llama-cloud 0.1.35__py3-none-any.whl → 0.1.37__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of llama-cloud might be problematic. Click here for more details.
- llama_cloud/__init__.py +32 -4
- llama_cloud/resources/__init__.py +1 -3
- llama_cloud/resources/admin/client.py +108 -0
- llama_cloud/resources/beta/client.py +460 -0
- llama_cloud/resources/classifier/client.py +231 -181
- llama_cloud/resources/data_sinks/types/data_sink_update_component.py +2 -0
- llama_cloud/resources/files/__init__.py +2 -2
- llama_cloud/resources/files/client.py +15 -73
- llama_cloud/resources/files/types/__init__.py +1 -3
- llama_cloud/resources/llama_extract/client.py +96 -4
- llama_cloud/types/__init__.py +34 -2
- llama_cloud/types/classification_result.py +4 -5
- llama_cloud/types/classifier_rule.py +43 -0
- llama_cloud/types/classify_job.py +45 -0
- llama_cloud/types/{classify_response.py → classify_job_results.py} +3 -6
- llama_cloud/types/classify_job_with_status.py +47 -0
- llama_cloud/types/classify_parsing_configuration.py +38 -0
- llama_cloud/types/cloud_astra_db_vector_store.py +51 -0
- llama_cloud/types/cloud_confluence_data_source.py +15 -0
- llama_cloud/types/configurable_data_sink_names.py +4 -0
- llama_cloud/types/data_sink_component.py +2 -0
- llama_cloud/types/data_sink_create_component.py +2 -0
- llama_cloud/types/failure_handling_config.py +37 -0
- llama_cloud/types/file_classification.py +41 -0
- llama_cloud/types/file_create.py +41 -0
- llama_cloud/types/file_filter.py +40 -0
- llama_cloud/types/file_query_response.py +38 -0
- llama_cloud/types/file_store_info_response.py +34 -0
- llama_cloud/types/file_store_info_response_status.py +25 -0
- llama_cloud/types/llama_extract_mode_availability.py +37 -0
- llama_cloud/types/llama_extract_mode_availability_status.py +17 -0
- llama_cloud/types/supported_llm_model_names.py +12 -0
- {llama_cloud-0.1.35.dist-info → llama_cloud-0.1.37.dist-info}/METADATA +1 -1
- {llama_cloud-0.1.35.dist-info → llama_cloud-0.1.37.dist-info}/RECORD +38 -24
- /llama_cloud/{resources/files/types → types}/file_create_permission_info_value.py +0 -0
- /llama_cloud/{resources/files/types → types}/file_create_resource_info_value.py +0 -0
- {llama_cloud-0.1.35.dist-info → llama_cloud-0.1.37.dist-info}/LICENSE +0 -0
- {llama_cloud-0.1.35.dist-info → llama_cloud-0.1.37.dist-info}/WHEEL +0 -0
|
@@ -0,0 +1,51 @@
|
|
|
1
|
+
# This file was auto-generated by Fern from our API Definition.
|
|
2
|
+
|
|
3
|
+
import datetime as dt
|
|
4
|
+
import typing
|
|
5
|
+
|
|
6
|
+
from ..core.datetime_utils import serialize_datetime
|
|
7
|
+
|
|
8
|
+
try:
|
|
9
|
+
import pydantic
|
|
10
|
+
if pydantic.__version__.startswith("1."):
|
|
11
|
+
raise ImportError
|
|
12
|
+
import pydantic.v1 as pydantic # type: ignore
|
|
13
|
+
except ImportError:
|
|
14
|
+
import pydantic # type: ignore
|
|
15
|
+
|
|
16
|
+
|
|
17
|
+
class CloudAstraDbVectorStore(pydantic.BaseModel):
|
|
18
|
+
"""
|
|
19
|
+
Cloud AstraDB Vector Store.
|
|
20
|
+
|
|
21
|
+
This class is used to store the configuration for an AstraDB vector store, so that it can be
|
|
22
|
+
created and used in LlamaCloud.
|
|
23
|
+
|
|
24
|
+
Args:
|
|
25
|
+
token (str): The Astra DB Application Token to use.
|
|
26
|
+
api_endpoint (str): The Astra DB JSON API endpoint for your database.
|
|
27
|
+
collection_name (str): Collection name to use. If not existing, it will be created.
|
|
28
|
+
embedding_dimension (int): Length of the embedding vectors in use.
|
|
29
|
+
keyspace (optional[str]): The keyspace to use. If not provided, 'default_keyspace'
|
|
30
|
+
"""
|
|
31
|
+
|
|
32
|
+
supports_nested_metadata_filters: typing.Optional[bool]
|
|
33
|
+
token: str = pydantic.Field(description="The Astra DB Application Token to use")
|
|
34
|
+
api_endpoint: str = pydantic.Field(description="The Astra DB JSON API endpoint for your database")
|
|
35
|
+
collection_name: str = pydantic.Field(description="Collection name to use. If not existing, it will be created")
|
|
36
|
+
embedding_dimension: int = pydantic.Field(description="Length of the embedding vectors in use")
|
|
37
|
+
keyspace: typing.Optional[str]
|
|
38
|
+
class_name: typing.Optional[str]
|
|
39
|
+
|
|
40
|
+
def json(self, **kwargs: typing.Any) -> str:
|
|
41
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
42
|
+
return super().json(**kwargs_with_defaults)
|
|
43
|
+
|
|
44
|
+
def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
|
|
45
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
46
|
+
return super().dict(**kwargs_with_defaults)
|
|
47
|
+
|
|
48
|
+
class Config:
|
|
49
|
+
frozen = True
|
|
50
|
+
smart_union = True
|
|
51
|
+
json_encoders = {dt.datetime: serialize_datetime}
|
|
@@ -4,6 +4,7 @@ import datetime as dt
|
|
|
4
4
|
import typing
|
|
5
5
|
|
|
6
6
|
from ..core.datetime_utils import serialize_datetime
|
|
7
|
+
from .failure_handling_config import FailureHandlingConfig
|
|
7
8
|
|
|
8
9
|
try:
|
|
9
10
|
import pydantic
|
|
@@ -28,6 +29,20 @@ class CloudConfluenceDataSource(pydantic.BaseModel):
|
|
|
28
29
|
label: typing.Optional[str]
|
|
29
30
|
index_restricted_pages: typing.Optional[bool] = pydantic.Field(description="Whether to index restricted pages.")
|
|
30
31
|
keep_markdown_format: typing.Optional[bool] = pydantic.Field(description="Whether to keep the markdown format.")
