=remove_none_from_dict({"project_id": project_id, "organization_id": organization_id}),
|
|
166
157
|
json=jsonable_encoder(request),
|
|
167
|
-
headers=
|
|
158
|
+
headers=self._client_wrapper.get_headers(),
|
|
168
159
|
timeout=60,
|
|
169
160
|
)
|
|
170
161
|
if 200 <= _response.status_code < 300:
|
|
@@ -183,7 +174,6 @@ class RetrieversClient:
|
|
|
183
174
|
*,
|
|
184
175
|
project_id: typing.Optional[str] = None,
|
|
185
176
|
organization_id: typing.Optional[str] = None,
|
|
186
|
-
project_id: typing.Optional[str] = None,
|
|
187
177
|
) -> Retriever:
|
|
188
178
|
"""
|
|
189
179
|
Get a Retriever by ID.
|
|
@@ -194,8 +184,6 @@ class RetrieversClient:
|
|
|
194
184
|
- project_id: typing.Optional[str].
|
|
195
185
|
|
|
196
186
|
- organization_id: typing.Optional[str].
|
|
197
|
-
|
|
198
|
-
- project_id: typing.Optional[str].
|
|
199
187
|
---
|
|
200
188
|
from llama_cloud.client import LlamaCloud
|
|
201
189
|
|
|
@@ -210,7 +198,7 @@ class RetrieversClient:
|
|
|
210
198
|
"GET",
|
|
211
199
|
urllib.parse.urljoin(f"{self._client_wrapper.get_base_url()}/", f"api/v1/retrievers/{retriever_id}"),
|
|
212
200
|
params=remove_none_from_dict({"project_id": project_id, "organization_id": organization_id}),
|
|
213
|
-
headers=
|
|
201
|
+
headers=self._client_wrapper.get_headers(),
|
|
214
202
|
timeout=60,
|
|
215
203
|
)
|
|
216
204
|
if 200 <= _response.status_code < 300:
|
|
@@ -313,7 +301,6 @@ class RetrieversClient:
|
|
|
313
301
|
rerank_top_n: typing.Optional[int] = OMIT,
|
|
314
302
|
rerank_config: typing.Optional[ReRankConfig] = OMIT,
|
|
315
303
|
query: str,
|
|
316
|
-
project_id: typing.Optional[str] = None,
|
|
317
304
|
) -> CompositeRetrievalResult:
|
|
318
305
|
"""
|
|
319
306
|
Retrieve data using a Retriever.
|
|
@@ -332,8 +319,6 @@ class RetrieversClient:
|
|
|
332
319
|
- rerank_config: typing.Optional[ReRankConfig]. The rerank configuration for composite retrieval.
|
|
333
320
|
|
|
334
321
|
- query: str. The query to retrieve against.
|
|
335
|
-
|
|
336
|
-
- project_id: typing.Optional[str].
|
|
337
322
|
---
|
|
338
323
|
from llama_cloud import CompositeRetrievalMode, ReRankConfig, ReRankerType
|
|
339
324
|
from llama_cloud.client import LlamaCloud
|
|
@@ -364,7 +349,7 @@ class RetrieversClient:
|
|
|
364
349
|
),
|
|
365
350
|
params=remove_none_from_dict({"project_id": project_id, "organization_id": organization_id}),
|
|
366
351
|
json=jsonable_encoder(_request),
|
|
367
|
-
headers=
|
|
352
|
+
headers=self._client_wrapper.get_headers(),
|
|
368
353
|
timeout=60,
|
|
369
354
|
)
|
|
370
355
|
if 200 <= _response.status_code < 300:
|
|
@@ -387,7 +372,6 @@ class RetrieversClient:
|
|
|
387
372
|
rerank_config: typing.Optional[ReRankConfig] = OMIT,
|
|
388
373
|
query: str,
|
|
389
374
|
pipelines: typing.Optional[typing.List[RetrieverPipeline]] = OMIT,
|
|
390
|
-
project_id: typing.Optional[str] = None,
|
|
391
375
|
) -> CompositeRetrievalResult:
|
|
392
376
|
"""
|
|
393
377
|
Retrieve data using specified pipelines without creating a persistent retriever.
|
|
@@ -406,8 +390,6 @@ class RetrieversClient:
|
|
|
406
390
|
- query: str. The query to retrieve against.
|
|
407
391
|
|
|
408
392
|
- pipelines: typing.Optional[typing.List[RetrieverPipeline]]. The pipelines to use for retrieval.
|
|
409
|
-
|
|
410
|
-
- project_id: typing.Optional[str].
