llama-cloud 0.1.30__py3-none-any.whl → 0.1.32__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of llama-cloud might be problematic. Click here for more details.

Files changed (39) hide show
  1. llama_cloud/__init__.py +26 -14
  2. llama_cloud/client.py +0 -3
  3. llama_cloud/resources/__init__.py +0 -2
  4. llama_cloud/resources/beta/client.py +602 -0
  5. llama_cloud/resources/organizations/client.py +2 -2
  6. llama_cloud/resources/parsing/client.py +8 -0
  7. llama_cloud/resources/pipelines/client.py +64 -0
  8. llama_cloud/types/__init__.py +26 -12
  9. llama_cloud/types/{model_configuration.py → agent_data.py} +8 -7
  10. llama_cloud/types/agent_deployment_summary.py +1 -1
  11. llama_cloud/types/{message.py → aggregate_group.py} +8 -9
  12. llama_cloud/types/base_plan.py +3 -0
  13. llama_cloud/types/extract_mode.py +0 -4
  14. llama_cloud/types/filter_operation.py +46 -0
  15. llama_cloud/types/filter_operation_eq.py +6 -0
  16. llama_cloud/types/filter_operation_gt.py +6 -0
  17. llama_cloud/types/filter_operation_gte.py +6 -0
  18. llama_cloud/types/filter_operation_includes_item.py +6 -0
  19. llama_cloud/types/filter_operation_lt.py +6 -0
  20. llama_cloud/types/filter_operation_lte.py +6 -0
  21. llama_cloud/types/input_message.py +2 -2
  22. llama_cloud/types/legacy_parse_job_config.py +3 -0
  23. llama_cloud/types/llama_index_core_base_llms_types_chat_message.py +2 -2
  24. llama_cloud/types/llama_parse_parameters.py +1 -0
  25. llama_cloud/types/{llama_index_core_base_llms_types_message_role.py → message_role.py} +9 -9
  26. llama_cloud/types/{text_content_block.py → paginated_response_agent_data.py} +5 -5
  27. llama_cloud/types/paginated_response_aggregate_group.py +34 -0
  28. llama_cloud/types/parse_job_config.py +1 -0
  29. llama_cloud/types/playground_session.py +2 -2
  30. llama_cloud/types/role.py +0 -1
  31. llama_cloud/types/{app_schema_chat_chat_message.py → src_app_schema_chat_chat_message.py} +3 -3
  32. llama_cloud/types/user_organization_role.py +0 -1
  33. {llama_cloud-0.1.30.dist-info → llama_cloud-0.1.32.dist-info}/METADATA +1 -1
  34. {llama_cloud-0.1.30.dist-info → llama_cloud-0.1.32.dist-info}/RECORD +36 -31
  35. llama_cloud/resources/responses/__init__.py +0 -2
  36. llama_cloud/resources/responses/client.py +0 -137
  37. llama_cloud/types/app_schema_responses_message_role.py +0 -33
  38. {llama_cloud-0.1.30.dist-info → llama_cloud-0.1.32.dist-info}/LICENSE +0 -0
  39. {llama_cloud-0.1.30.dist-info → llama_cloud-0.1.32.dist-info}/WHEEL +0 -0
@@ -9,11 +9,15 @@ from ...core.client_wrapper import AsyncClientWrapper, SyncClientWrapper
9
9
  from ...core.jsonable_encoder import jsonable_encoder
10
10
  from ...core.remove_none_from_dict import remove_none_from_dict
11
11
  from ...errors.unprocessable_entity_error import UnprocessableEntityError
12
+ from ...types.agent_data import AgentData
12
13
  from ...types.batch import Batch
13
14
  from ...types.batch_paginated_list import BatchPaginatedList
14
15
  from ...types.batch_public_output import BatchPublicOutput
16
+ from ...types.filter_operation import FilterOperation
15
17
  from ...types.http_validation_error import HttpValidationError
16
18
  from ...types.llama_parse_parameters import LlamaParseParameters
19
+ from ...types.paginated_response_agent_data import PaginatedResponseAgentData
20
+ from ...types.paginated_response_aggregate_group import PaginatedResponseAggregateGroup
17
21
 
18
22
  try:
19
23
  import pydantic
@@ -204,6 +208,305 @@ class BetaClient:
204
208
  raise ApiError(status_code=_response.status_code, body=_response.text)
205
209
  raise ApiError(status_code=_response.status_code, body=_response_json)
206
210
 
211
+ def get_agent_data(self, item_id: str) -> AgentData:
212
+ """
213
+ Get agent data by ID.