|
|
32
|
+
failure_handling: typing.Optional[FailureHandlingConfig] = pydantic.Field(
|
|
33
|
+
description=(
|
|
34
|
+
"Configuration for handling failures during processing. Key-value object controlling failure handling behaviors.\n"
|
|
35
|
+
"\n"
|
|
36
|
+
"Example:\n"
|
|
37
|
+
"{\n"
|
|
38
|
+
'"skip_list_failures": true\n'
|
|
39
|
+
"}\n"
|
|
40
|
+
"\n"
|
|
41
|
+
"Currently supports:\n"
|
|
42
|
+
"\n"
|
|
43
|
+
"- skip_list_failures: Skip failed batches/lists and continue processing\n"
|
|
44
|
+
)
|
|
45
|
+
)
|
|
31
46
|
class_name: typing.Optional[str]
|
|
32
47
|
|
|
33
48
|
def json(self, **kwargs: typing.Any) -> str:
|
|
@@ -13,6 +13,7 @@ class ConfigurableDataSinkNames(str, enum.Enum):
|
|
|
13
13
|
AZUREAI_SEARCH = "AZUREAI_SEARCH"
|
|
14
14
|
MONGODB_ATLAS = "MONGODB_ATLAS"
|
|
15
15
|
MILVUS = "MILVUS"
|
|
16
|
+
ASTRA_DB = "ASTRA_DB"
|
|
16
17
|
|
|
17
18
|
def visit(
|
|
18
19
|
self,
|
|
@@ -22,6 +23,7 @@ class ConfigurableDataSinkNames(str, enum.Enum):
|
|
|
22
23
|
azureai_search: typing.Callable[[], T_Result],
|
|
23
24
|
mongodb_atlas: typing.Callable[[], T_Result],
|
|
24
25
|
milvus: typing.Callable[[], T_Result],
|
|
26
|
+
astra_db: typing.Callable[[], T_Result],
|
|
25
27
|
) -> T_Result:
|
|
26
28
|
if self is ConfigurableDataSinkNames.PINECONE:
|
|
27
29
|
return pinecone()
|
|
@@ -35,3 +37,5 @@ class ConfigurableDataSinkNames(str, enum.Enum):
|
|
|
35
37
|
return mongodb_atlas()
|
|
36
38
|
if self is ConfigurableDataSinkNames.MILVUS:
|
|
37
39
|
return milvus()
|
|
40
|
+
if self is ConfigurableDataSinkNames.ASTRA_DB:
|
|
41
|
+
return astra_db()
|
|
@@ -2,6 +2,7 @@
|
|
|
2
2
|
|
|
3
3
|
import typing
|
|
4
4
|
|
|
5
|
+
from .cloud_astra_db_vector_store import CloudAstraDbVectorStore
|
|
5
6
|
from .cloud_azure_ai_search_vector_store import CloudAzureAiSearchVectorStore
|
|
6
7
|
from .cloud_milvus_vector_store import CloudMilvusVectorStore
|
|
7
8
|
from .cloud_mongo_db_atlas_vector_search import CloudMongoDbAtlasVectorSearch
|
|
@@ -17,4 +18,5 @@ DataSinkComponent = typing.Union[
|
|
|
17
18
|
CloudAzureAiSearchVectorStore,
|
|
18
19
|
CloudMongoDbAtlasVectorSearch,
|
|
19
20
|
CloudMilvusVectorStore,
|
|
21
|
+
CloudAstraDbVectorStore,
|
|
20
22
|
]
|
|
@@ -2,6 +2,7 @@
|
|
|
2
2
|
|
|
3
3
|
import typing
|
|
4
4
|
|
|
5
|
+
from .cloud_astra_db_vector_store import CloudAstraDbVectorStore
|
|
5
6
|
from .cloud_azure_ai_search_vector_store import CloudAzureAiSearchVectorStore
|
|
6
7
|
from .cloud_milvus_vector_store import CloudMilvusVectorStore
|
|
7
8
|
from .cloud_mongo_db_atlas_vector_search import CloudMongoDbAtlasVectorSearch
|
|
@@ -17,4 +18,5 @@ DataSinkCreateComponent = typing.Union[
|
|
|
17
18
|
CloudAzureAiSearchVectorStore,
|
|
18
19
|
CloudMongoDbAtlasVectorSearch,
|
|
19
20
|
CloudMilvusVectorStore,
|
|
21
|
+
CloudAstraDbVectorStore,
|
|
20
22
|
]
|
|
@@ -0,0 +1,37 @@
|
|
|
1
|
+
# This file was auto-generated by Fern from our API Definition.
|
|
2
|
+
|
|
3
|
+
import datetime as dt
|
|
4
|
+
import typing
|
|
5
|
+
|
|
6
|
+
from ..core.datetime_utils import serialize_datetime
|
|
7
|
+
|
|
8
|
+
try:
|
|
9
|
+
import pydantic
|
|
10
|
+
if pydantic.__version__.startswith("1."):
|
|
11
|
+
raise ImportError
|
|
12
|
+
import pydantic.v1 as pydantic # type: ignore
|
|
13
|
+
except ImportError:
|
|
14
|
+
import pydantic # type: ignore
|
|
15
|
+
|
|
16
|
+
|
|
17
|
+
class FailureHandlingConfig(pydantic.BaseModel):
|
|
18
|
+
"""
|
|
19
|
+
Configuration for handling different types of failures during data source processing.
|
|
20
|
+
"""
|
|
21
|
+
|
|
22
|
+
skip_list_failures: typing.Optional[bool] = pydantic.Field(
|
|
23
|
+
description="Whether to skip failed batches/lists and continue processing"
|
|
24
|
+
)
|
|
25
|
+
|
|
26
|
+
def json(self, **kwargs: typing.Any) -> str:
|
|
27
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
28
|
+
return super().json(**kwargs_with_defaults)
|
|
29
|
+
|
|
30
|
+
def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
|
|
31
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
32
|
+
return super().dict(**kwargs_with_defaults)
|
|
33
|
+
|
|
34
|
+
class Config:
|
|
35
|
+
frozen = True
|
|
36
|
+
smart_union = True
|
|
37
|
+
json_encoders = {dt.datetime: serialize_datetime}
|
|
@@ -0,0 +1,41 @@
|
|
|
1
|
+
# This file was auto-generated by Fern from our API Definition.
|
|
2
|
+
|
|
3
|
+
import datetime as dt
|
|
4
|
+
import typing
|
|
5
|
+
|
|
6
|
+
from ..core.datetime_utils import serialize_datetime
|
|
7
|
+
from .classification_result import ClassificationResult
|
|
8
|
+
|
|
9
|
+
try:
|
|
10
|
+
import pydantic
|
|
11
|
+
if pydantic.__version__.startswith("1."):
|
|
12
|
+
raise ImportError
|
|
13
|
+
import pydantic.v1 as pydantic # type: ignore
|
|
14
|
+
except ImportError:
|
|
15
|
+
import pydantic # type: ignore
|
|
16
|
+
|
|
17
|
+
|
|
18
|
+
class FileClassification(pydantic.BaseModel):
|
|
19
|
+
"""
|
|
20
|
+
A file classification.