|
|
411
393
|
---
|
|
412
394
|
from llama_cloud import CompositeRetrievalMode, ReRankConfig, ReRankerType
|
|
413
395
|
from llama_cloud.client import LlamaCloud
|
|
@@ -437,7 +419,7 @@ class RetrieversClient:
|
|
|
437
419
|
urllib.parse.urljoin(f"{self._client_wrapper.get_base_url()}/", "api/v1/retrievers/retrieve"),
|
|
438
420
|
params=remove_none_from_dict({"project_id": project_id, "organization_id": organization_id}),
|
|
439
421
|
json=jsonable_encoder(_request),
|
|
440
|
-
headers=
|
|
422
|
+
headers=self._client_wrapper.get_headers(),
|
|
441
423
|
timeout=60,
|
|
442
424
|
)
|
|
443
425
|
if 200 <= _response.status_code < 300:
|
|
@@ -461,7 +443,6 @@ class AsyncRetrieversClient:
|
|
|
461
443
|
name: typing.Optional[str] = None,
|
|
462
444
|
project_id: typing.Optional[str] = None,
|
|
463
445
|
organization_id: typing.Optional[str] = None,
|
|
464
|
-
project_id: typing.Optional[str] = None,
|
|
465
446
|
) -> typing.List[Retriever]:
|
|
466
447
|
"""
|
|
467
448
|
List Retrievers for a project.
|
|
@@ -472,8 +453,6 @@ class AsyncRetrieversClient:
|
|
|
472
453
|
- project_id: typing.Optional[str].
|
|
473
454
|
|
|
474
455
|
- organization_id: typing.Optional[str].
|
|
475
|
-
|
|
476
|
-
- project_id: typing.Optional[str].
|
|
477
456
|
---
|
|
478
457
|
from llama_cloud.client import AsyncLlamaCloud
|
|
479
458
|
|
|
@@ -486,7 +465,7 @@ class AsyncRetrieversClient:
|
|
|
486
465
|
"GET",
|
|
487
466
|
urllib.parse.urljoin(f"{self._client_wrapper.get_base_url()}/", "api/v1/retrievers"),
|
|
488
467
|
params=remove_none_from_dict({"name": name, "project_id": project_id, "organization_id": organization_id}),
|
|
489
|
-
headers=
|
|
468
|
+
headers=self._client_wrapper.get_headers(),
|
|
490
469
|
timeout=60,
|
|
491
470
|
)
|
|
492
471
|
if 200 <= _response.status_code < 300:
|
|
@@ -505,7 +484,6 @@ class AsyncRetrieversClient:
|
|
|
505
484
|
project_id: typing.Optional[str] = None,
|
|
506
485
|
organization_id: typing.Optional[str] = None,
|
|
507
486
|
request: RetrieverCreate,
|
|
508
|
-
project_id: typing.Optional[str] = None,
|
|
509
487
|
) -> Retriever:
|
|
510
488
|
"""
|
|
511
489
|
Create a new Retriever.
|
|
@@ -516,8 +494,6 @@ class AsyncRetrieversClient:
|
|
|
516
494
|
- organization_id: typing.Optional[str].
|
|
517
495
|
|
|
518
496
|
- request: RetrieverCreate.
|
|
519
|
-
|
|
520
|
-
- project_id: typing.Optional[str].
|
|
521
497
|
---
|
|
522
498
|
from llama_cloud import RetrieverCreate
|
|
523
499
|
from llama_cloud.client import AsyncLlamaCloud
|
|
@@ -536,7 +512,7 @@ class AsyncRetrieversClient:
|
|
|
536
512
|
urllib.parse.urljoin(f"{self._client_wrapper.get_base_url()}/", "api/v1/retrievers"),
|
|
537
513
|
params=remove_none_from_dict({"project_id": project_id, "organization_id": organization_id}),
|
|
538
514
|
json=jsonable_encoder(request),
|
|
539
|
-
headers=
|
|
515
|
+
headers=self._client_wrapper.get_headers(),
|
|
540
516
|
timeout=60,
|
|
541
517
|
)
|
|
542
518
|
if 200 <= _response.status_code < 300:
|
|
@@ -555,7 +531,6 @@ class AsyncRetrieversClient:
|
|
|
555
531
|
project_id: typing.Optional[str] = None,
|
|
556
532
|
organization_id: typing.Optional[str] = None,
|
|
557
533
|
request: RetrieverCreate,
|
|
558
|
-
project_id: typing.Optional[str] = None,
|
|
559
534
|
) -> Retriever:
|
|
560
535
|
"""
|
|
561
536
|
Upsert a new Retriever.
|
|
@@ -566,8 +541,6 @@ class AsyncRetrieversClient:
|
|
|
566
541
|
- organization_id: typing.Optional[str].
|
|
567
542
|
|
|
568
543
|
- request: RetrieverCreate.
|
|
569
|
-
|
|
570
|
-
- project_id: typing.Optional[str].