214
+
215
+ Parameters:
216
+ - item_id: str.
217
+ ---
218
+ from llama_cloud.client import LlamaCloud
219
+
220
+ client = LlamaCloud(
221
+ token="YOUR_TOKEN",
222
+ )
223
+ client.beta.get_agent_data(
224
+ item_id="string",
225
+ )
226
+ """
227
+ _response = self._client_wrapper.httpx_client.request(
228
+ "GET",
229
+ urllib.parse.urljoin(f"{self._client_wrapper.get_base_url()}/", f"api/v1/beta/agent-data/{item_id}"),
230
+ headers=self._client_wrapper.get_headers(),
231
+ timeout=60,
232
+ )
233
+ if 200 <= _response.status_code < 300:
234
+ return pydantic.parse_obj_as(AgentData, _response.json()) # type: ignore
235
+ if _response.status_code == 422:
236
+ raise UnprocessableEntityError(pydantic.parse_obj_as(HttpValidationError, _response.json())) # type: ignore
237
+ try:
238
+ _response_json = _response.json()
239
+ except JSONDecodeError:
240
+ raise ApiError(status_code=_response.status_code, body=_response.text)
241
+ raise ApiError(status_code=_response.status_code, body=_response_json)
242
+
243
+ def update_agent_data(self, item_id: str, *, data: typing.Dict[str, typing.Any]) -> AgentData:
244
+ """
245
+ Update agent data by ID (overwrites).
246
+
247
+ Parameters:
248
+ - item_id: str.
249
+
250
+ - data: typing.Dict[str, typing.Any].
251
+ ---
252
+ from llama_cloud.client import LlamaCloud
253
+
254
+ client = LlamaCloud(
255
+ token="YOUR_TOKEN",
256
+ )
257
+ client.beta.update_agent_data(
258
+ item_id="string",
259
+ data={"string": {}},
260
+ )
261
+ """
262
+ _response = self._client_wrapper.httpx_client.request(
263
+ "PUT",
264
+ urllib.parse.urljoin(f"{self._client_wrapper.get_base_url()}/", f"api/v1/beta/agent-data/{item_id}"),
265
+ json=jsonable_encoder({"data": data}),
266
+ headers=self._client_wrapper.get_headers(),
267
+ timeout=60,
268
+ )
269
+ if 200 <= _response.status_code < 300:
270
+ return pydantic.parse_obj_as(AgentData, _response.json()) # type: ignore
271
+ if _response.status_code == 422:
272
+ raise UnprocessableEntityError(pydantic.parse_obj_as(HttpValidationError, _response.json())) # type: ignore
273
+ try:
274
+ _response_json = _response.json()
275
+ except JSONDecodeError:
276
+ raise ApiError(status_code=_response.status_code, body=_response.text)
277
+ raise ApiError(status_code=_response.status_code, body=_response_json)
278
+
279
+ def delete_agent_data(self, item_id: str) -> typing.Dict[str, str]:
280
+ """
281
+ Delete agent data by ID.
282
+
283
+ Parameters:
284
+ - item_id: str.
285
+ ---
286
+ from llama_cloud.client import LlamaCloud
287
+
288
+ client = LlamaCloud(
289
+ token="YOUR_TOKEN",
290
+ )
291
+ client.beta.delete_agent_data(
292
+ item_id="string",
293
+ )
294
+ """
295
+ _response = self._client_wrapper.httpx_client.request(
296
+ "DELETE",
297
+ urllib.parse.urljoin(f"{self._client_wrapper.get_base_url()}/", f"api/v1/beta/agent-data/{item_id}"),
298
+ headers=self._client_wrapper.get_headers(),
299
+ timeout=60,
300
+ )
301
+ if 200 <= _response.status_code < 300:
302
+ return pydantic.parse_obj_as(typing.Dict[str, str], _response.json()) # type: ignore
303
+ if _response.status_code == 422:
304
+ raise UnprocessableEntityError(pydantic.parse_obj_as(HttpValidationError, _response.json())) # type: ignore
305
+ try:
306
+ _response_json = _response.json()
307
+ except JSONDecodeError:
308
+ raise ApiError(status_code=_response.status_code, body=_response.text)
309
+ raise ApiError(status_code=_response.status_code, body=_response_json)
310
+
311
+ def create_agent_data_api_v_1_beta_agent_data_post(
312
+ self, *, agent_slug: str, collection: typing.Optional[str] = OMIT, data: typing.Dict[str, typing.Any]
313
+ ) -> AgentData:
314
+ """
315
+ Create new agent data.