|
|
21
|
+
"""
|
|
22
|
+
|
|
23
|
+
id: str = pydantic.Field(description="Unique identifier")
|
|
24
|
+
created_at: typing.Optional[dt.datetime]
|
|
25
|
+
updated_at: typing.Optional[dt.datetime]
|
|
26
|
+
classify_job_id: str = pydantic.Field(description="The ID of the classify job")
|
|
27
|
+
file_id: str = pydantic.Field(description="The ID of the classified file")
|
|
28
|
+
result: typing.Optional[ClassificationResult]
|
|
29
|
+
|
|
30
|
+
def json(self, **kwargs: typing.Any) -> str:
|
|
31
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
32
|
+
return super().json(**kwargs_with_defaults)
|
|
33
|
+
|
|
34
|
+
def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
|
|
35
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
36
|
+
return super().dict(**kwargs_with_defaults)
|
|
37
|
+
|
|
38
|
+
class Config:
|
|
39
|
+
frozen = True
|
|
40
|
+
smart_union = True
|
|
41
|
+
json_encoders = {dt.datetime: serialize_datetime}
|
|
@@ -0,0 +1,41 @@
|
|
|
1
|
+
# This file was auto-generated by Fern from our API Definition.
|
|
2
|
+
|
|
3
|
+
import datetime as dt
|
|
4
|
+
import typing
|
|
5
|
+
|
|
6
|
+
from ..core.datetime_utils import serialize_datetime
|
|
7
|
+
from .file_create_permission_info_value import FileCreatePermissionInfoValue
|
|
8
|
+
from .file_create_resource_info_value import FileCreateResourceInfoValue
|
|
9
|
+
|
|
10
|
+
try:
|
|
11
|
+
import pydantic
|
|
12
|
+
if pydantic.__version__.startswith("1."):
|
|
13
|
+
raise ImportError
|
|
14
|
+
import pydantic.v1 as pydantic # type: ignore
|
|
15
|
+
except ImportError:
|
|
16
|
+
import pydantic # type: ignore
|
|
17
|
+
|
|
18
|
+
|
|
19
|
+
class FileCreate(pydantic.BaseModel):
|
|
20
|
+
name: str = pydantic.Field(
|
|
21
|
+
description="Name that will be used for created file. If possible, always include the file extension in the name."
|
|
22
|
+
)
|
|
23
|
+
external_file_id: typing.Optional[str]
|
|
24
|
+
file_size: typing.Optional[int]
|
|
25
|
+
last_modified_at: typing.Optional[dt.datetime]
|
|
26
|
+
resource_info: typing.Optional[typing.Dict[str, typing.Optional[FileCreateResourceInfoValue]]]
|
|
27
|
+
permission_info: typing.Optional[typing.Dict[str, typing.Optional[FileCreatePermissionInfoValue]]]
|
|
28
|
+
data_source_id: typing.Optional[str]
|
|
29
|
+
|
|
30
|
+
def json(self, **kwargs: typing.Any) -> str:
|
|
31
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
32
|
+
return super().json(**kwargs_with_defaults)
|
|
33
|
+
|
|
34
|
+
def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
|
|
35
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
36
|
+
return super().dict(**kwargs_with_defaults)
|
|
37
|
+
|
|
38
|
+
class Config:
|
|
39
|
+
frozen = True
|
|
40
|
+
smart_union = True
|
|
41
|
+
json_encoders = {dt.datetime: serialize_datetime}
|
|
@@ -0,0 +1,40 @@
|
|
|
1
|
+
# This file was auto-generated by Fern from our API Definition.
|
|
2
|
+
|
|
3
|
+
import datetime as dt
|
|
4
|
+
import typing
|
|
5
|
+
|
|
6
|
+
from ..core.datetime_utils import serialize_datetime
|
|
7
|
+
|
|
8
|
+
try:
|
|
9
|
+
import pydantic
|
|
10
|
+
if pydantic.__version__.startswith("1."):
|
|
11
|
+
raise ImportError
|
|
12
|
+
import pydantic.v1 as pydantic # type: ignore
|
|
13
|
+
except ImportError:
|
|
14
|
+
import pydantic # type: ignore
|
|
15
|
+
|
|
16
|
+
|
|
17
|
+
class FileFilter(pydantic.BaseModel):
|
|
18
|
+
"""
|
|
19
|
+
Filter parameters for file queries.
|
|
20
|
+
"""
|
|
21
|
+
|
|
22
|
+
project_id: typing.Optional[str]
|
|
23
|
+
file_ids: typing.Optional[typing.List[str]]
|
|
24
|
+
file_name: typing.Optional[str]
|
|
25
|
+
data_source_id: typing.Optional[str]
|
|
26
|
+
external_file_id: typing.Optional[str]
|
|
27
|
+
only_manually_uploaded: typing.Optional[bool]
|
|
28
|
+
|
|
29
|
+
def json(self, **kwargs: typing.Any) -> str:
|
|
30
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
31
|
+
return super().json(**kwargs_with_defaults)
|
|
32
|
+
|
|
33
|
+
def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
|
|
34
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
35
|
+
return super().dict(**kwargs_with_defaults)
|
|
36
|
+
|
|
37
|
+
class Config:
|
|
38
|
+
frozen = True
|
|
39
|
+
smart_union = True
|
|
40
|
+
json_encoders = {dt.datetime: serialize_datetime}
|
|
@@ -0,0 +1,38 @@
|
|
|
1
|
+
# This file was auto-generated by Fern from our API Definition.
|
|
2
|
+
|
|
3
|
+
import datetime as dt
|
|
4
|
+
import typing
|
|
5
|
+
|
|
6
|
+
from ..core.datetime_utils import serialize_datetime
|
|
7
|
+
from .file import File
|
|
8
|
+
|
|
9
|
+
try:
|
|
10
|
+
import pydantic
|
|
11
|
+
if pydantic.__version__.startswith("1."):
|
|
12
|
+
raise ImportError
|
|
13
|
+
import pydantic.v1 as pydantic # type: ignore
|
|
14
|
+
except ImportError:
|
|
15
|
+
import pydantic # type: ignore
|
|
16
|
+
|
|
17
|
+
|
|
18
|
+
class FileQueryResponse(pydantic.BaseModel):
|
|
19
|
+
"""
|
|
20
|
+
Response schema for paginated file queries.
|
|
21
|
+
"""
|
|
22
|
+
|
|
23
|
+
items: typing.List[File] = pydantic.Field(description="The list of items.")
|
|
24
|
+
next_page_token: typing.Optional[str]
|
|
25
|
+
total_size: typing.Optional[int]
|
|
26
|
+
|
|
27
|
+
def json(self, **kwargs: typing.Any) -> str:
|
|
28
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
29
|
+
return super().json(**kwargs_with_defaults)
|
|
30
|
+
|
|
31
|
+
def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
|
|
32
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
33
|
+
return super().dict(**kwargs_with_defaults)
|
|
34
|
+
|
|
35
|
+
class Config:
|
|
36
|
+
frozen = True
|
|
37
|
+
smart_union = True
|
|
38
|
+
json_encoders = {dt.datetime: serialize_datetime}
|
|
@@ -0,0 +1,34 @@
|
|
|
1
|
+
# This file was auto-generated by Fern from our API Definition.
|
|
2
|
+
|
|
3
|
+
import datetime as dt
|
|
4
|
+
import typing
|
|
5
|
+
|
|
6
|
+
from ..core.datetime_utils import serialize_datetime
|
|
7
|
+
from .file_store_info_response_status import FileStoreInfoResponseStatus
|
|
8
|
+
|
|
9
|
+
try:
|
|
10
|
+
import pydantic
|
|
11
|
+
if pydantic.__version__.startswith("1."):
|
|
12
|
+
raise ImportError
|
|
13
|
+
import pydantic.v1 as pydantic # type: ignore
|
|
14
|
+
except ImportError:
|
|
15
|
+
import pydantic # type: ignore
|
|
16
|
+
|
|
17
|
+
|
|
18
|
+
class FileStoreInfoResponse(pydantic.BaseModel):
|
|
19
|
+
available_buckets: typing.Optional[typing.Dict[str, str]]
|
|
20
|
+
unavailable_buckets: typing.Optional[typing.Dict[str, str]]
|
|
21
|
+
status: FileStoreInfoResponseStatus
|
|
22
|
+
|
|
23
|
+
def json(self, **kwargs: typing.Any) -> str:
|
|
24
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
25
|
+
return super().json(**kwargs_with_defaults)
|
|
26
|
+
|
|
27
|
+
def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
|
|
28
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
29
|
+
return super().dict(**kwargs_with_defaults)
|
|
30
|
+
|
|
31
|
+
class Config:
|
|
32
|
+
frozen = True
|
|
33
|
+
smart_union = True
|
|
34
|
+
json_encoders = {dt.datetime: serialize_datetime}
|
|
@@ -0,0 +1,25 @@
|
|
|
1
|
+
# This file was auto-generated by Fern from our API Definition.
|
|
2
|
+
|
|
3
|
+
import enum
|
|
4
|
+
import typing
|
|
5
|
+
|
|
6
|
+
T_Result = typing.TypeVar("T_Result")
|
|
7
|
+
|
|
8
|
+
|
|
9
|
+
class FileStoreInfoResponseStatus(str, enum.Enum):
|
|
10
|
+
OK = "ok"
|
|
11
|
+
MISSING_BUCKETS = "missing_buckets"
|
|
12
|
+
MISSING_CREDENTIALS = "missing_credentials"
|
|
13
|
+
|
|
14
|
+
def visit(
|
|
15
|
+
self,
|
|
16
|
+
ok: typing.Callable[[], T_Result],
|
|
17
|
+
missing_buckets: typing.Callable[[], T_Result],
|
|
18
|
+
missing_credentials: typing.Callable[[], T_Result],
|
|
19
|
+
) -> T_Result:
|
|
20
|
+
if self is FileStoreInfoResponseStatus.OK:
|
|
21
|
+
return ok()
|
|
22
|
+
if self is FileStoreInfoResponseStatus.MISSING_BUCKETS:
|
|
23
|
+
return missing_buckets()
|
|
24
|
+
if self is FileStoreInfoResponseStatus.MISSING_CREDENTIALS:
|
|
25
|
+
return missing_credentials()
|
|
@@ -0,0 +1,37 @@
|
|
|
1
|
+
# This file was auto-generated by Fern from our API Definition.
|
|
2
|
+
|
|
3
|
+
import datetime as dt
|
|
4
|
+
import typing
|
|
5
|
+
|
|
6
|
+
from ..core.datetime_utils import serialize_datetime
|
|
7
|
+
from .llama_extract_mode_availability_status import LlamaExtractModeAvailabilityStatus
|
|
8
|
+
|
|
9
|
+
try:
|
|
10
|
+
import pydantic
|
|
11
|
+
if pydantic.__version__.startswith("1."):
|
|
12
|
+
raise ImportError
|
|
13
|
+
import pydantic.v1 as pydantic # type: ignore
|
|
14
|
+
except ImportError:
|
|
15
|
+
import pydantic # type: ignore
|
|
16
|
+
|
|
17
|
+
|
|
18
|
+
class LlamaExtractModeAvailability(pydantic.BaseModel):
|
|
19
|
+
mode: str
|
|
20
|
+
status: LlamaExtractModeAvailabilityStatus
|
|
21
|
+
parse_mode: str
|
|
22
|
+
parse_models: typing.List[str]
|
|
23
|
+
extract_models: typing.List[str]
|
|
24
|
+
missing_models: typing.Optional[typing.List[str]]
|
|
25
|
+
|
|
26
|
+
def json(self, **kwargs: typing.Any) -> str:
|
|
27
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
28
|
+
return super().json(**kwargs_with_defaults)
|
|
29
|
+
|
|
30
|
+
def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
|
|
31
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
32
|
+
return super().dict(**kwargs_with_defaults)
|
|
33
|
+
|
|
34
|
+
class Config:
|
|
35
|
+
frozen = True
|
|
36
|
+
smart_union = True
|
|
37
|
+
json_encoders = {dt.datetime: serialize_datetime}
|
|
@@ -0,0 +1,17 @@
|
|
|
1
|
+
# This file was auto-generated by Fern from our API Definition.
|
|
2
|
+
|
|
3
|
+
import enum
|
|
4
|
+
import typing
|
|
5
|
+
|
|
6
|
+
T_Result = typing.TypeVar("T_Result")
|
|
7
|
+
|
|
8
|
+
|
|
9
|
+
class LlamaExtractModeAvailabilityStatus(str, enum.Enum):
|
|
10
|
+
AVAILABLE = "available"
|
|
11
|
+
UNAVAILABLE = "unavailable"
|
|
12
|
+
|
|
13
|
+
def visit(self, available: typing.Callable[[], T_Result], unavailable: typing.Callable[[], T_Result]) -> T_Result:
|
|
14
|
+
if self is LlamaExtractModeAvailabilityStatus.AVAILABLE:
|
|
15
|
+
return available()
|
|
16
|
+