|
|
571
544
|
---
|
|
572
545
|
from llama_cloud import RetrieverCreate
|
|
573
546
|
from llama_cloud.client import AsyncLlamaCloud
|
|
@@ -586,7 +559,7 @@ class AsyncRetrieversClient:
|
|
|
586
559
|
urllib.parse.urljoin(f"{self._client_wrapper.get_base_url()}/", "api/v1/retrievers"),
|
|
587
560
|
params=remove_none_from_dict({"project_id": project_id, "organization_id": organization_id}),
|
|
588
561
|
json=jsonable_encoder(request),
|
|
589
|
-
headers=
|
|
562
|
+
headers=self._client_wrapper.get_headers(),
|
|
590
563
|
timeout=60,
|
|
591
564
|
)
|
|
592
565
|
if 200 <= _response.status_code < 300:
|
|
@@ -605,7 +578,6 @@ class AsyncRetrieversClient:
|
|
|
605
578
|
*,
|
|
606
579
|
project_id: typing.Optional[str] = None,
|
|
607
580
|
organization_id: typing.Optional[str] = None,
|
|
608
|
-
project_id: typing.Optional[str] = None,
|
|
609
581
|
) -> Retriever:
|
|
610
582
|
"""
|
|
611
583
|
Get a Retriever by ID.
|
|
@@ -616,8 +588,6 @@ class AsyncRetrieversClient:
|
|
|
616
588
|
- project_id: typing.Optional[str].
|
|
617
589
|
|
|
618
590
|
- organization_id: typing.Optional[str].
|
|
619
|
-
|
|
620
|
-
- project_id: typing.Optional[str].
|
|
621
591
|
---
|
|
622
592
|
from llama_cloud.client import AsyncLlamaCloud
|
|
623
593
|
|
|
@@ -632,7 +602,7 @@ class AsyncRetrieversClient:
|
|
|
632
602
|
"GET",
|
|
633
603
|
urllib.parse.urljoin(f"{self._client_wrapper.get_base_url()}/", f"api/v1/retrievers/{retriever_id}"),
|
|
634
604
|
params=remove_none_from_dict({"project_id": project_id, "organization_id": organization_id}),
|
|
635
|
-
headers=
|
|
605
|
+
headers=self._client_wrapper.get_headers(),
|
|
636
606
|
timeout=60,
|
|
637
607
|
)
|
|
638
608
|
if 200 <= _response.status_code < 300:
|
|
@@ -735,7 +705,6 @@ class AsyncRetrieversClient:
|
|
|
735
705
|
rerank_top_n: typing.Optional[int] = OMIT,
|
|
736
706
|
rerank_config: typing.Optional[ReRankConfig] = OMIT,
|
|
737
707
|
query: str,
|
|
738
|
-
project_id: typing.Optional[str] = None,
|
|
739
708
|
) -> CompositeRetrievalResult:
|
|
740
709
|
"""
|
|
741
710
|
Retrieve data using a Retriever.
|
|
@@ -754,8 +723,6 @@ class AsyncRetrieversClient:
|
|
|
754
723
|
- rerank_config: typing.Optional[ReRankConfig]. The rerank configuration for composite retrieval.
|
|
755
724
|
|
|
756
725
|
- query: str. The query to retrieve against.
|
|
757
|
-
|
|
758
|
-
- project_id: typing.Optional[str].
|
|
759
726
|
---
|
|
760
727
|
from llama_cloud import CompositeRetrievalMode, ReRankConfig, ReRankerType
|
|
761
728
|
from llama_cloud.client import AsyncLlamaCloud
|
|
@@ -786,7 +753,7 @@ class AsyncRetrieversClient:
|
|
|
786
753
|
),
|
|
787
754
|
params=remove_none_from_dict({"project_id": project_id, "organization_id": organization_id}),
|
|
788
755
|
json=jsonable_encoder(_request),
|
|
789
|
-
headers=
|
|
756
|
+
headers=self._client_wrapper.get_headers(),
|
|
790
757
|
timeout=60,
|
|
791
758
|
)
|
|
792
759
|
if 200 <= _response.status_code < 300:
|
|
@@ -809,7 +776,6 @@ class AsyncRetrieversClient:
|
|
|
809
776
|
rerank_config: typing.Optional[ReRankConfig] = OMIT,
|
|
810
777
|
query: str,
|
|
811
778
|
pipelines: typing.Optional[typing.List[RetrieverPipeline]] = OMIT,
|
|
812
|
-
project_id: typing.Optional[str] = None,
|
|
813
779
|
) -> CompositeRetrievalResult:
|
|
814
780
|
"""
|
|
815
781
|
Retrieve data using specified pipelines without creating a persistent retriever.
|
|
@@ -828,8 +794,6 @@ class AsyncRetrieversClient:
|
|
|
828
794
|
- query: str. The query to retrieve against.
|
|
829
795
|
|
|
830
796
|
- pipelines: typing.Optional[typing.List[RetrieverPipeline]]. The pipelines to use for retrieval.
|
|
831
|
-
|
|
832
|
-
- project_id: typing.Optional[str].