316
+
317
+ Parameters:
318
+ - agent_slug: str.
319
+
320
+ - collection: typing.Optional[str].
321
+
322
+ - data: typing.Dict[str, typing.Any].
323
+ ---
324
+ from llama_cloud.client import LlamaCloud
325
+
326
+ client = LlamaCloud(
327
+ token="YOUR_TOKEN",
328
+ )
329
+ client.beta.create_agent_data_api_v_1_beta_agent_data_post(
330
+ agent_slug="string",
331
+ data={"string": {}},
332
+ )
333
+ """
334
+ _request: typing.Dict[str, typing.Any] = {"agent_slug": agent_slug, "data": data}
335
+ if collection is not OMIT:
336
+ _request["collection"] = collection
337
+ _response = self._client_wrapper.httpx_client.request(
338
+ "POST",
339
+ urllib.parse.urljoin(f"{self._client_wrapper.get_base_url()}/", "api/v1/beta/agent-data"),
340
+ json=jsonable_encoder(_request),
341
+ headers=self._client_wrapper.get_headers(),
342
+ timeout=60,
343
+ )
344
+ if 200 <= _response.status_code < 300:
345
+ return pydantic.parse_obj_as(AgentData, _response.json()) # type: ignore
346
+ if _response.status_code == 422:
347
+ raise UnprocessableEntityError(pydantic.parse_obj_as(HttpValidationError, _response.json())) # type: ignore
348
+ try:
349
+ _response_json = _response.json()
350
+ except JSONDecodeError:
351
+ raise ApiError(status_code=_response.status_code, body=_response.text)
352
+ raise ApiError(status_code=_response.status_code, body=_response_json)
353
+
354
+ def search_agent_data_api_v_1_beta_agent_data_search_post(
355
+ self,
356
+ *,
357
+ page_size: typing.Optional[int] = OMIT,
358
+ page_token: typing.Optional[str] = OMIT,
359
+ filter: typing.Optional[typing.Dict[str, typing.Optional[FilterOperation]]] = OMIT,
360
+ order_by: typing.Optional[str] = OMIT,
361
+ agent_slug: str,
362
+ collection: typing.Optional[str] = OMIT,
363
+ include_total: typing.Optional[bool] = OMIT,
364
+ offset: typing.Optional[int] = OMIT,
365
+ ) -> PaginatedResponseAgentData:
366
+ """
367
+ Search agent data with filtering, sorting, and pagination.
368
+
369
+ Parameters:
370
+ - page_size: typing.Optional[int].
371
+
372
+ - page_token: typing.Optional[str].
373
+
374
+ - filter: typing.Optional[typing.Dict[str, typing.Optional[FilterOperation]]].
375
+
376
+ - order_by: typing.Optional[str].
377
+
378
+ - agent_slug: str. The agent deployment's agent_slug to search within
379
+
380
+ - collection: typing.Optional[str]. The logical agent data collection to search within
381
+
382
+ - include_total: typing.Optional[bool]. Whether to include the total number of items in the response
383
+
384
+ - offset: typing.Optional[int].