if self is LlamaExtractModeAvailabilityStatus.UNAVAILABLE:
|
|
17
|
+
return unavailable()
|
|
@@ -14,6 +14,9 @@ class SupportedLlmModelNames(str, enum.Enum):
|
|
|
14
14
|
GPT_4_1_MINI = "GPT_4_1_MINI"
|
|
15
15
|
AZURE_OPENAI_GPT_4_O = "AZURE_OPENAI_GPT_4O"
|
|
16
16
|
AZURE_OPENAI_GPT_4_O_MINI = "AZURE_OPENAI_GPT_4O_MINI"
|
|
17
|
+
AZURE_OPENAI_GPT_4_1 = "AZURE_OPENAI_GPT_4_1"
|
|
18
|
+
AZURE_OPENAI_GPT_4_1_MINI = "AZURE_OPENAI_GPT_4_1_MINI"
|
|
19
|
+
AZURE_OPENAI_GPT_4_1_NANO = "AZURE_OPENAI_GPT_4_1_NANO"
|
|
17
20
|
CLAUDE_3_5_SONNET = "CLAUDE_3_5_SONNET"
|
|
18
21
|
BEDROCK_CLAUDE_3_5_SONNET_V_1 = "BEDROCK_CLAUDE_3_5_SONNET_V1"
|
|
19
22
|
BEDROCK_CLAUDE_3_5_SONNET_V_2 = "BEDROCK_CLAUDE_3_5_SONNET_V2"
|
|
@@ -28,6 +31,9 @@ class SupportedLlmModelNames(str, enum.Enum):
|
|
|
28
31
|
gpt_4_1_mini: typing.Callable[[], T_Result],
|
|
29
32
|
azure_openai_gpt_4_o: typing.Callable[[], T_Result],
|
|
30
33
|
azure_openai_gpt_4_o_mini: typing.Callable[[], T_Result],
|
|
34
|
+
azure_openai_gpt_4_1: typing.Callable[[], T_Result],
|
|
35
|
+
azure_openai_gpt_4_1_mini: typing.Callable[[], T_Result],
|
|
36
|
+
azure_openai_gpt_4_1_nano: typing.Callable[[], T_Result],
|
|
31
37
|
claude_3_5_sonnet: typing.Callable[[], T_Result],
|
|
32
38
|
bedrock_claude_3_5_sonnet_v_1: typing.Callable[[], T_Result],
|
|
33
39
|
bedrock_claude_3_5_sonnet_v_2: typing.Callable[[], T_Result],
|
|
@@ -47,6 +53,12 @@ class SupportedLlmModelNames(str, enum.Enum):
|
|
|
47
53
|
return azure_openai_gpt_4_o()
|
|
48
54
|
if self is SupportedLlmModelNames.AZURE_OPENAI_GPT_4_O_MINI:
|
|
49
55
|
return azure_openai_gpt_4_o_mini()
|
|
56
|
+
if self is SupportedLlmModelNames.AZURE_OPENAI_GPT_4_1:
|
|
57
|
+
return azure_openai_gpt_4_1()
|
|
58
|
+
if self is SupportedLlmModelNames.AZURE_OPENAI_GPT_4_1_MINI:
|
|
59
|
+
return azure_openai_gpt_4_1_mini()
|
|
60
|
+
if self is SupportedLlmModelNames.AZURE_OPENAI_GPT_4_1_NANO:
|
|
61
|
+
return azure_openai_gpt_4_1_nano()
|
|
50
62
|
if self is SupportedLlmModelNames.CLAUDE_3_5_SONNET:
|
|
51
63
|
return claude_3_5_sonnet()
|
|
52
64
|
if self is SupportedLlmModelNames.BEDROCK_CLAUDE_3_5_SONNET_V_1:
|
|
@@ -1,4 +1,4 @@
|
|
|
1
|
-
llama_cloud/__init__.py,sha256=
|
|
1
|
+
llama_cloud/__init__.py,sha256=h1hssl79cA7z_YQpPphW_UcHPXLfxyPqV8WqhJwbjUM,27687
|
|
2
2
|
llama_cloud/client.py,sha256=xIC_pTNYLA3AfLE8esqhrzam93LLo7oc6Vrog64Bwzw,6399
|
|
3
3
|
llama_cloud/core/__init__.py,sha256=QJS3CJ2TYP2E1Tge0CS6Z7r8LTNzJHQVX1hD3558eP0,519
|
|
4
4
|
llama_cloud/core/api_error.py,sha256=RE8LELok2QCjABadECTvtDp7qejA1VmINCh6TbqPwSE,426
|
|
@@ -9,21 +9,21 @@ llama_cloud/core/remove_none_from_dict.py,sha256=8m91FC3YuVem0Gm9_sXhJ2tGvP33owJ
|
|
|
9
9
|
llama_cloud/environment.py,sha256=feTjOebeFZMrBdnHat4RE5aHlpt-sJm4NhK4ntV1htI,167
|
|
10
10
|
llama_cloud/errors/__init__.py,sha256=pbbVUFtB9LCocA1RMWMMF_RKjsy5YkOKX5BAuE49w6g,170
|
|
11
11
|
llama_cloud/errors/unprocessable_entity_error.py,sha256=FvR7XPlV3Xx5nu8HNlmLhBRdk4so_gCHjYT5PyZe6sM,313
|
|
12
|
-
llama_cloud/resources/__init__.py,sha256=
|
|
12
|
+
llama_cloud/resources/__init__.py,sha256=PYMjBpAdnSZdd_tF9vTFuPbD4fyUDnhALjawaJ393H0,4297
|
|
13
13
|
llama_cloud/resources/admin/__init__.py,sha256=FTtvy8EDg9nNNg9WCatVgKTRYV8-_v1roeGPAKoa_pw,65
|
|
14
|
-
llama_cloud/resources/admin/client.py,sha256=
|
|
14
|
+
llama_cloud/resources/admin/client.py,sha256=YIYy9kU1_xaE0gkpmZZbCgLzZj6XSrAUplS7S2uWmwM,8536
|
|
15
15
|
llama_cloud/resources/agent_deployments/__init__.py,sha256=FTtvy8EDg9nNNg9WCatVgKTRYV8-_v1roeGPAKoa_pw,65
|
|
16
16
|
llama_cloud/resources/agent_deployments/client.py,sha256=3EOzOjmRs4KISgJ566enq3FCuN3YtskjO0OHqQGtkQ0,6122
|
|
17
17
|
llama_cloud/resources/beta/__init__.py,sha256=FTtvy8EDg9nNNg9WCatVgKTRYV8-_v1roeGPAKoa_pw,65
|
|
18
|
-
llama_cloud/resources/beta/client.py,sha256=
|
|
18
|
+
llama_cloud/resources/beta/client.py,sha256=_GNkHQxyZxhZOkLIRzfCw6PexQx-E8r_7R-3Wd9Y0uE,63128
|
|
19
19
|
llama_cloud/resources/chat_apps/__init__.py,sha256=FTtvy8EDg9nNNg9WCatVgKTRYV8-_v1roeGPAKoa_pw,65
|
|
20
20
|
llama_cloud/resources/chat_apps/client.py,sha256=orSI8rpQbUwVEToolEeiEi5Qe--suXFvfu6D9JDii5I,23595
|
|
21
21
|
llama_cloud/resources/classifier/__init__.py,sha256=FTtvy8EDg9nNNg9WCatVgKTRYV8-_v1roeGPAKoa_pw,65
|
|
22
|
-
llama_cloud/resources/classifier/client.py,sha256=
|
|
22
|
+
llama_cloud/resources/classifier/client.py,sha256=4oiCJVFPl1reWlXk_wEoX_r5_FeSc2dH_MKQyX8Xzro,13650
|
|
23
23
|
llama_cloud/resources/data_sinks/__init__.py,sha256=ZHUjn3HbKhq_7QS1q74r2m5RGKF5lxcvF2P6pGvpcis,147