|
|
833
797
|
---
|
|
834
798
|
from llama_cloud import CompositeRetrievalMode, ReRankConfig, ReRankerType
|
|
835
799
|
from llama_cloud.client import AsyncLlamaCloud
|
|
@@ -859,7 +823,7 @@ class AsyncRetrieversClient:
|
|
|
859
823
|
urllib.parse.urljoin(f"{self._client_wrapper.get_base_url()}/", "api/v1/retrievers/retrieve"),
|
|
860
824
|
params=remove_none_from_dict({"project_id": project_id, "organization_id": organization_id}),
|
|
861
825
|
json=jsonable_encoder(_request),
|
|
862
|
-
headers=
|
|
826
|
+
headers=self._client_wrapper.get_headers(),
|
|
863
827
|
timeout=60,
|
|
864
828
|
)
|
|
865
829
|
if 200 <= _response.status_code < 300:
|
llama_cloud/types/__init__.py
CHANGED
|
@@ -125,6 +125,7 @@ from .extract_job import ExtractJob
|
|
|
125
125
|
from .extract_job_create import ExtractJobCreate
|
|
126
126
|
from .extract_job_create_data_schema_override import ExtractJobCreateDataSchemaOverride
|
|
127
127
|
from .extract_job_create_data_schema_override_zero_value import ExtractJobCreateDataSchemaOverrideZeroValue
|
|
128
|
+
from .extract_job_create_priority import ExtractJobCreatePriority
|
|
128
129
|
from .extract_mode import ExtractMode
|
|
129
130
|
from .extract_models import ExtractModels
|
|
130
131
|
from .extract_resultset import ExtractResultset
|
|
@@ -199,6 +200,7 @@ from .job_record_with_usage_metrics import JobRecordWithUsageMetrics
|
|
|
199
200
|
from .l_lama_parse_transform_config import LLamaParseTransformConfig
|
|
200
201
|
from .legacy_parse_job_config import LegacyParseJobConfig
|
|
201
202
|
from .license_info_response import LicenseInfoResponse
|
|
203
|
+
from .llama_extract_feature_availability import LlamaExtractFeatureAvailability
|
|
202
204
|
from .llama_extract_mode_availability import LlamaExtractModeAvailability
|
|
203
205
|
from .llama_extract_mode_availability_status import LlamaExtractModeAvailabilityStatus
|
|
204
206
|
from .llama_extract_settings import LlamaExtractSettings
|
|
@@ -365,9 +367,13 @@ from .retriever import Retriever
|
|
|
365
367
|
from .retriever_create import RetrieverCreate
|
|
366
368
|
from .retriever_pipeline import RetrieverPipeline
|
|
367
369
|
from .role import Role
|
|
370
|
+
from .schema_generation_availability import SchemaGenerationAvailability
|
|
371
|
+
from .schema_generation_availability_status import SchemaGenerationAvailabilityStatus
|
|
368
372
|
from .schema_relax_mode import SchemaRelaxMode
|
|
369
373
|
from .semantic_chunking_config import SemanticChunkingConfig
|
|
370
374
|
from .sentence_chunking_config import SentenceChunkingConfig
|
|
375
|
+
from .sparse_model_config import SparseModelConfig
|
|
376
|
+
from .sparse_model_type import SparseModelType
|
|
371
377
|
from .src_app_schema_chat_chat_message import SrcAppSchemaChatChatMessage
|
|
372
378
|
from .status_enum import StatusEnum
|
|
373
379
|
from .struct_mode import StructMode
|
|
@@ -516,6 +522,7 @@ __all__ = [
|
|
|
516
522
|
"ExtractJobCreate",
|
|
517
523
|
"ExtractJobCreateDataSchemaOverride",
|
|
518
524
|
"ExtractJobCreateDataSchemaOverrideZeroValue",
|
|
525
|
+
"ExtractJobCreatePriority",
|
|
519
526
|
"ExtractMode",
|
|
520
527
|
"ExtractModels",
|
|
521
528
|
"ExtractResultset",
|
|
@@ -588,6 +595,7 @@ __all__ = [
|
|
|
588
595
|
"LLamaParseTransformConfig",
|
|
589
596
|
"LegacyParseJobConfig",
|
|
590
597
|
"LicenseInfoResponse",
|
|
598
|
+
"LlamaExtractFeatureAvailability",
|
|
591
599
|
"LlamaExtractModeAvailability",
|
|
592
600
|
"LlamaExtractModeAvailabilityStatus",
|
|
593
601
|
"LlamaExtractSettings",
|
|
@@ -742,9 +750,13 @@ __all__ = [
|
|
|
742
750
|
"RetrieverCreate",
|
|
743
751
|
"RetrieverPipeline",
|
|
744
752
|
"Role",
|
|
753
|
+
"SchemaGenerationAvailability",
|
|
754
|
+
"SchemaGenerationAvailabilityStatus",
|
|
745
755
|
"SchemaRelaxMode",
|
|
746
756
|
"SemanticChunkingConfig",
|
|
747
757
|
"SentenceChunkingConfig",
|
|
758
|
+
"SparseModelConfig",
|
|
759
|
+
"SparseModelType",
|
|
748
760
|
"SrcAppSchemaChatChatMessage",
|
|
749
761
|
"StatusEnum",
|
|
750
762
|
"StructMode",
|
|
@@ -6,6 +6,7 @@ import typing
|
|
|
6
6
|
from ..core.datetime_utils import serialize_datetime
|
|
7
7
|
from .extract_config import ExtractConfig
|
|
8
8
|
from .extract_job_create_data_schema_override import ExtractJobCreateDataSchemaOverride
|
|
9
|
+
from .extract_job_create_priority import ExtractJobCreatePriority
|
|
9
10
|
from .webhook_configuration import WebhookConfiguration
|
|
10
11
|
|
|
11
12
|
try:
|
|
@@ -22,6 +23,7 @@ class ExtractJobCreate(pydantic.BaseModel):
|
|
|
22
23
|
Schema for creating an extraction job.