385
+ ---
386
+ from llama_cloud.client import LlamaCloud
387
+
388
+ client = LlamaCloud(
389
+ token="YOUR_TOKEN",
390
+ )
391
+ client.beta.search_agent_data_api_v_1_beta_agent_data_search_post(
392
+ agent_slug="string",
393
+ )
394
+ """
395
+ _request: typing.Dict[str, typing.Any] = {"agent_slug": agent_slug}
396
+ if page_size is not OMIT:
397
+ _request["page_size"] = page_size
398
+ if page_token is not OMIT:
399
+ _request["page_token"] = page_token
400
+ if filter is not OMIT:
401
+ _request["filter"] = filter
402
+ if order_by is not OMIT:
403
+ _request["order_by"] = order_by
404
+ if collection is not OMIT:
405
+ _request["collection"] = collection
406
+ if include_total is not OMIT:
407
+ _request["include_total"] = include_total
408
+ if offset is not OMIT:
409
+ _request["offset"] = offset
410
+ _response = self._client_wrapper.httpx_client.request(
411
+ "POST",
412
+ urllib.parse.urljoin(f"{self._client_wrapper.get_base_url()}/", "api/v1/beta/agent-data/:search"),
413
+ json=jsonable_encoder(_request),
414
+ headers=self._client_wrapper.get_headers(),
415
+ timeout=60,
416
+ )
417
+ if 200 <= _response.status_code < 300:
418
+ return pydantic.parse_obj_as(PaginatedResponseAgentData, _response.json()) # type: ignore
419
+ if _response.status_code == 422:
420
+ raise UnprocessableEntityError(pydantic.parse_obj_as(HttpValidationError, _response.json())) # type: ignore
421
+ try:
422
+ _response_json = _response.json()
423
+ except JSONDecodeError:
424
+ raise ApiError(status_code=_response.status_code, body=_response.text)
425
+ raise ApiError(status_code=_response.status_code, body=_response_json)
426
+
427
+ def aggregate_agent_data_api_v_1_beta_agent_data_aggregate_post(
428
+ self,
429
+ *,
430
+ page_size: typing.Optional[int] = OMIT,
431
+ page_token: typing.Optional[str] = OMIT,
432
+ filter: typing.Optional[typing.Dict[str, typing.Optional[FilterOperation]]] = OMIT,
433
+ order_by: typing.Optional[str] = OMIT,
434
+ agent_slug: str,
435
+ collection: typing.Optional[str] = OMIT,
436
+ group_by: typing.Optional[typing.List[str]] = OMIT,
437
+ count: typing.Optional[bool] = OMIT,
438
+ first: typing.Optional[bool] = OMIT,
439
+ offset: typing.Optional[int] = OMIT,
440
+ ) -> PaginatedResponseAggregateGroup:
441
+ """
442
+ Aggregate agent data with grouping and optional counting/first item retrieval.
443
+
444
+ Parameters:
445
+ - page_size: typing.Optional[int].
446
+
447
+ - page_token: typing.Optional[str].
448
+
449
+ - filter: typing.Optional[typing.Dict[str, typing.Optional[FilterOperation]]].
450
+
451
+ - order_by: typing.Optional[str].
452
+
453
+ - agent_slug: str. The agent deployment's agent_slug to aggregate data for
454
+
455
+ - collection: typing.Optional[str]. The logical agent data collection to aggregate data for
456
+
457
+ - group_by: typing.Optional[typing.List[str]].
458
+
459
+ - count: typing.Optional[bool].
460
+
461
+ - first: typing.Optional[bool].
462
+
463
+ - offset: typing.Optional[int].
464
+ ---
465
+ from llama_cloud.client import LlamaCloud
466
+
467
+ client = LlamaCloud(
468
+ token="YOUR_TOKEN",
469
+ )
470
+ client.beta.aggregate_agent_data_api_v_1_beta_agent_data_aggregate_post(
471
+ agent_slug="string",
472
+ )
473
+ """
474
+ _request: typing.Dict[str, typing.Any] = {"agent_slug": agent_slug}
475
+ if page_size is not OMIT:
476
+ _request["page_size"] = page_size
477
+ if page_token is not OMIT:
478
+ _request["page_token"] = page_token
479
+ if filter is not OMIT:
480
+ _request["filter"] = filter
481
+ if order_by is not OMIT:
482
+ _request["order_by"] = order_by
483
+ if collection is not OMIT:
484
+ _request["collection"] = collection
485
+ if group_by is not OMIT:
486
+ _request["group_by"] = group_by
487
+ if count is not OMIT:
488
+ _request["count"] = count
489
+ if first is not OMIT:
490
+ _request["first"] = first
491
+ if offset is not OMIT:
492
+ _request["offset"] = offset
493
+ _response = self._client_wrapper.httpx_client.request(
494
+ "POST",
495
+ urllib.parse.urljoin(f"{self._client_wrapper.get_base_url()}/", "api/v1/beta/agent-data/:aggregate"),
496
+ json=jsonable_encoder(_request),
497
+ headers=self._client_wrapper.get_headers(),
498
+ timeout=60,
499
+ )
500
+ if 200 <= _response.status_code < 300:
501
+ return pydantic.parse_obj_as(PaginatedResponseAggregateGroup, _response.json()) # type: ignore
502
+ if _response.status_code == 422:
503
+ raise UnprocessableEntityError(pydantic.parse_obj_as(HttpValidationError, _response.json())) # type: ignore
504
+ try:
505
+ _response_json = _response.json()
506
+ except JSONDecodeError:
507
+ raise ApiError(status_code=_response.status_code, body=_response.text)
508
+ raise ApiError(status_code=_response.status_code, body=_response_json)
509
+
207
510
 
208
511
  class AsyncBetaClient:
209
512
  def __init__(self, *, client_wrapper: AsyncClientWrapper):
@@ -381,3 +684,302 @@ class AsyncBetaClient:
381
684
  except JSONDecodeError:
382
685
  raise ApiError(status_code=_response.status_code, body=_response.text)
383
686
  raise ApiError(status_code=_response.status_code, body=_response_json)
687
+
688
+ async def get_agent_data(self, item_id: str) -> AgentData:
689
+ """
690
+ Get agent data by ID.