|
|
24
24
|
llama_cloud/resources/data_sinks/client.py,sha256=GpD6FhbGqkg2oUToyMG6J8hPxG_iG7W5ZJRo0qg3yzk,20639
|
|
25
25
|
llama_cloud/resources/data_sinks/types/__init__.py,sha256=M1aTcufJwiEZo9B0KmYj9PfkSd6I1ooFt9tpIRGwgg8,168
|
|
26
|
-
llama_cloud/resources/data_sinks/types/data_sink_update_component.py,sha256=
|
|
26
|
+
llama_cloud/resources/data_sinks/types/data_sink_update_component.py,sha256=ynPdEg844hZaD6EcAK0jrMY_vogtvmLTZ7FZSwWcor8,912
|
|
27
27
|
llama_cloud/resources/data_sources/__init__.py,sha256=McURkcNBGHXH1hmRDRmZI1dRzJrekCTHZsgv03r2oZI,227
|
|
28
28
|
llama_cloud/resources/data_sources/client.py,sha256=SZFm8bW5nkaXringdSnmxHqvVjKM7cNNOtqVXjgTKhc,21855
|
|
29
29
|
llama_cloud/resources/data_sources/types/__init__.py,sha256=Cd5xEECTzXqQSfJALfJPSjudlSLeb3RENeJVi8vwPbM,303
|
|
@@ -35,16 +35,14 @@ llama_cloud/resources/embedding_model_configs/types/__init__.py,sha256=6-rcDwJhw
|
|
|
35
35
|
llama_cloud/resources/embedding_model_configs/types/embedding_model_config_create_embedding_config.py,sha256=SQCHJk0AmBbKS5XKdcEJxhDhIMLQCmCI13IHC28v7vQ,3054
|
|
36
36
|
llama_cloud/resources/evals/__init__.py,sha256=FTtvy8EDg9nNNg9WCatVgKTRYV8-_v1roeGPAKoa_pw,65
|
|
37
37
|
llama_cloud/resources/evals/client.py,sha256=v2AyeQV0hVgC6xoP2gJNgneJMaeXALV1hIeirYGxlPw,3242
|
|
38
|
-
llama_cloud/resources/files/__init__.py,sha256=
|
|
39
|
-
llama_cloud/resources/files/client.py,sha256=
|
|
40
|
-
llama_cloud/resources/files/types/__init__.py,sha256=
|
|
38
|
+
llama_cloud/resources/files/__init__.py,sha256=Ws53l-S3kyAGFinYPOb9WpN84DtbFn6gLYZtI2akBLQ,169
|
|
39
|
+
llama_cloud/resources/files/client.py,sha256=Crd0IR0cV5fld4jUGAHE8VsIbw7vCYrOIyBTSwDyitA,56242
|
|
40
|
+
llama_cloud/resources/files/types/__init__.py,sha256=ZZuDQsYsxmQ9VwpfN7oqftzGRnFTR2EMYdCa7zARo4g,204
|
|
41
41
|
llama_cloud/resources/files/types/file_create_from_url_resource_info_value.py,sha256=Wc8wFgujOO5pZvbbh2TMMzpa37GKZd14GYNJ9bdq7BE,214
|
|
42
|
-
llama_cloud/resources/files/types/file_create_permission_info_value.py,sha256=KPCFuEaa8NiB85A5MfdXRAQ0poAUTl7Feg6BTfmdWas,209
|
|
43
|
-
llama_cloud/resources/files/types/file_create_resource_info_value.py,sha256=R7Y-CJf7fnbvIqE3xOI5XOrmPwLbVJLC7zpxMu8Zopk,201
|
|
44
42
|
llama_cloud/resources/jobs/__init__.py,sha256=FTtvy8EDg9nNNg9WCatVgKTRYV8-_v1roeGPAKoa_pw,65
|
|
45
43
|
llama_cloud/resources/jobs/client.py,sha256=gv_N8e0lay7cjt6MCwx-Cj4FiCXKhbyCDaWbadaJpgY,6270
|
|
46
44
|
llama_cloud/resources/llama_extract/__init__.py,sha256=V6VZ8hQXwAuvOOZyk43nnbINoDQqEr03AjKQPhYKluk,997
|
|
47
|
-
llama_cloud/resources/llama_extract/client.py,sha256=
|
|
45
|
+
llama_cloud/resources/llama_extract/client.py,sha256=B_qhVsk-Qs81qrFOVgWqcvelSB3TLWFJCibnn--3BjE,83096
|
|
48
46
|
llama_cloud/resources/llama_extract/types/__init__.py,sha256=2Iu4w5LXZY2Govr1RzahIfY0b84y658SQjMDtj7rH_0,1497
|
|
49
47
|
llama_cloud/resources/llama_extract/types/extract_agent_create_data_schema.py,sha256=zB31hJQ8hKaIsPkfTWiX5hqsPVFMyyeWEDZ_Aq237jo,305
|
|
50
48
|
llama_cloud/resources/llama_extract/types/extract_agent_create_data_schema_zero_value.py,sha256=xoyXH3f0Y5beMWBxmtXSz6QoB_df_-0QBsYdjBhZnGw,217
|
|
@@ -77,7 +75,7 @@ llama_cloud/resources/retrievers/__init__.py,sha256=FTtvy8EDg9nNNg9WCatVgKTRYV8-
|
|
|
77
75
|
llama_cloud/resources/retrievers/client.py,sha256=z2LhmA-cZVFzr9P6loeCZYnJbvSIk0QitFeVFp-IyZk,32126
|
|
78
76
|
llama_cloud/resources/users/__init__.py,sha256=FTtvy8EDg9nNNg9WCatVgKTRYV8-_v1roeGPAKoa_pw,65
|
|
79
77
|
llama_cloud/resources/users/client.py,sha256=A2s8e2syQHkkSwPz-Lrt_Zxp1K-8nqJqj5EafE6NWYs,5545
|
|
80
|
-
llama_cloud/types/__init__.py,sha256=
|
|
78
|
+
llama_cloud/types/__init__.py,sha256=l9f6mCL1dMOR2kl7HUdKLuHOUOXHHo6sxi2-8ZP8Tx8,33685
|
|
81
79
|
llama_cloud/types/advanced_mode_transform_config.py,sha256=4xCXye0_cPmVS1F8aNTx81sIaEPjQH9kiCCAIoqUzlI,1502
|
|
82
80
|
llama_cloud/types/advanced_mode_transform_config_chunking_config.py,sha256=wYbJnWLpeQDfhmDZz-wJfYzD1iGT5Jcxb9ga3mzUuvk,1983
|
|
83
81
|
llama_cloud/types/advanced_mode_transform_config_segmentation_config.py,sha256=anNGq0F5-IlbIW3kpC8OilzLJnUq5tdIcWHnRnmlYsg,1303
|
|
@@ -106,12 +104,17 @@ llama_cloud/types/chat_app.py,sha256=fLuzYkXLq51C_Y23hoLwfmG-OiT7jlyHt2JGe6-f1IA
|
|
|
106
104
|
llama_cloud/types/chat_app_response.py,sha256=WSKr1KI9_pGTSstr3I53kZ8qb3y87Q4ulh8fR0C7sSU,1784
|
|
107
105
|
llama_cloud/types/chat_data.py,sha256=ZYqVtjXF6qPGajU4IWZu3InpU54TXJwBFiqxBepylP0,1197
|
|
108
106
|
llama_cloud/types/chunk_mode.py,sha256=J4vqAQfQG6PWsIv1Fe_99nVsAfDbv_P81_KVsJ9AkU4,790