|
|
23
24
|
"""
|
|
24
25
|
|
|
26
|
+
priority: typing.Optional[ExtractJobCreatePriority]
|
|
25
27
|
webhook_configurations: typing.Optional[typing.List[WebhookConfiguration]]
|
|
26
28
|
extraction_agent_id: str = pydantic.Field(description="The id of the extraction agent")
|
|
27
29
|
file_id: str = pydantic.Field(description="The id of the file")
|
|
@@ -0,0 +1,29 @@
|
|
|
1
|
+
# This file was auto-generated by Fern from our API Definition.
|
|
2
|
+
|
|
3
|
+
import enum
|
|
4
|
+
import typing
|
|
5
|
+
|
|
6
|
+
T_Result = typing.TypeVar("T_Result")
|
|
7
|
+
|
|
8
|
+
|
|
9
|
+
class ExtractJobCreatePriority(str, enum.Enum):
|
|
10
|
+
LOW = "low"
|
|
11
|
+
MEDIUM = "medium"
|
|
12
|
+
HIGH = "high"
|
|
13
|
+
CRITICAL = "critical"
|
|
14
|
+
|
|
15
|
+
def visit(
|
|
16
|
+
self,
|
|
17
|
+
low: typing.Callable[[], T_Result],
|
|
18
|
+
medium: typing.Callable[[], T_Result],
|
|
19
|
+
high: typing.Callable[[], T_Result],
|
|
20
|
+
critical: typing.Callable[[], T_Result],
|
|
21
|
+
) -> T_Result:
|
|
22
|
+
if self is ExtractJobCreatePriority.LOW:
|
|
23
|
+
return low()
|
|
24
|
+
if self is ExtractJobCreatePriority.MEDIUM:
|
|
25
|
+
return medium()
|
|
26
|
+
if self is ExtractJobCreatePriority.HIGH:
|
|
27
|
+
return high()
|
|
28
|
+
if self is ExtractJobCreatePriority.CRITICAL:
|
|
29
|
+
return critical()
|
llama_cloud/types/file.py
CHANGED
|
@@ -25,7 +25,7 @@ class File(pydantic.BaseModel):
|
|
|
25
25
|
created_at: typing.Optional[dt.datetime]
|
|
26
26
|
updated_at: typing.Optional[dt.datetime]
|
|
27
27
|
name: str
|
|
28
|
-
external_file_id: str
|
|
28
|
+
external_file_id: typing.Optional[str]
|
|
29
29
|
file_size: typing.Optional[int]
|
|
30
30
|
file_type: typing.Optional[str]
|
|
31
31
|
project_id: str = pydantic.Field(description="The ID of the project that the file belongs to")
|
llama_cloud/types/job_names.py
CHANGED
|
@@ -15,7 +15,6 @@ class JobNames(str, enum.Enum):
|
|
|
15
15
|
LOAD_FILES_JOB = "load_files_job"
|
|
16
16
|
PLAYGROUND_JOB = "playground_job"
|
|
17
17
|
PIPELINE_MANAGED_INGESTION_JOB = "pipeline_managed_ingestion_job"
|
|
18
|
-
DATA_SOURCE_MANAGED_INGESTION_JOB = "data_source_managed_ingestion_job"
|
|
19
18
|
DATA_SOURCE_UPDATE_DISPATCHER_JOB = "data_source_update_dispatcher_job"
|
|
20
19
|
PIPELINE_FILE_UPDATE_DISPATCHER_JOB = "pipeline_file_update_dispatcher_job"
|
|
21
20
|
PIPELINE_FILE_UPDATER_JOB = "pipeline_file_updater_job"
|
|
@@ -35,7 +34,6 @@ class JobNames(str, enum.Enum):
|
|
|
35
34
|
load_files_job: typing.Callable[[], T_Result],
|
|
36
35
|
playground_job: typing.Callable[[], T_Result],
|
|
37
36
|
pipeline_managed_ingestion_job: typing.Callable[[], T_Result],
|
|
38
|
-
data_source_managed_ingestion_job: typing.Callable[[], T_Result],
|
|
39
37
|
data_source_update_dispatcher_job: typing.Callable[[], T_Result],
|
|
40
38
|
pipeline_file_update_dispatcher_job: typing.Callable[[], T_Result],
|
|
41
39
|
pipeline_file_updater_job: typing.Callable[[], T_Result],
|
|
@@ -57,8 +55,6 @@ class JobNames(str, enum.Enum):
|
|
|
57
55
|
return playground_job()
|
|
58
56
|
if self is JobNames.PIPELINE_MANAGED_INGESTION_JOB:
|
|
59
57
|
return pipeline_managed_ingestion_job()
|
|
60
|
-
if self is JobNames.DATA_SOURCE_MANAGED_INGESTION_JOB:
|
|
61
|
-
return data_source_managed_ingestion_job()
|
|
62
58
|
if self is JobNames.DATA_SOURCE_UPDATE_DISPATCHER_JOB:
|
|
63
59
|
return data_source_update_dispatcher_job()
|
|
64
60
|
if self is JobNames.PIPELINE_FILE_UPDATE_DISPATCHER_JOB:
|
|
@@ -0,0 +1,34 @@
|
|
|
1
|
+