691
+
692
+ Parameters:
693
+ - item_id: str.
694
+ ---
695
+ from llama_cloud.client import AsyncLlamaCloud
696
+
697
+ client = AsyncLlamaCloud(
698
+ token="YOUR_TOKEN",
699
+ )
700
+ await client.beta.get_agent_data(
701
+ item_id="string",
702
+ )
703
+ """
704
+ _response = await self._client_wrapper.httpx_client.request(
705
+ "GET",
706
+ urllib.parse.urljoin(f"{self._client_wrapper.get_base_url()}/", f"api/v1/beta/agent-data/{item_id}"),
707
+ headers=self._client_wrapper.get_headers(),
708
+ timeout=60,
709
+ )
710
+ if 200 <= _response.status_code < 300:
711
+ return pydantic.parse_obj_as(AgentData, _response.json()) # type: ignore
712
+ if _response.status_code == 422:
713
+ raise UnprocessableEntityError(pydantic.parse_obj_as(HttpValidationError, _response.json())) # type: ignore
714
+ try:
715
+ _response_json = _response.json()
716
+ except JSONDecodeError:
717
+ raise ApiError(status_code=_response.status_code, body=_response.text)
718
+ raise ApiError(status_code=_response.status_code, body=_response_json)
719
+
720
+ async def update_agent_data(self, item_id: str, *, data: typing.Dict[str, typing.Any]) -> AgentData:
721
+ """
722
+ Update agent data by ID (overwrites).
723
+
724
+ Parameters:
725
+ - item_id: str.
726
+
727
+ - data: typing.Dict[str, typing.Any].
728
+ ---
729
+ from llama_cloud.client import AsyncLlamaCloud
730
+
731
+ client = AsyncLlamaCloud(
732
+ token="YOUR_TOKEN",
733
+ )
734
+ await client.beta.update_agent_data(
735
+ item_id="string",
736
+ data={"string": {}},
737
+ )
738
+ """
739
+ _response = await self._client_wrapper.httpx_client.request(
740
+ "PUT",
741
+ urllib.parse.urljoin(f"{self._client_wrapper.get_base_url()}/", f"api/v1/beta/agent-data/{item_id}"),
742
+ json=jsonable_encoder({"data": data}),
743
+ headers=self._client_wrapper.get_headers(),
744
+ timeout=60,
745
+ )
746
+ if 200 <= _response.status_code < 300:
747
+ return pydantic.parse_obj_as(AgentData, _response.json()) # type: ignore
748
+ if _response.status_code == 422:
749
+ raise UnprocessableEntityError(pydantic.parse_obj_as(HttpValidationError, _response.json())) # type: ignore
750
+ try:
751
+ _response_json = _response.json()
752
+ except JSONDecodeError:
753
+ raise ApiError(status_code=_response.status_code, body=_response.text)
754
+ raise ApiError(status_code=_response.status_code, body=_response_json)
755
+
756
+ async def delete_agent_data(self, item_id: str) -> typing.Dict[str, str]:
757
+ """
758
+ Delete agent data by ID.
759
+
760
+ Parameters:
761
+ - item_id: str.