|
|
109
|
-
llama_cloud/types/classification_result.py,sha256=
|
|
110
|
-
llama_cloud/types/
|
|
107
|
+
llama_cloud/types/classification_result.py,sha256=1faExxbtJLoYjy0h0Gl38Shk2idySEOenJBjQlcRpXs,1309
|
|
108
|
+
llama_cloud/types/classifier_rule.py,sha256=-64iBABkQ_IXN8rA77xA6L4xSsj8epTVT9Z1C7ypGx0,1533
|
|
109
|
+
llama_cloud/types/classify_job.py,sha256=tT1_9g_PkBqTkq7xMpsfT4nMICwXXcqyl4ldsfCHICc,1654
|
|
110
|
+
llama_cloud/types/classify_job_results.py,sha256=gasxmGX4D1cJuAY0z8Sm7PuZ1TIeEPYzp6VggWeelko,1279
|
|
111
|
+
llama_cloud/types/classify_job_with_status.py,sha256=DwJIfzuaUoLZ0KAA2dGj6DhZ9FtrUFtZRRrkH0BmekM,1798
|
|
112
|
+
llama_cloud/types/classify_parsing_configuration.py,sha256=FMbDCtz9gGu557WRtiKkMsKfzPWuDF-XKW8Z2DeOL9g,1270
|
|
113
|
+
llama_cloud/types/cloud_astra_db_vector_store.py,sha256=uvPZcMk0QISyMee0n2Z6QapCIejvibY94XWn5gmieO8,2065
|
|
111
114
|
llama_cloud/types/cloud_az_storage_blob_data_source.py,sha256=NT4cYsD1M868_bSJxKM9cvTMtjQtQxKloE4vRv8_lwg,1534
|
|
112
115
|
llama_cloud/types/cloud_azure_ai_search_vector_store.py,sha256=9GTaft7BaKsR9RJQp5dlpbslXUlTMA1AcDdKV1ApfqI,1513
|
|
113
116
|
llama_cloud/types/cloud_box_data_source.py,sha256=9bffCaKGvctSsk9OdTpzzP__O1NDpb9wdvKY2uwjpwY,1470
|
|
114
|
-
llama_cloud/types/cloud_confluence_data_source.py,sha256=
|
|
117
|
+
llama_cloud/types/cloud_confluence_data_source.py,sha256=q-bBwkG5L2QZqZdPDlvgzdz9Fv0jz4nn2Qpea3J0xu0,2303
|
|
115
118
|
llama_cloud/types/cloud_document.py,sha256=Rg_H8lcz2TzxEAIdU-m5mGpkM7s0j1Cn4JHkXYddmGs,1255
|
|
116
119
|
llama_cloud/types/cloud_document_create.py,sha256=fQ1gZAtLCpr-a-sPbMez_5fK9JMU3uyp2tNvIzWNG3U,1278
|
|
117
120
|
llama_cloud/types/cloud_jira_data_source.py,sha256=9R20k8Ne0Bl9X5dgSxpM_IGOFmC70Llz0pJ93rAKRvw,1458
|
|
@@ -131,13 +134,13 @@ llama_cloud/types/composite_retrieval_mode.py,sha256=PtN0vQ90xyAJL4vyGRG4lMNOpnJ
|
|
|
131
134
|
llama_cloud/types/composite_retrieval_result.py,sha256=EulVseVvpK50kto4wQweLO7jJe6l6Ym1erKa4dOl4CU,1801
|
|
132
135
|
llama_cloud/types/composite_retrieved_text_node.py,sha256=eTQ99cdZ2PASff5n4oVV1oaNiS9Ie3AtY_E55kBYpBs,1702
|
|
133
136
|
llama_cloud/types/composite_retrieved_text_node_with_score.py,sha256=o-HvmyjqODc68zYuobtj10_62FMBAKRLfRoTHGDdmxw,1148
|
|
134
|
-
llama_cloud/types/configurable_data_sink_names.py,sha256=
|
|
137
|
+
llama_cloud/types/configurable_data_sink_names.py,sha256=eGSnwk5yWffBBc0C3Iuh8RlynGTmRC1hqVv0JlUfbNE,1385
|
|
135
138
|
llama_cloud/types/configurable_data_source_names.py,sha256=mNW71sSgcVhU3kePAOUgRxeqK1Vo7F_J1xIzmYKPRq0,1971
|
|
136
139
|
llama_cloud/types/credit_type.py,sha256=nwSRKDWgHk_msdWitctqtyeZwj5EFd6VLto6NF2yCd4,971
|
|
137
140
|
llama_cloud/types/data_sink.py,sha256=PeexYHHoD8WkVp9WsFtfC-AIWszcgeJUprG1bwC8WsQ,1498
|
|
138
|
-
llama_cloud/types/data_sink_component.py,sha256=
|
|
141
|
+
llama_cloud/types/data_sink_component.py,sha256=yNX2YbevUd6RIbaAvkB40ttU0VSx2JBF-eCuLB_Au9Y,843
|
|
139
142
|
llama_cloud/types/data_sink_create.py,sha256=dAaFPCwZ5oX0Fbf7ij62dzSaYnrhj3EHmnLnYnw2KgI,1360
|
|
140
|
-
llama_cloud/types/data_sink_create_component.py,sha256=
|
|
143
|
+
llama_cloud/types/data_sink_create_component.py,sha256=0LWeqGDeQh3cZm2h5_IrSlFoU5VKmIILaOdE1VtPtfc,849
|
|
141
144
|
llama_cloud/types/data_source.py,sha256=QkJsQBlLt7cX0FxYuNF1w9yZw1BnNcGiQTTfMAuxiEM,1852
|
|
142
145
|
llama_cloud/types/data_source_component.py,sha256=QBxAneOFe8crS0z-eFo3gd1siToQ4hYsLdfB4p3ZeVU,974
|
|
143
146
|
llama_cloud/types/data_source_create.py,sha256=s0bAX_GUwiRdrL-PXS9ROrvq3xpmqbqzdMa6thqL2P4,1581
|
|
@@ -187,13 +190,22 @@ llama_cloud/types/extract_schema_validate_response_data_schema_value.py,sha256=l
|
|
|
187
190
|
llama_cloud/types/extract_state.py,sha256=TNeVAXXKZaiM2srlbQlzRSn4_TDpR4xyT_yQhJUxFvk,775
|
|
188
191
|
llama_cloud/types/extract_target.py,sha256=Gt-FNqblzcjdfq1hxsqEjWWu-HNLXdKy4w98nog52Ms,478
|
|
189
192
|
llama_cloud/types/fail_page_mode.py,sha256=n4fgPpiEB5siPoEg0Sux4COg7ElNybjshxDoUihZwRU,786
|
|
193
|
+
llama_cloud/types/failure_handling_config.py,sha256=EmAQW0qm7-JTSYFwhmIWxqkVNWym_AyAJIMEmeI9Cqc,1216
|
|
190
194
|
llama_cloud/types/file.py,sha256=rQXitPRKOYw91nK5qOZ0vpOmIx_MCpRb0g78d9dQs6w,1822
|
|
195
|
+
llama_cloud/types/file_classification.py,sha256=jKzAc_3rg0Usyf3TNr-bI5HZn9zGIj9vYH90RKoDtiY,1418
|
|
191
196
|
llama_cloud/types/file_count_by_status_response.py,sha256=WuorbZvKjDs9Ql1hUiQu4gN5iCm8d6fr92KLyHpRvQU,1356
|
|
197
|
+
llama_cloud/types/file_create.py,sha256=eLUC50CzXOdAR_P2mBtX_R7kGteIVbP1V3LzuP1s0Xs,1629
|
|
198
|
+