# This file was auto-generated by Fern from our API Definition.
|
|
2
|
+
|
|
3
|
+
import datetime as dt
|
|
4
|
+
import typing
|
|
5
|
+
|
|
6
|
+
from ..core.datetime_utils import serialize_datetime
|
|
7
|
+
from .llama_extract_mode_availability import LlamaExtractModeAvailability
|
|
8
|
+
from .schema_generation_availability import SchemaGenerationAvailability
|
|
9
|
+
|
|
10
|
+
try:
|
|
11
|
+
import pydantic
|
|
12
|
+
if pydantic.__version__.startswith("1."):
|
|
13
|
+
raise ImportError
|
|
14
|
+
import pydantic.v1 as pydantic # type: ignore
|
|
15
|
+
except ImportError:
|
|
16
|
+
import pydantic # type: ignore
|
|
17
|
+
|
|
18
|
+
|
|
19
|
+
class LlamaExtractFeatureAvailability(pydantic.BaseModel):
|
|
20
|
+
schema_generation: SchemaGenerationAvailability
|
|
21
|
+
available_modes: typing.List[LlamaExtractModeAvailability]
|
|
22
|
+
|
|
23
|
+
def json(self, **kwargs: typing.Any) -> str:
|
|
24
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
25
|
+
return super().json(**kwargs_with_defaults)
|
|
26
|
+
|
|
27
|
+
def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
|
|
28
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
29
|
+
return super().dict(**kwargs_with_defaults)
|
|
30
|
+
|
|
31
|
+
class Config:
|
|
32
|
+
frozen = True
|
|
33
|
+
smart_union = True
|
|
34
|
+
json_encoders = {dt.datetime: serialize_datetime}
|
|
@@ -49,6 +49,7 @@ class LlamaParseParameters(pydantic.BaseModel):
|
|
|
49
49
|
extract_layout: typing.Optional[bool]
|
|
50
50
|
high_res_ocr: typing.Optional[bool]
|
|
51
51
|
html_make_all_elements_visible: typing.Optional[bool]
|
|
52
|
+
layout_aware: typing.Optional[bool]
|
|
52
53
|
html_remove_navigation_elements: typing.Optional[bool]
|
|
53
54
|
html_remove_fixed_elements: typing.Optional[bool]
|
|
54
55
|
guess_xlsx_sheet_name: typing.Optional[bool]
|
|
@@ -51,6 +51,7 @@ class ParseJobConfig(pydantic.BaseModel):
|
|
|
51
51
|
extract_layout: typing.Optional[bool]
|
|
52
52
|
high_res_ocr: typing.Optional[bool]
|
|
53
53
|
html_make_all_elements_visible: typing.Optional[bool]
|
|
54
|
+
layout_aware: typing.Optional[bool]
|
|
54
55
|
html_remove_navigation_elements: typing.Optional[bool]
|
|
55
56
|
html_remove_fixed_elements: typing.Optional[bool]
|
|
56
57
|
guess_xlsx_sheet_name: typing.Optional[bool]
|
llama_cloud/types/pipeline.py
CHANGED
|
@@ -5,6 +5,7 @@ import typing
|
|
|
5
5
|
|
|
6
6
|
from ..core.datetime_utils import serialize_datetime
|
|
7
7
|
from .data_sink import DataSink
|
|
8
|
+
from .embedding_model_config import EmbeddingModelConfig
|
|
8
9
|
from .eval_execution_params import EvalExecutionParams
|
|
9
10
|
from .llama_parse_parameters import LlamaParseParameters
|
|
10
11
|
from .pipeline_configuration_hashes import PipelineConfigurationHashes
|
|
@@ -14,6 +15,7 @@ from .pipeline_status import PipelineStatus
|
|
|
14
15
|
from .pipeline_transform_config import PipelineTransformConfig
|
|
15
16
|
from .pipeline_type import PipelineType
|
|
16
17
|
from .preset_retrieval_params import PresetRetrievalParams
|
|
18
|
+
from .sparse_model_config import SparseModelConfig
|
|
17
19
|
|
|
18
20
|
try:
|
|
19
21
|
import pydantic
|
|
@@ -35,11 +37,13 @@ class Pipeline(pydantic.BaseModel):
|
|
|
35
37
|
name: str
|
|
36
38
|
project_id: str
|
|
37
39
|
embedding_model_config_id: typing.Optional[str]
|
|
40
|
+
embedding_model_config: typing.Optional[EmbeddingModelConfig]
|
|
38
41
|
pipeline_type: typing.Optional[PipelineType] = pydantic.Field(
|
|
39
42
|
description="Type of pipeline. Either PLAYGROUND or MANAGED."