762
+ ---
763
+ from llama_cloud.client import AsyncLlamaCloud
764
+
765
+ client = AsyncLlamaCloud(
766
+ token="YOUR_TOKEN",
767
+ )
768
+ await client.beta.delete_agent_data(
769
+ item_id="string",
770
+ )
771
+ """
772
+ _response = await self._client_wrapper.httpx_client.request(
773
+ "DELETE",
774
+ urllib.parse.urljoin(f"{self._client_wrapper.get_base_url()}/", f"api/v1/beta/agent-data/{item_id}"),
775
+ headers=self._client_wrapper.get_headers(),
776
+ timeout=60,
777
+ )
778
+ if 200 <= _response.status_code < 300:
779
+ return pydantic.parse_obj_as(typing.Dict[str, str], _response.json()) # type: ignore
780
+ if _response.status_code == 422:
781
+ raise UnprocessableEntityError(pydantic.parse_obj_as(HttpValidationError, _response.json())) # type: ignore
782
+ try:
783
+ _response_json = _response.json()
784
+ except JSONDecodeError:
785
+ raise ApiError(status_code=_response.status_code, body=_response.text)
786
+ raise ApiError(status_code=_response.status_code, body=_response_json)
787
+
788
+ async def create_agent_data_api_v_1_beta_agent_data_post(
789
+ self, *, agent_slug: str, collection: typing.Optional[str] = OMIT, data: typing.Dict[str, typing.Any]
790
+ ) -> AgentData:
791
+ """
792
+ Create new agent data.
793
+
794
+ Parameters:
795
+ - agent_slug: str.
796
+
797
+ - collection: typing.Optional[str].
798
+
799
+ - data: typing.Dict[str, typing.Any].
800
+ ---
801
+ from llama_cloud.client import AsyncLlamaCloud
802
+
803
+ client = AsyncLlamaCloud(
804
+ token="YOUR_TOKEN",
805
+ )
806
+ await client.beta.create_agent_data_api_v_1_beta_agent_data_post(
807
+ agent_slug="string",
808
+ data={"string": {}},
809
+ )
810
+ """
811
+ _request: typing.Dict[str, typing.Any] = {"agent_slug": agent_slug, "data": data}
812
+ if collection is not OMIT:
813
+ _request["collection"] = collection
814
+ _response = await self._client_wrapper.httpx_client.request(
815
+ "POST",
816
+ urllib.parse.urljoin(f"{self._client_wrapper.get_base_url()}/", "api/v1/beta/agent-data"),
817
+ json=jsonable_encoder(_request),
818
+ headers=self._client_wrapper.get_headers(),
819
+ timeout=60,
820
+ )
821
+ if 200 <= _response.status_code < 300:
822
+ return pydantic.parse_obj_as(AgentData, _response.json()) # type: ignore
823
+ if _response.status_code == 422:
824
+ raise UnprocessableEntityError(pydantic.parse_obj_as(HttpValidationError, _response.json())) # type: ignore
825
+ try:
826
+ _response_json = _response.json()
827
+ except JSONDecodeError:
828
+ raise ApiError(status_code=_response.status_code, body=_response.text)
829
+ raise ApiError(status_code=_response.status_code, body=_response_json)
830
+
831
+ async def search_agent_data_api_v_1_beta_agent_data_search_post(
832
+ self,
833
+ *,
834
+ page_size: typing.Optional[int] = OMIT,
835
+ page_token: typing.Optional[str] = OMIT,
836
+ filter: typing.Optional[typing.Dict[str, typing.Optional[FilterOperation]]] = OMIT,
837
+ order_by: typing.Optional[str] = OMIT,
838
+ agent_slug: str,
839
+ collection: typing.Optional[str] = OMIT,
840
+ include_total: typing.Optional[bool] = OMIT,
841
+ offset: typing.Optional[int] = OMIT,
842
+ ) -> PaginatedResponseAgentData:
843
+ """
844
+ Search agent data with filtering, sorting, and pagination.
845
+
846
+ Parameters:
847
+ - page_size: typing.Optional[int].
848
+
849
+ - page_token: typing.Optional[str].
850
+
851
+ - filter: typing.Optional[typing.Dict[str, typing.Optional[FilterOperation]]].
852
+
853
+ - order_by: typing.Optional[str].
854
+
855
+ - agent_slug: str. The agent deployment's agent_slug to search within
856
+
857
+ - collection: typing.Optional[str]. The logical agent data collection to search within
858
+
859
+ - include_total: typing.Optional[bool]. Whether to include the total number of items in the response
860
+
861
+ - offset: typing.Optional[int].