llama_cloud/types/file_create_permission_info_value.py,sha256=KPCFuEaa8NiB85A5MfdXRAQ0poAUTl7Feg6BTfmdWas,209
|
|
199
|
+
llama_cloud/types/file_create_resource_info_value.py,sha256=R7Y-CJf7fnbvIqE3xOI5XOrmPwLbVJLC7zpxMu8Zopk,201
|
|
192
200
|
llama_cloud/types/file_data.py,sha256=dH2SNK9ZM-ZH7uKFIfBsk8bVixM33rUr40BdZWFXLhU,1225
|
|
201
|
+
llama_cloud/types/file_filter.py,sha256=VMP_NxXhhyUKInwPTcGPXYO2r5Q17ilds_tXgy6jteo,1257
|
|
193
202
|
llama_cloud/types/file_id_presigned_url.py,sha256=Yr_MGFKbuBEHK4efRSK53fHcoo5bbAKnqQGGhMycUc0,1398
|
|
194
203
|
llama_cloud/types/file_parse_public.py,sha256=sshZ0BcjHMGpuz4ylSurv0K_3ejfPrUGGyDxBHCtdMg,1378
|
|
195
204
|
llama_cloud/types/file_permission_info_value.py,sha256=RyQlNbhvIKS87Ywu7XUaw5jDToZX64M9Wqzu1U_q2Us,197
|
|
205
|
+
llama_cloud/types/file_query_response.py,sha256=e92h6xJoqGPM9VSDy7wnrkQpsaxrVH8YVHzRIgTTl-g,1199
|
|
196
206
|
llama_cloud/types/file_resource_info_value.py,sha256=g6T6ELeLK9jgcvX6r-EuAl_4JkwnyqdS0RRoabMReSU,195
|
|
207
|
+
llama_cloud/types/file_store_info_response.py,sha256=YztOvESSDM52urD0gyO47RPWz-kZEjIpEYSeZYfkCLk,1195
|
|
208
|
+
llama_cloud/types/file_store_info_response_status.py,sha256=UiPdZDEACVuiZ6zqkLnAYJVIxa-TIVwGN6_xF9lt9Xc,778
|
|
197
209
|
llama_cloud/types/filter_condition.py,sha256=YEc-NaZbMha4oZVSKerZ6-gNYriNOZmTHTRMKX-9Ju0,678
|
|
198
210
|
llama_cloud/types/filter_operation.py,sha256=lzyF_LQ-bT_wubU2bSbV6q2oncCE3mypz3D6qkAR86U,1663
|
|
199
211
|
llama_cloud/types/filter_operation_eq.py,sha256=7UQkjycQvUFBvd1KRWfNacXAEgp2eGG6XNej0EikP1M,165
|
|
@@ -221,6 +233,8 @@ llama_cloud/types/job_record_with_usage_metrics.py,sha256=iNV2do5TB_0e3PoOz_DJyA
|
|
|
221
233
|
llama_cloud/types/l_lama_parse_transform_config.py,sha256=YQRJZvKh1Ee2FUyW_N0nqYJoW599qBgH3JCH9SH6YLo,1249
|
|
222
234
|
llama_cloud/types/legacy_parse_job_config.py,sha256=eEPExbkUi9J7lQoY0Fuc2HK_RlhPmO30cMkfjtmmizs,12832
|
|
223
235
|
llama_cloud/types/license_info_response.py,sha256=fE9vcWO8k92SBqb_wOyBu_16C61s72utA-SifEi9iBc,1192
|
|
236
|
+
llama_cloud/types/llama_extract_mode_availability.py,sha256=7XelUrLe9wteCeEnP_shnb485lwKo56A2EZ66bq9HQw,1257
|
|
237
|
+
llama_cloud/types/llama_extract_mode_availability_status.py,sha256=_ildgVCsBdqOLD__qdEjcYxqgKunXhJ_VHUeqjZJX8c,566
|
|
224
238
|
llama_cloud/types/llama_extract_settings.py,sha256=YKhhyUNgqpowTdTx715Uk13GdBsxCUZLVsLi5iYQIiY,2767
|
|
225
239
|
llama_cloud/types/llama_index_core_base_llms_types_chat_message.py,sha256=NelHo-T-ebVMhRKsqE_xV8AJW4c7o6lS0uEQnPsmTwg,1365
|
|
226
240
|
llama_cloud/types/llama_index_core_base_llms_types_chat_message_blocks_item.py,sha256=-aL8fh-w2Xf4uQs_LHzb3q6LL_onLAcVzCR5yMI4qJw,1571
|
|
@@ -356,7 +370,7 @@ llama_cloud/types/status_enum.py,sha256=cUBIlys89E8PUzmVqqawu7qTDF0aRqBwiijOmRDP
|
|
|
356
370
|
llama_cloud/types/struct_mode.py,sha256=ROicwjXfFmgVU8_xSVxJlnFUzRNKG5VIEF1wYg9uOPU,1020
|
|
357
371
|
llama_cloud/types/struct_parse_conf.py,sha256=3QQBy8VP9JB16d4fTGK_GiU6PUALIOWCN9GYI3in6ic,2439
|
|
358
372
|
llama_cloud/types/supported_llm_model.py,sha256=hubSopFICVNEegbJbtbpK6zRHwFPwUNtrw_NAw_3bfg,1380
|
|
359
|
-
llama_cloud/types/supported_llm_model_names.py,sha256=
|
|
373
|
+
llama_cloud/types/supported_llm_model_names.py,sha256=w2FrfffSwpJflq1EoO6Kw7ViTOZNGX4hf60k0Qf3VLA,3213
|
|
360
374
|
llama_cloud/types/text_block.py,sha256=X154sQkSyposXuRcEWNp_tWcDQ-AI6q_-MfJUN5exP8,958
|
|
361
375
|
llama_cloud/types/text_node.py,sha256=Tq3QmuKC5cIHvC9wAtvhsXl1g2sACs2yJwQ0Uko8GSU,2846
|
|
362
376
|
llama_cloud/types/text_node_relationships_value.py,sha256=qmXURTk1Xg7ZDzRSSV1uDEel0AXRLohND5ioezibHY0,217
|
|
@@ -380,7 +394,7 @@ llama_cloud/types/vertex_embedding_mode.py,sha256=yY23FjuWU_DkXjBb3JoKV4SCMqel2B
|
|
|
380
394
|
llama_cloud/types/vertex_text_embedding.py,sha256=-C4fNCYfFl36ATdBMGFVPpiHIKxjk0KB1ERA2Ec20aU,1932
|
|
381
395
|
llama_cloud/types/webhook_configuration.py,sha256=_Xm15whrWoKNBuCoO5y_NunA-ByhCAYK87LnC4W-Pzg,1350
|
|
382
396
|
llama_cloud/types/webhook_configuration_webhook_events_item.py,sha256=OL3moFO_6hsKZYSBQBsSHmWA0NgLcLJgBPZfABwT60c,2544
|
|
383
|
-
llama_cloud-0.1.
|
|
384
|
-
llama_cloud-0.1.
|
|
385
|
-
llama_cloud-0.1.
|
|
386
|
-
llama_cloud-0.1.
|
|
397
|
+
llama_cloud-0.1.37.dist-info/LICENSE,sha256=_iNqtPcw1Ue7dZKwOwgPtbegMUkWVy15hC7bffAdNmY,1067
|
|
398
|
+
llama_cloud-0.1.37.dist-info/METADATA,sha256=3ZhEF_4jLcePL5FpH8KPjt1q2VOMivGivd20sul-Hps,1194
|
|
399
|
+
llama_cloud-0.1.37.dist-info/WHEEL,sha256=b4K_helf-jlQoXBBETfwnf4B04YC67LOev0jo4fX5m8,88
|
|
400
|
+
llama_cloud-0.1.37.dist-info/RECORD,,
|