|
|
40
43
|
)
|
|
41
44
|
managed_pipeline_id: typing.Optional[str]
|
|
42
45
|
embedding_config: PipelineEmbeddingConfig
|
|
46
|
+
sparse_model_config: typing.Optional[SparseModelConfig]
|
|
43
47
|
config_hash: typing.Optional[PipelineConfigurationHashes]
|
|
44
48
|
transform_config: typing.Optional[PipelineTransformConfig] = pydantic.Field(
|
|
45
49
|
description="Configuration for the transformation."
|
|
@@ -12,6 +12,7 @@ from .pipeline_create_transform_config import PipelineCreateTransformConfig
|
|
|
12
12
|
from .pipeline_metadata_config import PipelineMetadataConfig
|
|
13
13
|
from .pipeline_type import PipelineType
|
|
14
14
|
from .preset_retrieval_params import PresetRetrievalParams
|
|
15
|
+
from .sparse_model_config import SparseModelConfig
|
|
15
16
|
|
|
16
17
|
try:
|
|
17
18
|
import pydantic
|
|
@@ -40,6 +41,7 @@ class PipelineCreate(pydantic.BaseModel):
|
|
|
40
41
|
eval_parameters: typing.Optional[EvalExecutionParams] = pydantic.Field(
|
|
41
42
|
description="Eval parameters for the pipeline."
|
|
42
43
|
)
|
|
44
|
+
sparse_model_config: typing.Optional[SparseModelConfig]
|
|
43
45
|
llama_parse_parameters: typing.Optional[LlamaParseParameters]
|
|
44
46
|
status: typing.Optional[str]
|
|
45
47
|
metadata_config: typing.Optional[PipelineMetadataConfig]
|
|
@@ -31,14 +31,14 @@ class PipelineFile(pydantic.BaseModel):
|
|
|
31
31
|
external_file_id: typing.Optional[str]
|
|
32
32
|
file_size: typing.Optional[int]
|
|
33
33
|
file_type: typing.Optional[str]
|
|
34
|
-
project_id: str
|
|
34
|
+
project_id: typing.Optional[str]
|
|
35
35
|
last_modified_at: typing.Optional[dt.datetime]
|
|
36
|
-
resource_info: typing.Optional[typing.Dict[str, typing.Optional[PipelineFileResourceInfoValue]]]
|
|
37
|
-
permission_info: typing.Optional[typing.Dict[str, typing.Optional[PipelineFilePermissionInfoValue]]]
|
|
38
|
-
data_source_id: typing.Optional[str]
|
|
39
36
|
file_id: typing.Optional[str]
|
|
40
37
|
pipeline_id: str = pydantic.Field(description="The ID of the pipeline that the file is associated with")
|
|
38
|
+
resource_info: typing.Optional[typing.Dict[str, typing.Optional[PipelineFileResourceInfoValue]]]
|
|
39
|
+
permission_info: typing.Optional[typing.Dict[str, typing.Optional[PipelineFilePermissionInfoValue]]]
|
|
41
40
|
custom_metadata: typing.Optional[typing.Dict[str, typing.Optional[PipelineFileCustomMetadataValue]]]
|
|
41
|
+
data_source_id: typing.Optional[str]
|
|
42
42
|
config_hash: typing.Optional[typing.Dict[str, typing.Optional[PipelineFileConfigHashValue]]]
|
|
43
43
|
indexed_page_count: typing.Optional[int]
|
|
44
44
|
status: typing.Optional[PipelineFileStatus]