862
+ ---
863
+ from llama_cloud.client import AsyncLlamaCloud
864
+
865
+ client = AsyncLlamaCloud(
866
+ token="YOUR_TOKEN",
867
+ )
868
+ await client.beta.search_agent_data_api_v_1_beta_agent_data_search_post(
869
+ agent_slug="string",
870
+ )
871
+ """
872
+ _request: typing.Dict[str, typing.Any] = {"agent_slug": agent_slug}
873
+ if page_size is not OMIT:
874
+ _request["page_size"] = page_size
875
+ if page_token is not OMIT:
876
+ _request["page_token"] = page_token
877
+ if filter is not OMIT:
878
+ _request["filter"] = filter
879
+ if order_by is not OMIT:
880
+ _request["order_by"] = order_by
881
+ if collection is not OMIT:
882
+ _request["collection"] = collection
883
+ if include_total is not OMIT:
884
+ _request["include_total"] = include_total
885
+ if offset is not OMIT:
886
+ _request["offset"] = offset
887
+ _response = await self._client_wrapper.httpx_client.request(
888
+ "POST",
889
+ urllib.parse.urljoin(f"{self._client_wrapper.get_base_url()}/", "api/v1/beta/agent-data/:search"),
890
+ json=jsonable_encoder(_request),
891
+ headers=self._client_wrapper.get_headers(),
892
+ timeout=60,
893
+ )
894
+ if 200 <= _response.status_code < 300:
895
+ return pydantic.parse_obj_as(PaginatedResponseAgentData, _response.json()) # type: ignore
896
+ if _response.status_code == 422:
897
+ raise UnprocessableEntityError(pydantic.parse_obj_as(HttpValidationError, _response.json())) # type: ignore
898
+ try:
899
+ _response_json = _response.json()
900
+ except JSONDecodeError:
901
+ raise ApiError(status_code=_response.status_code, body=_response.text)
902
+ raise ApiError(status_code=_response.status_code, body=_response_json)
903
+
904
+ async def aggregate_agent_data_api_v_1_beta_agent_data_aggregate_post(
905
+ self,
906
+ *,
907
+ page_size: typing.Optional[int] = OMIT,
908
+ page_token: typing.Optional[str] = OMIT,
909
+ filter: typing.Optional[typing.Dict[str, typing.Optional[FilterOperation]]] = OMIT,
910
+ order_by: typing.Optional[str] = OMIT,
911
+ agent_slug: str,
912
+ collection: typing.Optional[str] = OMIT,
913
+ group_by: typing.Optional[typing.List[str]] = OMIT,
914
+ count: typing.Optional[bool] = OMIT,
915
+ first: typing.Optional[bool] = OMIT,
916
+ offset: typing.Optional[int] = OMIT,
917
+ ) -> PaginatedResponseAggregateGroup:
918
+ """
919
+ Aggregate agent data with grouping and optional counting/first item retrieval.
920
+
921
+ Parameters:
922
+ - page_size: typing.Optional[int].
923
+
924
+ - page_token: typing.Optional[str].
925
+
926
+ - filter: typing.Optional[typing.Dict[str, typing.Optional[FilterOperation]]].
927
+
928
+ - order_by: typing.Optional[str].
929
+
930
+ - agent_slug: str. The agent deployment's agent_slug to aggregate data for
931
+
932
+ - collection: typing.Optional[str]. The logical agent data collection to aggregate data for
933
+
934
+ - group_by: typing.Optional[typing.List[str]].
935
+
936
+ - count: typing.Optional[bool].
937
+
938
+ - first: typing.Optional[bool].
939
+
940
+ - offset: typing.Optional[int].
941
+ ---
942
+ from llama_cloud.client import AsyncLlamaCloud
943
+
944
+ client = AsyncLlamaCloud(
945
+ token="YOUR_TOKEN",
946
+ )
947
+ await client.beta.aggregate_agent_data_api_v_1_beta_agent_data_aggregate_post(
948
+ agent_slug="string",
949
+ )
950
+ """
951
+ _request: typing.Dict[str, typing.Any] = {"agent_slug": agent_slug}
952
+ if page_size is not OMIT:
953
+ _request["page_size"] = page_size
954
+ if page_token is not OMIT:
955
+ _request["page_token"] = page_token
956
+ if filter is not OMIT:
957
+ _request["filter"] = filter
958
+ if order_by is not OMIT:
959
+ _request["order_by"] = order_by
960
+ if collection is not OMIT:
961
+ _request["collection"] = collection
962
+ if group_by is not OMIT:
963
+ _request["group_by"] = group_by
964
+ if count is not OMIT:
965
+ _request["count"] = count
966
+ if first is not OMIT:
967
+ _request["first"] = first
968
+ if offset is not OMIT:
969
+ _request["offset"] = offset
970
+ _response = await self._client_wrapper.httpx_client.request(
971
+ "POST",
972
+ urllib.parse.urljoin(f"{self._client_wrapper.get_base_url()}/", "api/v1/beta/agent-data/:aggregate"),
973
+ json=jsonable_encoder(_request),
974
+ headers=self._client_wrapper.get_headers(),
975
+ timeout=60,
976
+ )
977
+ if 200 <= _response.status_code < 300:
978
+ return pydantic.parse_obj_as(PaginatedResponseAggregateGroup, _response.json()) # type: ignore
979
+ if _response.status_code == 422:
980
+ raise UnprocessableEntityError(pydantic.parse_obj_as(HttpValidationError, _response.json())) # type: ignore
981
+ try:
982
+ _response_json = _response.json()
983
+ except JSONDecodeError:
984
+ raise ApiError(status_code=_response.status_code, body=_response.text)
985
+ raise ApiError(status_code=_response.status_code, body=_response_json)
@@ -301,7 +301,7 @@ class OrganizationsClient:
301
301
  self, organization_id: typing.Optional[str], *, get_current_invoice_total: typing.Optional[bool] = None
302
302
  ) -> UsageAndPlan:
303
303
  """
304
- Get usage for a project
304
+ Get usage for a specific organization.
305
305
 
306
306
  Parameters:
307
307
  - organization_id: typing.Optional[str].
@@ -1007,7 +1007,7 @@ class AsyncOrganizationsClient:
1007
1007
  self, organization_id: typing.Optional[str], *, get_current_invoice_total: typing.Optional[bool] = None
1008
1008
  ) -> UsageAndPlan:
1009
1009
  """
1010
- Get usage for a project
1010
+ Get usage for a specific organization.
1011
1011
 
1012
1012
  Parameters:
1013
1013
  - organization_id: typing.Optional[str].
@@ -233,6 +233,7 @@ class ParsingClient:
233
233
  language: typing.List[ParserLanguages],
234
234
  extract_layout: bool,
235
235
  max_pages: typing.Optional[int] = OMIT,
236
+ merge_tables_across_pages_in_markdown: bool,
236
237
  outlined_table_extraction: bool,
237
238
  output_pdf_of_document: bool,
238
239
  output_s_3_path_prefix: str,
@@ -370,6 +371,8 @@ class ParsingClient:
370
371
 
371
372
  - max_pages: typing.Optional[int].
372
373
 
374
+ - merge_tables_across_pages_in_markdown: bool.
375
+
373
376
  - outlined_table_extraction: bool.
374
377
 
375
378
  - output_pdf_of_document: bool.
@@ -518,6 +521,7 @@ class ParsingClient:
518
521
  "invalidate_cache": invalidate_cache,
519
522
  "language": language,
520
523
  "extract_layout": extract_layout,
524
+ "merge_tables_across_pages_in_markdown": merge_tables_across_pages_in_markdown,
521
525
  "outlined_table_extraction": outlined_table_extraction,
522
526
  "output_pdf_of_document": output_pdf_of_document,
523
527
  "output_s3_path_prefix": output_s_3_path_prefix,
@@ -1389,6 +1393,7 @@ class AsyncParsingClient:
1389
1393
  language: typing.List[ParserLanguages],
1390
1394
  extract_layout: bool,
1391
1395
  max_pages: typing.Optional[int] = OMIT,
1396
+ merge_tables_across_pages_in_markdown: bool,
1392
1397
  outlined_table_extraction: bool,
1393
1398
  output_pdf_of_document: bool,
1394
1399
  output_s_3_path_prefix: str,
@@ -1526,6 +1531,8 @@ class AsyncParsingClient:
1526
1531
 
1527
1532
  - max_pages: typing.Optional[int].
1528
1533
 
1534
+ - merge_tables_across_pages_in_markdown: bool.
1535
+
1529
1536
  - outlined_table_extraction: bool.
1530
1537
 
1531
1538
  - output_pdf_of_document: bool.
@@ -1674,6 +1681,7 @@ class AsyncParsingClient:
1674
1681
  "invalidate_cache": invalidate_cache,
1675
1682
  "language": language,
1676
1683
  "extract_layout": extract_layout,
1684
+ "merge_tables_across_pages_in_markdown": merge_tables_across_pages_in_markdown,
1677
1685
  "outlined_table_extraction": outlined_table_extraction,
1678
1686
  "output_pdf_of_document": output_pdf_of_document,
1679
1687
  "output_s3_path_prefix": output_s_3_path_prefix,