|
|
@@ -0,0 +1,33 @@
|
|
|
1
|
+
# This file was auto-generated by Fern from our API Definition.
|
|
2
|
+
|
|
3
|
+
import datetime as dt
|
|
4
|
+
import typing
|
|
5
|
+
|
|
6
|
+
from ..core.datetime_utils import serialize_datetime
|
|
7
|
+
from .schema_generation_availability_status import SchemaGenerationAvailabilityStatus
|
|
8
|
+
|
|
9
|
+
try:
|
|
10
|
+
import pydantic
|
|
11
|
+
if pydantic.__version__.startswith("1."):
|
|
12
|
+
raise ImportError
|
|
13
|
+
import pydantic.v1 as pydantic # type: ignore
|
|
14
|
+
except ImportError:
|
|
15
|
+
import pydantic # type: ignore
|
|
16
|
+
|
|
17
|
+
|
|
18
|
+
class SchemaGenerationAvailability(pydantic.BaseModel):
|
|
19
|
+
model: str
|
|
20
|
+
status: SchemaGenerationAvailabilityStatus
|
|
21
|
+
|
|
22
|
+
def json(self, **kwargs: typing.Any) -> str:
|
|
23
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
24
|
+
return super().json(**kwargs_with_defaults)
|
|
25
|
+
|
|
26
|
+
def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
|
|
27
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
28
|
+
return super().dict(**kwargs_with_defaults)
|
|
29
|
+
|
|
30
|
+
class Config:
|
|
31
|
+
frozen = True
|
|
32
|
+
smart_union = True
|
|
33
|
+
json_encoders = {dt.datetime: serialize_datetime}
|
|
@@ -0,0 +1,17 @@
|
|
|
1
|
+
# This file was auto-generated by Fern from our API Definition.
|
|
2
|
+
|
|
3
|
+
import enum
|
|
4
|
+
import typing
|
|
5
|
+
|
|
6
|
+
T_Result = typing.TypeVar("T_Result")
|
|
7
|
+
|
|
8
|
+
|
|
9
|
+
class SchemaGenerationAvailabilityStatus(str, enum.Enum):
|
|
10
|
+
AVAILABLE = "available"
|
|
11
|
+
UNAVAILABLE = "unavailable"
|
|
12
|
+
|
|
13
|
+
def visit(self, available: typing.Callable[[], T_Result], unavailable: typing.Callable[[], T_Result]) -> T_Result:
|
|
14
|
+
if self is SchemaGenerationAvailabilityStatus.AVAILABLE:
|
|
15
|
+
return available()
|
|
16
|
+
if self is SchemaGenerationAvailabilityStatus.UNAVAILABLE:
|
|
17
|
+
return unavailable()
|
|
@@ -0,0 +1,42 @@
|
|
|
1
|
+
# This file was auto-generated by Fern from our API Definition.
|
|
2
|
+
|
|
3
|
+
import datetime as dt
|
|
4
|
+
import typing
|
|
5
|
+
|
|
6
|
+
from ..core.datetime_utils import serialize_datetime
|
|
7
|
+
from .sparse_model_type import SparseModelType
|
|
8
|
+
|
|
9
|
+
try:
|
|
10
|
+
import pydantic
|
|
11
|
+
if pydantic.__version__.startswith("1."):
|
|
12
|
+
raise ImportError
|
|
13
|
+
import pydantic.v1 as pydantic # type: ignore
|
|
14
|
+
except ImportError:
|
|
15
|
+
import pydantic # type: ignore
|
|
16
|
+
|
|
17
|
+
|
|
18
|
+
class SparseModelConfig(pydantic.BaseModel):
|
|
19
|
+
"""
|
|
20
|
+
Configuration for sparse embedding models used in hybrid search.
|
|
21
|
+
|
|
22
|
+
This allows users to choose between Splade and BM25 models for
|
|
23
|
+
sparse retrieval in managed data sinks.
|
|
24
|
+
"""
|
|
25
|
+
|
|
26
|
+
model_type: typing.Optional[SparseModelType] = pydantic.Field(
|
|
27
|
+
description="The sparse model type to use. 'auto' selects based on deployment mode (BYOC uses term frequency, Cloud uses Splade), 'splade' uses HuggingFace Splade model, 'bm25' uses Qdrant's FastEmbed BM25 model."
|
|
28
|
+
)
|
|
29
|
+
class_name: typing.Optional[str]
|
|
30
|
+
|
|
31
|
+
def json(self, **kwargs: typing.Any) -> str:
|
|
32
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
33
|
+
return super().json(**kwargs_with_defaults)
|
|
34
|
+
|
|
35
|
+
def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
|
|
36
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
37
|
+
return super().dict(**kwargs_with_defaults)
|
|
38
|
+
|
|
39
|
+
class Config:
|
|
40
|
+
frozen = True
|
|
41
|
+
smart_union = True
|
|
42
|
+
json_encoders = {dt.datetime: serialize_datetime}
|